Turán Pál (1910 - 1976)
A magyar analitikus számelméleti iskola megalapítója. Mély eredményeket ért el approximációelméletben, komplex függvénytanban és gráfelméletben is. Fő eredménye az analitikus számelméletbeli úgynevezett hatványösszegmódszer kidolgozása, mely ma már a nevét viseli, s melynek számos alkalmazása van a Riemann hipotézis vizsgálatában. ezen eredményeit az On a new method in analysis and its applications című angolul és németül is megjelent könyvében foglalta össze. Számos diákja él szerte a világban.
Turán Pál workshop-sorozat
- Colloquium on General and Set-Theoretic Topology, 2003
- Groups and Probability, 2003
- Invariants in Low-Dimensional Topology, 2003
- Workshop in Extremal Combinatorics, 2003
- Workshop in Approximation Theory, 2002
- Logic, Algebra and Relativity, 2002
- Workshop on Periodicity and Quasi-periodicity, 2002
- Conference on Information Theory, Cryptography and Statistics, 2001
- Workshop on analysis, 2000
- American--Hungarian Joint Workshop on Discrete Geometry, 1999
- Discrete Geometry, 1999
- Approximation Theory, 1998
- Summer school on Low Dimensional Topology, 1998
Turán Pál emlékelőadások
1978 November 21 és 24.
ALAN BAKER (Trinity College, Cambridge)
- Applications of transcendence I-II.
1980
K. F. ROTH (Imperial College, London)
- Irregularities of distribution and related questions
1981 November 7-9.
LENNART CARLESON (Sweden)
- Recent results in Hp-theory
1984 április 3 és 5.
WOLFGANG M. SCHMIDT (Boulder, USA)
- Lecture 1. Small zeros of quadratic forms
- Lecture 2. Diophantine problems in many variables
- Lecture 3. Exponential sums
október 9-11
ANDRZEJ SCHINZEL (Warsaw)
- Reducibility of polynomials over an arbitrary field and over the rationals
október 31 - november,
JEAN-PIERRE KAHANE (Paris)
- Lecture 1. Multiplicative chaos
- Lecture 2. Value distribution of a Gaussian (random) analytic function
- Lecture 3. Greek mathematics and quadratic fields
1985 január 30 - február 1.
JA. G. SINAY
- Lecture 1. Application of the Renormatization Group Method
- Lecture 2. Mechanical models of Brownian motion
- Lecture 3. Hydrodynamical limit transitions
szeptember 18-20
ATLE SELBERG (Institute for Advanced Study, Princeton)
- Lectures on sieves
1987 szeptember 28-30.
ENRICO BOMBIERI (Princeton Institute for Advanced Study)
- On the distribution of primes in large arithmetic progressions
1989 január 16-18.
G. A. MARGULIS (Institute Problemy Peredatchi Informacii)
- Discrete subgroups and ergodic theory
1992 április 21-23.
R.A. ASKEY (Madison University)
- Lecture 1. Inequalities for Polynomials
- Lecture 2. Extensions of Gamma and Beta Integrals and the Related Orthogonal Polynomials
- Lecture 3. Ramanujan: Who was he, what did he do, and why do we still care?
1994 május 18-20.
ROBERT TIJDEMAN (University of Leiden)
- Lecture 1. The abc-conjecture
- Lecture 2. Arithmetic progressions with equal products I
- Lecture 3. Arithmetic progressions with equal products II
1995 október 31 - november 2.
HENRYK IWANIEC (Rutgers University)
- Lecture 1. Equidistribution of roots of quadrativ congruences to prime moduli
- Lecture 2. The lattice points inside a sphere
- Lecture 3. Gaussian primes
1996 május 20, 21, és 23.
LAX PÉTER (New York University)
- Lecture 1. The distribution of lattice points in Euclidean spaces
- Lecture 2. The distribution of lattice points in Hyperbolic spaces
- Lecture 3. Factorization of bounded analytic functions
1998 február 17-19.
SHARON SHELAH (Hebrew University Jerusalem)
- Lecture 1. Hilbert's First Problem Revisited
- Lecture 2. Non structure Theory
- Lecture 3. Nine Forcing Notions: The theory of iteration for the continuum
2000 október 3-5.
H. L. MONTGOMERY (Univ. of Michigan)
- Lecture 1. The local distribution of prime numbers and the zeros of the Reimann zeta function
- Lecture 2. Beuring's generalized primes
- Lecture 3. Greedy sums of distinct squares
2002 november 26-28.
P. SARNAK (Univ. of Princeton)
- Lecture 1. Sums of squares and Hilbert's 11th problem
- Lecture 2. The spectra of modular surfaces
- Lecture 3. The spectra of modular surfaces continued
2004 május 26-28.
EFIM ZELMANOV (Univ. of California)
- Lecture 1. Profinite groups I: The Golod-Shafarevich condition
- Lecture 2. Profinite groups II. Linear pro-p groups
- Lecture 3. Lie (super)algebras graded by root systems
2006 november 21-23.
HILLEL FÜRSTENBERG (Einstein Institute of Mathematics, The Hebrew University of Jerusalem)
- Lecture 1. Number Theory, Combinatorics and Recurrence in Dynamical Systems; the Correspondence Principle
- Lecture 2. Ergodicity, Mixing, Conventional and non-Conventional Ergodic Theorems
- Lecture 3. The Long Term Memory of Dynamical Systems and the Strange Role of Nilpotent Groups and Nilflows
2007 szeptember 24-26.
MIKHAIL GROMOV (IHS, France and the Courant Institute, NY, USA)
- Combinatorics and Morse Theory
2009 február 17-19.
NOGA ALON (Tel Aviv University, Israel)
- Lecture 1. The Probabilistic Method
- Lecture 2. Polynomials in Discrete Mathematics
- Lecture 3. The Structure of Large Graphs
2011 június 1-3.
YUVAL PERES (Microsoft Research; Adjunct Professor at The University of Washington and at UC Berkeley)
- Lecture 1. Laplacian growth
- Lecture 2. Mysteries of the abelian sandpile
- Lecture 3. Gravitational allocation to Poisson points
2017 március 28-30.
HARALD HELFGOTT (University of Göttingen)
- Lecture 1. The ternary Goldbach problem
- Lecture 2. The ternary Goldbach problem revisited, I.
- Lecture 3. The ternary Goldbach problem revisited, II.
2022 április. 25., június 14. és 16.
GIL KALAI ( Hebrew University of Jerusalem, Israel)