Types

LEMN

Proof

we hav

Hence

This w is max:
By (

for ever It fol

Applyii

If X a is define distribu

Joint type such that

Note the occur in sequence uncondition

2 Types and typical sequences

Most of the proof techniques used in this book will be based on a few simple combinatorial lemmas, summarized below.

Drawing k times independently with distribution Q from a finite set X, the probability of obtaining the sequence $x \in X^k$ depends only on how often the various elements of X occur in x. In fact, denoting by N(a|x) the number of occurrences of $a \in X$ in x, we have

$$Q^{k}(\mathbf{x}) = \prod_{a \in \mathsf{X}} Q(a)^{N(a|\mathbf{x})}.$$
(2.1)

DEFINITION 2.1 The type of a sequence $x \in X^k$ is the distribution P_x on X defined by

$$P_{\mathbf{x}}(a) \triangleq \frac{1}{k} N(a|\mathbf{x})$$
 for every $a \in X$.

For any distribution P on X, the set of sequences of type P in X^k is denoted by T_P^k or simply T_P . A distribution P on X is called a *type of sequences in* X^k if $T_P^k \neq \emptyset$.

Sometimes the term "type" will also be used for the sets $\mathsf{T}_P^k \neq \emptyset$ when this does not lead to ambiguity. These sets are also called *type classes* or *composition classes*.

REMARK In mathematical statistics, if $\mathbf{x} \in \mathsf{X}^k$ is a sample of size k consisting of the results of k observations, the type of \mathbf{x} is called the *empirical distribution* of the sample \mathbf{x} .

By (2.1), the Q^k -probability of a subset of T_P is determined by its cardinality. Hence the Q^k -probability of any subset A of X^k can be calculated by combinatorial counting arguments, looking at the intersections of A with the various sets T_P separately. In doing so, it will be relevant that the number of different types in X^k is much smaller than the number of sequences $\mathbf{x} \in X^k$.

LEMMA 2.2 (*Type counting*) The number of different types of sequences in X^k is less than $(k+1)^{|X|}$.

Proof For every $a \in X$, $N(a|\mathbf{x})$ can take k+1 different values.

The next lemma explains the role of entropy from a combinatorial point of view, via the asymptotics of a multinomial coefficient.

Second Edition, Combridg University PKrs, 2011.

→ 2.1

LEMMA 2.3 For any type P of sequences in X^k

 $\rightarrow 2.2$

$$(k+1)^{-|\mathsf{X}|} \exp[kH(P)] \le |\mathsf{T}_P| \le \exp[kH(P)].$$

Proof Since (2.1) implies

$$P^k(\mathbf{x}) = \exp[-kH(P)]$$
 if $\mathbf{x} \in \mathsf{T}_P$

we have

$$|\mathsf{T}_P| = P^k(\mathsf{T}_P) \exp[kH(P)].$$

Hence it is enough to prove that

$$P^k(\mathsf{T}_P) \ge (k+1)^{-|\mathsf{X}|}.$$

This will follow by the Type counting lemma if we show that the P^k -probability of $T_{\widehat{P}}$ is maximized for $\widehat{P} = P$.

By (2.1) we have

$$P^{k}(\mathsf{T}_{\widehat{P}}) = |\mathsf{T}_{\widehat{P}}| \cdot \prod_{a \in \mathsf{X}} P(a)^{k\widehat{P}(a)} = \frac{k!}{\prod\limits_{a \in \mathsf{X}} (k\widehat{P}(a))!} \prod_{a \in \mathsf{X}} P(a)^{k\widehat{P}(a)}$$

for every type \widehat{P} of sequences in X^k .

It follows that

$$\frac{P^k(\mathsf{T}_{\widehat{P}})}{P^k(\mathsf{T}_P)} = \prod_{a \in \mathsf{X}} \frac{(kP(a))!}{(k\widehat{P}(a))!} P(a)^{k(\widehat{P}(a) - P(a))}.$$

Applying the obvious inequality $\frac{n!}{m!} \le n^{n-m}$, this gives

$$\frac{P^k(\mathsf{T}_{\widehat{P}})}{P^k(\mathsf{T}_P)} \le \prod_{a \in \mathsf{X}} k^{k(P(a) - \widehat{P}(a))} = 1.$$

If X and Y are two finite sets, the *joint type* of a pair of sequences $\mathbf{x} \in \mathsf{X}^k$ and $\mathbf{y} \in \mathsf{Y}^k$ is defined as the type of the sequence $\{(x_i, y_i)\}_{i=1}^k \in (\mathsf{X} \times \mathsf{Y})^k$. In other words, it is the distribution $P_{\mathbf{x},\mathbf{y}}$ on $\mathsf{X} \times \mathsf{Y}$ defined by

$$P_{\mathbf{x},\mathbf{y}}(a,b) \triangleq \frac{1}{k} N(a,b|\mathbf{x},\mathbf{y})$$
 for every $a \in \mathsf{X}, b \in \mathsf{Y}$.

Joint types will often be given in terms of the type of x and a stochastic matrix $V: X \to Y$ such that

$$P_{\mathbf{x},\mathbf{y}}(a,b) = P_{\mathbf{x}}(a)V(b|a)$$
 for every $a \in \mathsf{X}, b \in \mathsf{Y}.$ (2.2)

Note that the joint type $P_{\mathbf{x},\mathbf{y}}$ uniquely determines V(b|a) for those $a \in X$ which do occur in the sequence \mathbf{x} . For conditional probabilities of sequences $\mathbf{y} \in Y^k$, given a sequence $\mathbf{x} \in Y^k$, the matrix V of (2.2) will play the same role as the type of \mathbf{y} does for unconditional probabilities.

a few simple

the probability ous elements of of $a \in X$ in x,

(2.1)

on X defined by

enoted by T_P^k or $\mathsf{T}_P^k \neq \emptyset$.

en this does not n classes.

k consisting of stribution of the

ardinality. Hence natorial counting parately. In doing smaller than the

ices in X^k is less

oint of view, via