2020. 12. 10. 14:15 - 2020. 12. 10. 15:30
Online, Zoom webinar
-
-
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Kombinatorika szeminárium
Leírás
Abstract: In this talk, we show that the maximum number of edges in a $3$-uniform hypergraph without a Berge cycle of length four is at most $(1+o(1))\frac{n^{3/2}}{\sqrt{10}}$. This improves earlier estimates by Győri and Lemons and by Füredi and Özkahya.
Joint Work with Beka Ergemlidze, Ervin Győri, Abhishek Methuku, Casey Tompkins