Description
Speaker: Péter Csíkvári
Title: On Sidorenko’s conjecture for determinants and Gaussian Markov random fields
Abstract: We study a class of determinant inequalities that are closely related to Sidorenko’s famous conjecture (Also conjectured by Erdős and Simonovits in a different form). Our main result can also be interpreted as an entropy inequality for Gaussian Markov random fields (GMRF). We call a GMRF on a finite graph G homogeneous if the marginal distributions on the edges are all identical. We show that if G is bipartite then the differential entropy of any homogeneous GMRF on G is at least |E(G)| times the edge entropy plus |V (G)| − 2|E(G)| times the point entropy. We also show that in the case of non-negative correlation on edges, the result holds for an arbitrary graph G. The connection between Sidorenko’s conjecture and GMRF’s is established via a large deviation principle on high dimensional spheres combined with graph limit theory. Connection with Ihara zeta function and the number of spanning trees is also discussed. Joint work with Balázs Szegedy.