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CHAPTER VI
Ramsey Theory

Show that in a party of six people there is always a group of three who
either all know each other or are all strangers to each other. This well known
puzzle is a special case of a theorem proved by Ramsey in 1928. The theorem
has many deep extensions which are important not only in graph theory and
combinatorics but in set theory (logic) and analysis as well. In this chapter
we prove the original theorems of Ramsey, indicate some variations and
present some applications of the results.

§1 The Fundamental Ramsey Theorems

We shall consider partitions of the edges of graphs and hypergraphs. For
the sake of convenience a partition will be called a colouring, but one should
bear in mind that a colouring in this sense has nothing to do with the edge
colourings considered in Chapter V. Adjacent edges may have the same
colour and, indeed, our aim is to show that there are large subgraphs all of
whose edges have the same colour. In a 2-colouring we shall always choose
red and blue as colours; a subgraph is red (blue) if all its edges are red (blue).

Given a natural number s, there is an n(s) such that if n > n(s) then every
colouring of the edges of K" with red and blue contains either a red K* or a
blue K*. In order to show this and to give a bound on n(s), we introduce the
following notation: R(s, t), called Ramsey number, is the minimum of n
for which every red-blue colouring of K" yields a red K* or a blue K'. (We
assume that s, t > 2, for we adopt the reasonable convention that every K*
is both red and blue since it has no edges.) A priori it is not clear that R(s, )
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is finite for every s and t. However, it is obvious that

R(s,t) = R(t,s) foreverys,t>2
and

R(s,2) = R(2,5) = s,

since in a red-blue colouring of K* either there is a blue edge or else every
edge is red. The following result shows that R(s, t) is finite for every s and ¢,
and at the same time it gives a bound on R(s, t).

Theorem 1. If s > 2 and t > 2 then
R(s,t) < R(s — 1,t) + R(s,t — 1)

and

(2

R(s,t)s(ﬂ_t—z).
s—1

PRrOOF. (i) When proving (1) we may assume that R(s — 1,¢) and R(s,t — 1}
are finite. Let n = R(s — 1,t) + R(s,t — 1) and consider a colouring of th
edges of K" with red and blue. We have to show that this colouring contain
either a red K® or a blue K‘. Let x be a vertex of K". Since d(x) = n — 1
R(s — 1,t) + R(s,t — 1) — 1, either there are at least n;, = R(s — 1, t) ret
edges incident with x or there are at least n, = R(s,t — 1) blue edges incider
with x. By symmetry we may assume that the first case holds. Consider 2
subgraph K™ of K" spanned by n, vertices joined to x by a red edge. If
has a blue K', we are home. Otherwise K™ contains a red K*~ ! which forr
ared K* with x.

(ii) Inequality (2) holds if s = 2 or t = 2 (in fact, we have equality sing
R(s,2) = R(2,s) = s). Assume now that s > 2, ¢ > 2 and (2) holds for ever
pair (s, t')with2 < ¢, t'and s' + t' < s + . Then by (1) we have

R(s,t) < R(s — 1,t) + R(s,t — 1)

(s+t—3) (s+t—3)_ (s+t—2)
< + = ;
s—2 s—1 s—1
The result easily extends to colourings with arbitrarily (but finitely
many colours: given k and sy, s,, ..., S, if n is sufficiently large then ever
colour of K" with k colours is such that for some i, 1 <i < k, it contains
K*® coloured with the i-th colour. (The minimal value of n for which
holds is usually denoted by Ry(sy, ..., s;).) Indeed, if we know this for k
colours, then in a k-colouring of K" we replace the first two colours by a ne
colour. If n is sufficiently large (depending on sy, s,, ..., s;) then either the
is a K* coloured with the i-th colour for some i, 3 < i < k, or else there is
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K™, m = R(sy, 5,), coloured with the new colour, that is coloured with the
first two (original) colours. In the first case we are home and in the second, for
i =1or2wecan find a K¥ in K™ coloured with the i-th colour.

In fact, Theorem 1 also extends to hypergraphs, that is to colourings of the
set X of all r-tuples of a finite set X with k colours. This is one of the theorems
proved by Ramsey.

Denote by R"'(s, t) the minimum of n for which every red-blue colouring
of X yields a red s-set or a blue -set, provided | X| = n. Of course, a set
Y = X is called red (blue) if every element of Y is red (blue). Note that
R(s,t) = R'¥(s,t). As in the case of Theorem 1, the next result not only
guarantees that R“(s, 1) is finite for all values of the parameters (which
is not at all obvious a priori), but also gives an upper bound on R"(s, t). The
proof is an almost exact replica of the proof of Theorem 1. Note that if r >
min{s, t} then R"(s, t) = min{s, t} and if r = s < ¢ then R")(s, t) = ¢.

