2018. 11. 14. 14:00 - 2018. 11. 14. 16:00
Szeged, Bolyai Intézet, Bolyai Épület, I. emelet, Riesz terem, Aradi Vértanúk tere 1.
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Külsős
-
-

Leírás

SZTE, TTIK, Bolyai Intézet,  Sztochasztika szeminárium

Abstract. We investigate the tail behavior of the stationary distribution of subcritical Galton-Watson branching processes with immigration in random environment. We show that, contrary to the deterministic environment setup, the stationary distribution has typically Pareto-like tail, even with light-tailed immigration and offspring distribution. Since the stationary distribution is a solution to a random fixed point equation, Goldie's implicit renewal theory can be applied.