2019. 11. 28. 12:30 - 2019. 11. 28. 14:00
MTA Rényi Intézet, nagyterem
-
-
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Extremális halmazrendszerek szeminárium
Leírás
A conjecture of Paul Erdős from 1967 asserts that any graph on n vertices which does
not contain a fixed r-degenerate bipartite graph F has at most Cn^(2-1/r) edges, where C is a
constant depending only on F.
We show that this bound holds for a large family of r-degenerate bipartite graphs, including all blow-ups of trees. This generalises
many previously proven cases of the Erdős conjecture, including the related results of Füredi
and Alon, Krivelevich and Sudakov. Our proof uses supersaturation and a probabilistic argument in connection with random walks on
an auxiliary graph.
Joint work with Andrzej Grzesik and Olivér Janzer