2020. 10. 06. 12:00 - 2020. 10. 06. 13:30
Online, Zoom webinar
-
-
Event type: seminar
Organizer: Institute
-
Számelmélet szeminárium

Description

Abstract:

In recent joint work with Dániel Soltész, we proved a new upper bound on the maximum number of pairwise $C_{2k}$-creating Hamiltonian paths of $K_n$. For the case of $k>3$, we employed the Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak. The talk will focus on arithmetic features of the proof such as: what are these Ramanujan graphs, and how do we choose their parameters (which are two prime numbers).

 

 

For Zoom access please contact Andras Biro (biro.andras[a]renyi.hu).