2018. 09. 19. 16:00 - 2018. 09. 19. 17:30
BME H-306
-
-
-
-
Esemény típusa:
szeminárium
Szervezés:
Külsős
-
-
Leírás
The goal of this talk is to give an introduction to Haagerup's
construction of an $L^p$ space associated with a von Neumann algebra.
Some background: Separable commutative von Neumann algebras are
isomorphic to $L^\infinity(X,\mu)$ for some standard measure space, and to
such a space one associates the $L^p$ spaces in the usual sense. For a
semifinite von Neumann algebra M with faithful normal semifinite trace
\tau, Dixmier, Segal and Kunze introduced a space $L^p(M,\tau)$,
generalizing the classical ones. The extension by Haagerup applies to
arbitrary (not necessary semifinite) von Neumann algebras and for
semifinite ones it is isometrically isomorphic to $L^p(M,\tau)$ for any
faithful normal semifinite trace $\tau$.