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El0szo

Mi ez az anyag? Ez az iromény egy elektronikus segédlet, mely a BME-n, 2025
0szén, els6éves matematikus hallgaték szamara tartott ,, Bevezetés az algebréba - 17
kurzushoz késziilt. Elso, nyers valtozatat néhany lelkes hallgatém készitette; ezzel
kapcsolatban az aldbbi, ,Hogy jott létre ez az anyag?” kezdetii bekezdésre utalok.
Az iromany egyetlen célja, hogy - a lehetéségekhez képest - minél pontosabban le-
hessen rekonstrualni, hogy mi hangzott el az egyes el6adasokon. Azt gondolom, ezt a
célt nagymértékben (nyilvan nem tokéletesen) sikeriilt is megvaldsitani. A kés6bbi,
javitott véltozatokon folyamatosan dolgozunk, amint elkésziil egy ujabb valtozat,
elérhetévé teszem azt is.

Ez az iromany nem konyv. Rengeteg kivdld, magyar nyelven elérheté bevezeto
algebra és bevezeto szamelmélet konyv kaphato jelenleg is; ezekkel értelmetlen lenne
konkuralni, mar csak azért is, mert szamos esetben egykor én is ezekbdl tanultam,
ezekbdl inspirdalédtam...

Ez az iromany nem egyetemi jegyzet abban az értelemben sem, hogy az
attekinthetoség, tomorség érdekében a szovegbe roviditések, sét akar képletek é-
kelédnek gy, ahogy egy klasszikus, nyomtatott anyagban megengedhetetlen lenne.

Ahogy azt alabb, a ,Hogy jott 1étre ez az anyag?” kezdetii bekezdésben is ki fo-
gom fejteni, ennek a szovegnek a nyers valtozatat tobb hallgaté énkéntes munkaval
allitotta el6. Emiatt az egyes fejezetek kidolgozottsaga eltéro, néhanyan réviditéseket
hasznaltak, képleteket irtak, mig masok kiirtak a megfelel6 széfordulatokat. Nem
egységes a szoveg nyelvi szempontbdl sem (kisbetii-nagybetli hasznélata egyes el-
nevezésekben, egybeiras-kiiloniras egyes kifejezésekben sajnos nem kovetkezetes és
emiatt nyilvanval6, hogy a széveg egyes részletei nyelvtanilag hibasak (hiszen, pl.
egyes elnevezésekben a kisbetiik-nagybetiik eltéré hasznédlata esetén legalabb az
egyik valtozat hibds)). Mivel a vizsgaiddszak el6tt el kellett késziilnie ennek az
iroménynak, az ilyen jellegii szoveggondozast (nyelvtani hibék, kévetkezetlenségek
javitasat) kés6bbre halasztjuk, és mégegyszer hangsilyozzuk, hogy egy valamirevald
egyetemi jegyzetben ez a ,hanyagsag” elfogadhatatlan lenne! Tisztaban vagyok vele,
hogy az erre vonatkoz6 kritikdk teljesen jogosak.

Ez az iromany a Jegyzokonyv cimet kapta, ami arra utal, hogy egyetlen célunk an-
nak rogzitése volt, hogy - a tablaképen til - mi hangzott el el6adason; természetesen
az aprobb hibdkat (index-elirdsokat, eljel-tévesztéseket, stb.) igyekeztem korrigalni.
Kritikusan olvassatok, mert minden igyekezetem ellenére bizonyara maradtak ilyen
jellegii pontatlansdgok ebben a szovegben is. Az ezzel kapcsolatos felelGsség en-
gem terhel. Ha valaki hibat talal, megktszonom, ha visszajelzi nekem. Az egyetlen



lényeges valtoztatas az, hogy az egyes eloadasok legelején szereplo emlékeztetoket
elhagytuk, hiszen ebben a Jegyzokonyvben az elhagyott emlékezteték néhéany oldal-
lal korabban teljes terjedelmiikben megtaldlhatok.

