2019. 02. 07. 10:30 - 2019. 02. 07. 12:00
MTA Rényi Intézet, Nagyterem
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Halmazelmélet Szeminárium

Leírás

Speaker: Daniel T Soukup
Title: HFC and D-spaces
Abstract: A topological space $X$ is strongly $D$ if for any neighbourhood assignment $\{U_x:x\in X\}$, there is a $D\subseteq X$ such that $\{U_x:x\in D\}$ covers $X$ and $D$ is locally finite in the topology generated by $\{U_x:x\in X\}$. We prove that $\diamondsuit$ implies that there is an $HFC_w$ space in $2^{\omega_1}$ (hence 0-dimensional, Hausdorff and hereditarily Lindelöf) which is not strongly $D$. We also show that any $HFC$ space $X$ is dually discrete and if additionally, countable sets have Menger closure then $X$ is a $D$-space. Joint work with Paul Szeptycki.