2019. 03. 28. 12:15 - 2019. 03. 28. 13:45
MTA Rényi Intézet, nagyterem
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Extremális halmazrendszerek szeminárium

Leírás

Let Y be the poset with elements a, b , c, d such that a < b < c, d,

and let Y' be the same poset but all relations reversed. We say a family of

subsets of [n] contains a copy of Y on three consecutive levels if it contains

4 subsets A, B, C, D such that A < B < C, D and |D| = |C| = |B|+1 =|A|+ 2.

We denote by $La_{c}(n, Y, Y')$ the largest size of a family of subsets of [n]

without both Y and Y'on three consecutive levels. In this talk, we will show

the exact value of $La _{c}(n, Y, Y')$.