Ebben az iromanyban tehét (az eléaddsok legelején szereplé rovid emlékezteték
elhagyédsan kiviil) mindent pontosan abban a sorrendben, abban a forméban igye-
keztlink rekonstrudlni, ahogy azt az eléadason feldolgoztuk. Ez sok esetben - kisebb-
nagyobb mértékben - eltér attdl a felépitéstol, ami a témakorok belso logikaja szem-
pontjabdl idedlis lenne, hiszen - mint minden egyetemi kurzus esetében - tekintettel
kellett lennem az éraelmaradasokra, a gyakorlatokra mindig biztositani kellett annyi
1j ismeretet, ami nem sok, de nem is kevés a heti haladas szempontjabol, koor-
dindlnom kellett, hogy - a néhany, nem is egyforma mértékben elmaradé gyakorlat
ellenére - a két gyakorlati csoport nagyjabol ugyanott tartson, stb. Az eléadasokon
elhangzottakhoz képest ebbe az anyagba tovabbi ismereteket szandékosan nem illesz-
tettem, de a szoban elhangzott, intuitiv magyarazatokat, torténeti megjegyzéseket,
,meséket” jobbara beleirtam, mert azt gondolom, hogy egyrészt ezek a kitérok - az
onmagukban is megorzendo értéket képviselo - matematikai folklér részét képezik,
masrészt ezek nemcsak hasznos, nemcsak szorakoztaté kitérok, hanem az anyag
lényegéhez tartoznak abbdl a szempontbdl is, hogy segitik a mélyebb megértést, ori-
entalnak, hogy mit miért vizsglunk, az egyes részeket miért gy vizsgdljuk, tovabba
az informalis megjegyzéseknek onmagukban is komoly magyarazoereje lehet.

Hogyan hasznald ezt az anyagot?

»Most elmagyarazzuk, hogyan kell olvasnod ezt a konyvet. A helyes mod
az, hogy nappal az fréasztalodra, este a parnad ala teszed, és teljesen az ol-
vasasnak szenteled magad... egészen addig, amig szivbdl, kiviilrél nem tudod
az egészet.”

Saharon Shelah: Classification Theory.

A fenti idézettel ellentétben nem vagyok biztos benne, hogy a vizsgara késziilés
idejében ezt az anyagot a legelsé oldalatdl a legutolséig teljes terjedelmében végig
kell olvasni. Ezt taldn a vizsga utan (pl. a kovetkezo6 regisztraciés héten) tedd meg,
hogy az 0szi kurzus hangulatat felidézd, az el6adasokon kozosen eltoltott ido szép
emlékké nemesedjen és a sikeres vizsga, majd az azt kovetd megérdemelt pihenés
utan rahangoldédj a tavaszi kurzusra. Egyes részletek szépsége akkor lesz szembeting,
ha az anyagot nagyjabol ismered mar.

A vizsgaid6szakban ezt az Eldszt :-) és a tartalomjegyzéket, jelolésekrol sz6lé nul-
ladik fejezetet érdemes alaposabban atbongészni, hogy késébb tudd, mit hol taldlsz.
A vizsgara késziiléskor 1ijabb forrasok hasznalata kifejezetten zavard lehet az eltér6
jelolések, eltéro felépités, s6t az ohatatlanul eltéré matematikai tartalom miatt. Ez
az oka annak is, hogy ebbe a Jegyzokonyvbe nem irtam bele olyan 1ij ismereteket,



melyek az el6adasokon nem hangzottak el. A vizsgara késziiléshez a legjobb forras
az eléadasokon készitett jegyzeted. Ha valamelyik eloadédsrol hidnyoztél, vagy jelen
voltal ugyan, de a jegyzeteidbdl nem tudsz mindent rekonstrualni, akkor érdemes
megnézni ennek az iromanynak a megfelelé részletét. Hangsilyozom tovabba, hogy
a vizsgan szamonkért anyag valamivel kisebb anndl, mint ami eléadason elhangzott
(tehdt a vizsgaanyag valamivel kisebb annal, mint ami ebben a Jegyzokényvben is
szerepel). Ugyanakkor azonban, a szokdsoknak megfeleléen, a vizsgian szamonkért
anyag szerkezete kismértékben eltér attol, ahogy az anyag eléadason elhangzott. Ez
az eltérés szandékos: azt a célt szolgdlja, hogy a vizsgara késziilés soran Te magad
azonositsd, hogy az egyes vizsgatételek mikor és hogyan hangzottak el eldadason;
ez a munka nagymértékben segiti a mélyebb megértést, ezért nem is célszerti meg-
prébélni elkertilni.

Ha ennek a Jegyz6konyvnek a segitségével sem sikeriil rekonstrualni
egyes részleteket, kérlek keress, és konzultalunk!

