2023. 04. 18. 10:30 - 2023. 04. 18. 11:45
Szeged, Bolyai Intézet, Aradi vértanúk tere 1, I. emelet, Riesz terem
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Külsős
-
Szegedi Szemináriumok

Leírás

In one of his recent papers L. Molnár, On dissimilarities of the conventional and Kubo-Ando power means in operator algebras, (J. Math. Anal. Appl., 504 (2021) 125356), Molnár  showed that if A is a von Neumann algebra without  I1, I2-type direct summands,  then any function from the positive definite cone of A  to the positive real numbers preserving the Kubo-Ando power mean,  for some nonzero p between -1 and 1  is necessarily constant.  It was shown in that paper, that I1-type algebras admit nontrivial p-power  mean preserving functionals, and it was conjectured,  that I2-type algebras admit only constant p-power mean preserving functionals.  We  confirm the latter. A similar result occured in L. Molnár, Maps on positive definite cones of C*-algebras preserving the Wasserstein mean, Proc. Amer. Math. Soc. 150 (2022), 1209-1221.,  concerning the Wasserstein mean.  We prove the conjecture for I2-type algebras  in regard of the Wasserstein mean, too.  We also give two  conditions that characterise centrality in C*-algebras.
Joint work with Dániel Virosztek.