2022. 03. 30. 14:00 - 2022. 03. 30. 15:30
online
-
-
Event type:
seminar
Organizer:
Institute
Deep learning szeminarium
Description
Feed-forward networks can be interpreted as mappings with linear decision surfaces at the level of the last layer.
e investigate how the tangent space of the network can be exploited to refine the decision in case of ReLU (Rectified Linear Unit) activations.
We show that a simple Riemannian metric parametrized on the parameters of the network forms a similarity function at least as good as the original network and we
suggest a sparse metric to increase the similarity gap.