Hogy jott létre ez az anyag? Ez az anyag ugy jott létre, hogy spontan, onszer-
vez0d6 modon néhany hallgatom szerkesztheté LaTex file-4 alakitotta az el6adasokon
készitett kézzel irt jegyzeteit. Ezt véletlentil tudtam meg. Elkotelezettségiik le-
nyligozott, tiszteletet ébresztett bennem, és lelkesedésiik annyira meghatott, hogy
felajanlottam: az altaluk készitett LaTex file-okat atnézem, sziikség esetén kor-
rigalom, kiegészitem, egybeszerkesztem, és minden hallgatém szaméra elérhetové
teszem. Ennek a munkanak az eredménye ez a Jegyzokonyv.

Ezt az elGsz0t azzal zdrom, hogy koszonetet mondok azoknak a hallgatoimnak,
akik ezt a rendkiviil nagy munkat elvégezték. Tehat HATALMAS KOSZONET
(névsor szerinti sorrendben)

Balog Benjaminnak, Domokos Norbertnek, Gegd Leventének,
Karpati Noéminek, Sandor Akosnak és Sandor Zéténynek.

Hathatos segitségilikért, preciz munkajukért, lelkesedésiikért nagyon halas vagyok!
Az altaluk atadott nyers szoveget nagy orommel, szeretettel csinositottam tovabb;
azt kivanom, Ti is ilyen orommel olvassatok.

Budapest, 2025 December.
Sagi Gabor
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0. Alapfogalmak és jelolések

Gyorsirasos jelolések, roviditések

TFH: Tegyiik fel, hogy;
ACSA: Akkor és csak akkor;
d: Létezik;

V: Minden;

d!: Pontosan egy van;

... = .... Ha... akkor...

Halmazelméleti alapfogalmak

€: eleme;

C illetve C: valddi részhalmaz, illetve részhalmaz;

M: metszet;

U: unid;

A\ B vagy A — B: az A és B halmazok kiilonbsége;

N: természetes szamok halmaza (N = {0,1,2,3,...});
NT: pozitiv egész szamok halmaza (NT = {1,2,3,...});
Z: egész szamok halmaza;

Q: racionalis szamok halmaza;

R: valés szamok halmaza.



1. Relacidk, ekvivalenciarelaciok és rendezési relacidk

Ebben a részben bevezetiink néhany olyan fogalmat, melyekre késébb 1épten-
nyomon sziikségiink lesz (rdadédsul nem csak algebrabdl).

1.1. Definicié (Descartes-szorzat). Az A és B halmazok Descartes-szorzata:
Ax B={(a,b) |a€ Abe B}.
1.2. Példa.  {0,1} x {1,2,3} ={(0,1),(0,2),(0,3),(1,1),(1,2),(1,3)}.

1.3. Definicié (Relacid). Legyen A egy halmaz. Az A x A Descartes-szorzat egy
tetszoleges R részhalmazarol azt mondjuk, hogy kétvdltozos reldacio A-n.

1.4. Definicié (Ekvivalenciarelacid). Egy R C Ax A reldcio ekvivalenciareldcio,
ha teljestil, hogy:

1.V e A: (x,x) € R (reflexivitds);

2.Vr,y€ A: (z,y) € R= (y,x) € R (szimmetria);

3. Ve,y,z€ A: (z,y) € RN (y,2) € R= (x,2) € R (tranzitivitds).

1.5. Példa. Az alabbi elsé 3 példa ekvivalenciareldcio, az utolso nem az.
1. R={(z,y) | =,y € N} ekvivalenciareldcié N-en;
2. R={(x,y) | x,y € Nyx — y pdros} ekvivalenciareldcié N-en;
3. A = {egyenesek}, R = {(e,f) | e, f € A,e || f} ekvivalenciareldcio a sik
egyeneseinek halmazdan,
4. R={(a,b) | a,b e N,b=a+ 1} NEM ekvivalenciareldcié N-en.

