2019. 03. 07. 12:15 - 2019. 03. 07. 13:45
MTA Rényi Intézet, nagyterem
-
-
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Extremális halmazrendszerek szeminárium
Leírás
For a graph $F$, we say a hypergraph is a Berge-$F$ if it can be obtained from
$F$ by replacing each edge of $F$ with a hyperedge containing it. The weight of
a non-uniform hypergraph $H$ is the quantity $\sum_{h \in E(H)} |h|$.
Suppose $H$ is a Berge-$F$-free hypergraph on $n$ vertices. We prove that as long
as every edge of $H$ has size at least the Ramsey number of $F$ and at most $o(n)$,
the weight of $H$ is $o(n^2)$. We show that this is close to best possible in some sense.
Moreover, we give close to tight bounds for most weight functions.