2019. 02. 28. 12:15 - 2019. 02. 28. 13:45
             MTA Rényi Intézet, nagyterem
           -
             -
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Extremális halmazrendszerek szeminárium
          Leírás
The Hales–Jewett Theorem states that any $r$–colouring of $[m]^n$ contains a monochromatic combinatorial line if $n$ is large enough. Shelah’s proof of the theorem implies that for $m = 3$ there always exists a monochromatic combinatorial lines whose set of active coordinates is the union of at most $r$ intervals. I will present some recent findings relating to this observation. This is joint work with Nina Kamcev.