2017. 09. 26. 12:15 - 2017. 09. 26. 13:45
MTA Rényi Intézet, nagyterem
-
-
Esemény típusa:
szeminárium
Intézeti:
Igen
-
Számelmélet szeminárium
Leírás
Given two monic polynomials $f(x)$ and $g(x)$ with integer coefficients
and nonzero resultant $r$, and given a prime $p$, let s and $S$ denote the
minimal, resp. maximal value of the exponent $v_p(f(n), g(n))$ of $p$ in
the prime decomposition of a greatest common divisor $(f(n), g(n))$, as
$n$ varies in $Z$. It is known that $S$ cannot exceed $v_p(r)$. Given $p$ and
$s$, we wish to find $f(x)$ and $g(x)$ minimizing $v_p(r) - S$. It will be
shown that the minimum is asymptotically $(p-1)s^2$ for large $s$. Time
permitting, it will be shown that under suitable conditions, $v_p(f(n),
g(n))$ attains all values between $s$ and $S$.