
Bevezetés az Algebrába 1 Vizsga írásbeli része MEGOLDÁSOKKAL1 2025 dec. 19.

1. Add meg az összes olyan pozitív egész u számot (ha vannak ilyenek egyáltalán), melyekre a

9 · 23u2+1x+ 5 · 22u2
y = 25 · 16u

diofantoszi egyenletnek van megoldása. (A2/4 (szept. 15-19 ).)

Pontosan akkor van megoldás, ha (9 · 23u2+1, 5 · 22u2
)|25 · 16u azaz 2u

2 |24u azaz 2u2 ≤ 4u azaz
(mivel a feladat szövege alapján u ̸= 0 pozitív egész) 0 < u ≤ 2 azaz u = 1 vagy u = 2.

2. Add meg az összes olyan z komplex számot, melyekre teljesül, hogy z2 = |z|2. (B/1 (okt. 3).)

1. megoldás. z = 0 nyilván jó. Ha z ̸= 0, akkor, mivel |z|2 = z · z, a feladatban szerepl®
egyenletet z ̸= 0-val osztva a z = z egyenletet kapjuk, melynek pontosan a valós számok a
megoldásai. Mivel 0 is valós, azt kaptuk, hogy a megoldások halmaza R.

2. megoldás. Keressük z-t z = a + ib alakban (a és b egyel®re ismeretlen valós számok).
Mivel z2 = a2− b2+2abi és |z|2 = a2+ b2, ezért feladatunk az a2− b2+2abi = a2+ b2 egyenlet
megoldása. Rendezve az abi = b2 egyenletet kapjuk. A jobboldal valós, a baloldal csak akkor,
ha a = 0 vagy b = 0. Ha a = 0, visszahelyettesítés mutatja, hogy akkor b = 0. Ha b = 0, akkor
a bármi lehet. Azt kaptuk, hogy a bármi lehet és b = 0, tehát z megoldás ⇔ z ∈ R.

3. Legyen R kommutatív, nullosztómentes gy¶r¶. Igazold, hogy az R feletti kétváltozós polino-
mok R[x, y] gy¶r¶je nullosztómentes. (C1/1 (okt. 10).)

Tanultuk, hogy kommutatív, nullosztómentes gy¶r¶ feletti polinomgy¶r¶ kommutatív, nullosz-
tómentes, ezt 2-szer alkalmazva:

R kommutatív, nullosztómentes ⇒ R[x] kommutatív, nullosztómentes ⇒ R[x, y] (kommutatív) nullosztómentes.

4. Legyen K test, f ∈ K[x] tetsz®leges polinom. Igazold, hogy (f(x2))′ = 2x · f ′(x2)
(a vessz® a deriválást jelöli). (D/3 (okt. 20-27).)

Vegyük fel f együtthatóit: f(x) =
n∑

k=0

akx
k. Ekkor f(x2) =

n∑
k=0

akx
2k, ezért

(f(x2))′ =

(
n∑

k=0

akx
2k

)′

=
n∑

k=0

2k·akx2k−1 = 2x
n∑

k=0

k·akx2k−2 = 2x
n∑

k=0

k·akx2(k−1) = 2x·f ′(x2).

Az nem jó, ha a kalkulusból tanult Lánc-szabályra hivatkozol, mert K nem feltétlenül a valós
test.

5. Irreducibilis-e Z felett az f(x) = x3 + 3x+ 1 ∈ Z[x] polinom? (D/2 és D/6 (okt. 20-27).)

deg(f) = 3 ezért Q felett akkor és csak akkor irreducibilis, ha nincs gyöke Q-ban. A Rolle-féle
gyökteszt alapján csak a ±1 racionális gyökök jönnek szóba, behelyettesítéssel ellen®rízhet®,
hogy ezek egyike sem gyök. Ezért f irreducibilis Q felett, és így irreducibilis Z felett is.

