2019. 04. 11. 12:15 - 2019. 04. 11. 13:45
MTA Rényi Intézet, nagyterem
-
-
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Extremális halmazrendszerek szeminárium
Leírás
For a given graph $H$, the classical Tur\'an number $\ex(K_n,H)$ is defined to be the
maximal number of edges which can be taken in an $H$-free subgraph of the complete
graph $K_n$. Briggs and Cox introduced a dual version of this problem whereby one
maximizes for a given number $k$, the number of edges in a ground graph $G$ for
which $\ex(G,H) \le k$. We resolve a problem of Briggs and Cox in the negative by
showing that the inverse Tur\'an number of $K_{2,t}$ is $\Theta(n^{3/2})$, for all $t \ge 2$.
We also obtain improved bounds on the inverse Tur\'an number of even cycles and paths.
Joint with Ervin Győri, Nathan Lemons, Casey Tompkins, Oscar Zamora