Theorem 2. Let 1 < r < min{s, t}. Then R"(s, t) is finite and
R"(s,t) < R*""R"(s — 1, 1), R, t — 1)) + 1.

PROOF. Both assertions follow if we prove the inequality under the assump-
tion that R"~ X(u, v) is finite for all u,v, and R”(s — 1,1), R"(s,t — 1) are
also finite.

Let X be a set with R"“(R"(s — 1,1), R"(s,t — 1)) + 1 elements.
Given any red-blue colouring of X, pick an x € X and define a red-blue
colouring of the (r — 1)-sets of Y = X — {x} by colouring c€ Y*~ " the
colour of {x} U o € X'”. By the definition of the function R"~ "(u, v) we may
assume that Y has a red subset Z with R")(s — 1, 1) elements.

Now let us look at the colouring of Z". If it has a blue ¢-set, we are home,
since Z” = X so a blue t-set of Z is also a blue t-set of X. On the other
hand if there is no blue t-set of Z then there is a red (s — 1)-set, and its union
with {x} is then a red s-set of X. O

Very few of the non-trivial Ramsey numbers are known, even in the case
r = 2. It is easily seen that R(3, 3) = 6 and with some work one can show
that R(3,4) =9, R(3,5) =14, R(3,6) = 18, R(3,7) =23 and R(4,4)
= 18. Because of (1) any upper bound on an R(s, t) helps to give an upper
bound on every R(s', t'), s’ = s,t' > t. Lower bounds for R(s, t) are not easy
to come by either. In Chapter VII we shall apply the method of random
graphs to obtain lower bounds on the Ramsey numbers R(s, ).

As a consequence of Theorem 2 we see that every red-blue colouring of
the r-tuples of the natural numbers contains arbitrarily large monochromatic
subsets; a subset is monochromatic if its r-tuples have the same colour.
Ramsey proved that, in fact, we can find an infinite monochromatic set.

Theorem 3. Letc: A™ — {1, ..., k} be ak-colouring of the r-tuples (1 < r < o0)
of an infinite set A. Then A contains a monochromatic infinite set.
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§2 Monochromatic Subgraphs

Let H, and H, be arbitrary graphs. Given n, is it true that every red-blue
colouring of the edges of K” contains a red H, or a blue H,? Since H, is a
subgraph of K*, where s, = |H;|, the answer is clearly “yes”ifn > R(s, s,).
Denote by r(H,, H,) the smallest value of n that will ensure an affirmative
answer. Note that this notation is similar to the one introduced earlier:
R(sy, 53) = r(K®, K*), Clearly r(H,, H,) — 1 is the maximal value of n for
which there is a graph G of order n such that H, ¢ G and H, ¢ G.

The numbers r(H,, H,), sometimes called generalized Ramsey numbers,
have been investigated fairly extensively in recent years. We shall determine
r(H,, H,) for some simple pairs (H,, H,).

Theorem 4. Let T be a tree of order t. Then r(K*, T) = (5 — D —1)+ 1.

ProOF. The graph (s — 1)K'~! does not contain T, its complement,
K,_(t — 1), does not contain K*, so NKST)=(s— 1)@ —1)+ 1.

Let now G be a graph of order n = (s — 1)t — 1) 4+ 1 whose complement
does not contain K*, Then 2(G) = [n/(s — 1)] = tsoit contains a critical sub-
graph H of minimal degree at least r — 1 (see Theorem 1 of Chapter V). It
is easily seen that H contains (a copy of) T. Indeed, we may assume that
T, = H,where T, = T — x and x is an endvertex of T, adjacent to a vertex
vof T; (and of H). Since yhasatleastt — 1 neighbours in H, at least one of its
neighbours, say z, does not belong to T,. Then the subgraph of H spanned
by T, and z clearly contains (a copy of) T. O

As we know very little about r(K*, K'), it is only to be expected that
r(G,, G,) has been calculated mostly in the cases when both G, and G, are
sparse (have few edges compared to their orders), e.g, when G, = sH,
and G, = tH,. The following simple lemma shows that for fixed H, and
H, the function r(sH,, tH,) is at most s|Hy| + t|H,| + ¢, where ¢ depends
only on H, and H,, and not on s and t,

Lemma 5. r(G, H, U H,) < max{r(G, H,) + |H,|, n(G, H,)}. In particular,
rsHy, Hy) < r(Hy, H,) + (s — 1)|H,|.

PROOF. Let n be equal to the right hand side and suppose there is a red-
blue colouring of K" without a red G. Then n 2 (G, H,) implies that there
is a blue H,. Remove it. Since n — |H 2| = (G, H,), the remainder contains
a blue H,. Hence K" contains a blue H,UH,. O

Theorem 6. [fs > t > 1 then
r(sK%, tK?) = 2s + 1 — 1.