6. Add meg a lineáris egyenletrendszerek megoldhatóságának mátrixrangos feltételét (az alapmát-
rix és kib®vített mátrix rangjai alapján mikor nincs, mikor van pontosan 1, mikor van több
megoldás?) (E1/3 (nov. 14).)

1A kérdések után X;(Y,Z) azt jelenti, hogy a vizsgakérdések jegyzékének X. pontja ismeretében (az Y. hónap Z.
napján tartott el®adás alapján) lehetne tudni a választ.



(a) Ax = b megoldható ⇔ rang(A) = rang(A|b);
(b) Ha rang(A) = rang(A|b) < változók száma, akkor sok megoldás van;
(c) Ha rang(A) = rang(A|b) = változók száma, akkor pontosan 1 megoldás van;
(d) Nem fordulhat el®, hogy rang(A) = rang(A|b) > változók száma, mert rang(A) =

dim(O(A)) ≤ oszlopok száma = változók száma.

7. Mennyi az inverziószáma az (
1 2 3 4 5
2 5 1 3 4

)
permutációnak? (E2/6 (nov. 3 vagy nov. 17).)

Inverziók: (2, 1), (5, 1), (5, 3), (5, 4), tehát összesen 4 darab inverzió van.

8. Legyen A =

(
1 1
2 3

)
. Add meg A egy LU -felbontását. (E3/11 (dec. 1).)

A-t azzal az egyetlen elemi sorátalakítással fels® háromszögmátrixá lehet alakítani, hogy az
els® sor 2-szeresét levonjuk a másodikból. Ezt a sorátalakítást A-n és I2-n (a (2×2)-es egység-
mátrixon) is végrehajtva (az eredményeket U -val és J-vel jelölve), majd invertálva azt kapjuk,
hogy

U =

[
1 1
0 1

]
, J =

[
1 0
−2 1

]
ebb®l L = J−1 =

1

det J
J∗ =

[
1 0
2 1

]
.

Mivel a fenti mátrixokkal JA = U , ezért A = J−1U = LU a kívánt felbontás.

9. Legyen φ : R3 → R3 az y-tengelyre való tükrözés. Add meg φ és φ ◦ φ mátrixát a sztenderd
bázisban. (E1/5 (nov. 17, vagy akár dec. 5).)

Mivel [φ]-nek (φ mátrixának) az oszlopai a sztenderd bázis vektorainak φ szerinti képei, és

φ

10
0

 =

−1
0
0

 , φ

01
0

 =

01
0

 , φ

00
1

 =

 0
0
−1

 .

ezért [φ] =

−1 0 0
0 1 0
0 0 −1

. Mivel φ ◦φ az identitásfüggvény, ezért [φ ◦φ] = I3 (egységmátrix),

vagy használhatod azt is, hogy [φ ◦ φ] = [φ]2.

10. Hány darab olyan legfeljebb harmadfokú f ∈ R[x] polinom van, melyre f(1) = 1, f(2) =
4, f(3) = 9? (E3/10 (nov. 26).)

Három feltételen legfeljebb másodfokú interpoláló polinomból pontosan 1 darab van, de itt a
harmadfokúakat kell összeszámolnunk! Lagrange interpolációs tétele szerint minden s ∈ R-hez
pontosan 1 darab olyan legfeljebb 3-adfokú fs ∈ R[x] van, melyre fs(0) = s, fs(1) = 1, fs(2) =
4, fs(3) = 9. Ezek az fs-ek páronként különböznek (hisz 0-ban eltér a helyettesítési értékük),
de a feladat szövegében szerepl® feltételeknek mind eleget tesz. Továbbá, ha egy legfeljebb
harmadfokú g eleget tesz a feladat feltételeinek, akkor g valamelyik fs (konkrétan az s = g(0)-
hoz tartozó fs). Tehát annyi legfeljebb harmadfokú polinom tesz eleget a feladat el®írásainak,
ahány módon a valós s paramétert választhatjuk. Ez végtelen sok lehet®ség2.

2Csokiért: s®t, a lehet®ségek számossága |R|=kontínuum.