1.6. Definicié (Ekvivalencia-osztély). Legyen R ekvivalenciareldcic A-n és a € A.
Ekkor az a ekvivalencia-osztdlya:

a/R={be A| (a,b) € R}.
1.7. Tétel (Osztalyfelbontéds). Ha R ekvivalenciareldcio A-n, akkor {a/R | a € A}
particiot alkot A-n:
Ja/R=A é a/R#b/R=a/RNb/R=0.
acA

Bizonyitds. Az el6z6 sorban szereplo két allitast az alabbi pontokban ellenérizziik.
e Ha a € A, akkor a € a/R (reflexivitas miatt), tehat

AcJa/RC A

acA

ezért U a/R = A.

acA



e Tegyiik fel, hogy a/RNb/R # 0, azaz ¢ € a/R N b/R. FEkkor (a,c) €
R és (b,c) € R, tehat (a,b) € R (szimmetria és tranzitivitds miatt), ezért
a/R = b/R. Azt kaptuk, hogy ha R két ekvivalencia-osztdlydnak nem iires
a metszete, akkor a két ekvivalencia-osztdly azonos egymassal. Emiatt R

kiilonbozo6 ekvivalencia-osztalyai paronként diszjunktak egyméstol.
O

Az el6z6 éllitas megfordithatd: az A halmaz egy tetszéleges osztalyfelbontasahoz
(particiéjahoz) tekintsiik azt az R relaciét A-n, melyre (a,b) € R pontosan akkor
teljestil, ha a és b ugyanabban a particié-blokkban van. Ekkor R ekvivalenciarelacié
lesz, és a kiindulasul vett particiét hatarozza meg.

1.8. Definicié (Rendezési relécio).

e Fgy R C A x A relicio rendezést reldacio A-n, ha teljesiil, hogy:

1. Ya e A:(a,a) € R (reflexivitds);

2. Ya,be A:(a,b) € RA(bja) e R=a=0b (antiszimmetria);

3. Ya,b,c € A: (a,b) € RN (b,c) € R= (a,c) € R (tranzitivitds).
Az A halmazt a rendezés alaphalmazdnak nevezziik.

e Fqgy rendezési reldcio teljes rendezés, ha:
Va,be A: (a,b) e R V a=0b V (bja)€ R (trichotomia).

e Fgy rendezési reldcio jolrendezés, ha az alaphalmaz minden nemiires részhalmazdnak
van legkisebb eleme.

1.9. Példa. N a szokdsos rendezésével jolrendezett; 7, a szokdsos rendezésével tel-

jesen rendezett, de nem jolrendezett.

1.1. Archimédészi axioma, egészrészek, suriliségi és approxi-
macios tételek

1.10. Definicié (Archimédészi axiéma).

Voe R3IneN:a<n.

1.11. Definicié (Felsé egészrész). Legyen x € R. Ekkor [z| a legkisebb n € Z,
melyre x < n.

1.12. Definicié (Alsé egészrész). Legyen x € R. FEkkor |x| a legnagyobb n € Z,
melyre n < z.

1.13. Tétel. Minden valos szamnak létezik felso egészrésze.



Bizonyitds. Legyen x € R és A= {n € N|x <n}. Az Archimédészi axiéma miatt
A # (). Mivel N jolrendezett, A-nak van legkisebb eleme. O

1.14. Megjegyzés. Ebbol kovetkezik, hogy minden valos szam felirhato

v = |z] + {z}

alakban, ahol {z} = = — |x| az x tortrésze (0 < {z} < 1). Emiatt minden valds
szamnak van also egészrésze 1s.

1.15. Tétel (Racionalis szamok stirtisége).
(Va,beR,a<b) deeQ:a<c<b.

Bizonyitds. Az Archimédészi axiéma miatt 9n € N : % < b —a. Osszuk fel az
[la], |a] + 1] intervallumot n darab, egyenként % hossz1, (balrdl zart, jobbrdl nyilt)
részintervallumra:

1 1 2
Lo, la) + =), [lal+ = la)+2) ..
Ezek koziil pontosan az egyik (mondjuk a k-adik) kis intervallum fogja a-t tartal-
mazni. Az n vélasztasa miatt a és b tavolsaga %-nél nagyobb, ezért az a-t tartalmazo
(k-adik) kis intervallum nem tartalmazza b-t. Tehdt |a] + £ raciondlis szdm a és b
kozott.
O

1.16. Tétel (Dirichlet approximécids tétele). Legyen a € R ésn € N, n > 0. Ekkor
dp,q € Z:

<— és 1<g<n.

