2019. 02. 28. 12:15 - 2019. 02. 28. 13:45
MTA Rényi Intézet, nagyterem
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Extremális halmazrendszerek szeminárium

Leírás

The Hales–Jewett Theorem states that any $r$–colouring of $[m]^n$ contains a monochromatic combinatorial line if $n$ is large enough. Shelah’s proof of the theorem implies that for $m = 3$ there always exists a monochromatic combinatorial lines whose set of active coordinates is the union of at most $r$ intervals. I will present some recent findings relating to this observation. This is joint work with Nina Kamcev.