2019. 09. 16. 16:15 - 2019. 09. 16. 17:45
-
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Kutszem

Leírás

Előadó: Tóth László Márton

Cím: Invariant Schreier decorations on unimodular random graphs

Absztrakt: It is a nice exercise in combinatorics to show that all finite 2d-regular graphs are edge-disjoint unions of 2-regular graphs on the same vertex set. Equivalently, 2d-regular graphs are Schreier graphs of the free group on d generators. We will consider the analogous problem for unimodular random graphs, where we try to find a Schreier labeling in an invariant random way.

We show that any 2d-regular unimodular random network can be given an invariant random Schreier decoration. Equivalently, every 2d-regular graphing is a local ismorphic image of a graphing coming from a probability measure preserving action of the free goup. Connections to Borel combinatorics, and invariant random subgroups will also be explored.