2019. 05. 10. 10:00 - 2019. 05. 10. 12:00
Szeged, Bolyai Intézet, Bolyai Épület, I. emelet, Riesz terem, Aradi vértanúk tere 1.
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Külsős
-
-

Leírás

University of Szeged, Bolyai Institute, Combinatorics Seminar

Abstract.
Let $F$ be a graph. We say that a hypergraph $H$ contains an {induced Berge} $F$ if there exists an injective mapping $f$ from the edges of $F$ to the hyperedges of $H$ such that if $xy \in E(G)$, then $f(xy) \cap V(F) =\{x,y\}$. We show that the maximum number of edges in an $r$-uniform hypergraph with no induced Berge $F$ is strongly related to the generalized Turan function $ex(n,K_r, F)$. (I.e., the maximum number of $K_r$'s in an $F$-free graph on $n$ vertices).
A joint work with Ruth Luo.