2018. 09. 19. 16:00 - 2018. 09. 19. 17:30
BME H-306
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Külsős
-
-

Leírás

The goal of this talk is to give an introduction to Haagerup's 
construction of an $L^p$ space associated with a von Neumann algebra.
Some background: Separable commutative von Neumann algebras are 
isomorphic to $L^\infinity(X,\mu)$ for some standard measure space, and to 
such a space one associates the $L^p$ spaces in the usual sense. For a 
semifinite von Neumann algebra M with faithful normal semifinite trace 
\tau, Dixmier, Segal and Kunze introduced a space $L^p(M,\tau)$, 
generalizing the classical ones. The extension by Haagerup applies to 
arbitrary (not necessary semifinite) von Neumann algebras and for 
semifinite ones it is isometrically isomorphic to $L^p(M,\tau)$ for any 
faithful normal semifinite trace $\tau$.