2018. 11. 15. 12:15 - 2018. 11. 15. 13:45
MTA Rényi Intézet, nagyterem
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Extremális halmazrendszerek szeminárium

Leírás

We address the following rainbow Ramsey problem: For posets P, Q what is the smallest

number n such that any coloring of the elements of the Boolean lattice $B_n$ either admits

a monochromatic copy of P or a rainbow copy of Q. We consider both weak and strong

(non-induced and induced) versions of this problem. We also investigate related problems

on (partial) k-colorings of $B_n$ that do not admit rainbow antichains of size k.

 

Joint work with Fei-Huang Chang, Dániel Gerbner, Wei-Tian Li, Abhishek Methuku,

Balázs Patkós and Máté Vizer.