2021. 09. 15. 10:10 - 2021. 09. 15. 12:00
Riesz Lecture Hall, 1st Floor, Bolyai Institute, Aradi Vértanúk tere 1., Szeged
-
-
-
-
Esemény típusa:
szeminárium
Szervezés:
Külsős
-
Szegedi Szemináriumok
Leírás
University of Szeged, Bolyai Institute, Algebra Seminar
Abstract. I sketch a semantical proof that congruence permutability is prime in the lattice of interpretability types of varieties. This proof settles a 1984 conjecture of Garcia and Taylor. The main ingredient of the proof is an entirely combinatorial statement: given two digraphs $G$ and $H$ so that each contains a universal vertex, there is a non-empty graph $ X$ so that $G^X$ and $H^X$ are isomorphic.