Bizonyitds. Osszuk fel a [0,1) intervallumot n darab, egyenként % hosszt, balrél
zart, jobbrol nyilt kis részintervallumra:

1 1 2
0.-), |52 0)
n n'n
Tekintsiik a 0,{a}, {2a},...,{na} szdmokat, ahol {z} = = — |z|. Ezn+1
darab szdm a [0, 1) intervallumban. Ezért a skatulyaelv miatt lesz koztiik két szam

(mondjuk {ia} és {ja}, ahol 0 < i < j < n), melyek ugyanabba a kis, + hosszu
intervallumba esnek. Ekkor

{ja} — fia}] < .

10



De
{ja} —{ia} = (ja = [ja]) = (ia = [ia]) = (j = i) = (o] = [ia]).
Legyen ¢ = j —i és p = |ja| — |ia]. Ezekkel az el6z6 sor szerint

1
< )
ng

p
a__

1
lga — p| < = ezért
n q

ahogy allitottuk. O]

1.17. Megjegyzés. Dirichlet el6z6 (1.16) tételében, ha n értékét rogzitjik, akkor
csak véges sok olyan pozitiv ¢ van, ami nevezoként felléphet, ezért csak véges sok
(p, q) parra teljesiilhet a Dirichlet-tétel kovetkezménye. Az aldbbi, 1.18 Tételben azt
mutatjuk meg, hogy minden irracionalis a szamhoz végtelen sok olyan racionalis §

szam van, melyek q%—nél kozelebb vannak a-hoz.

1.18. Tétel (Irraciondlis szdmok approximdciéja). Ha o € R\ Q, akkor végtelen
sok kilonbézé (p,q) szdmpdr van, amelyre:

(%)

Bizonyitds. Indirekt tegytik fel, hogy csak véges sok ilyen (p,q) par van. Legyen

6:min{

Mivel o ¢ Q, ezért ¢ > 0. Az Archimédészi axiéma miatt In € N :
Dirichlet-tétel szerint ehhez az n-hez is van p', ¢’ € Z:

a— B‘ :(p,q) —ra (x) teljesiil } :
q

S =

Ez ellentmondés, hiszen e definiciéja szerint a (p/,¢') szampér kiilénbézik minden

olyan (p,q) szampartdl, melyre (x) teljesiil (mert él: e-ndl szigorian kozelebb van
a-hoz).

Végiil, a teljesség kedvéért megjegyezziik, hogy ha a € Q, mondjuk o = 2’—8, akkor
nagyon konnyl végtelen sok olyan szampart talalni, melyre a tétel kovetkezménye

fennéll. Ugyanis ekkor tetszoleges pozitiv n € N-re

Po 4o
a——=a——=0,
4o do
ezért a végtelen sok (npg, nqo) szampéar mindegyike kielégiti (x)-ot. O
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1.2. Jélrendezések, rekurzidk és a teljes indukcié

1.19. Tétel. Legyen (A, <) rendezett halmaz. A kovetkezd két dllitds ekvivalens:
1. (A, <) jolrendezett;
2. A-ban nincs végtelen leszdllo ldnc, azaz A elemeibdl nem képezhetd eqy szi-
gorian monoton csokkend ay > ay > az > --- végtelen sorozat.

Bizonyitds. (1) = (2): Ellentmondést keresve tegyiik fel, hogy - (2)-vel ellentétben
- van végtelen leszallo lanc a; > as > a3 > ---. Mivel nincs legnagyobb természetes
szdm, ezért az {aj, as, as, ...} halmaznak nincs legkisebb eleme, ellentmondas.

(2) = (1): Legyen () ## B C A tetszdleges. (1)-hez azt kell megmutatnunk, hogy
B-nek van legkisebb eleme. Mivel B nem iires, ezért van egy by € B elem.

e Ha by nem a legkisebb B-beli, akkor db; € B : by < by.

e Ha b; nem a legkisebb B-beli, akkor db, € B : by < by, ... sth.
A (2) feltétel miatt ezt az eljarast csak véges sok 1épésen at lehet folytatni, ezért
B-ben van legkisebb elem. O]

Teljes indukci6

1.20. Tétel (Teljes indukcié elve). Legyen P a természetes szamok egy tulajdonsdga
és legyen ng € N. Ha

1. P(ng) 1gaz, és

2. ¥n>ng: P(n)= P(n+1),
akkor ¥n > ng : P(n) igaz.

Az allitas szerint, ha meg akarjuk mutatni, hogy minden ny-nél nagyobb, vagy
egyenlo természetes szam rendelkezik a P tulajdonsaggal, akkor ehhez elég megmu-
tatni, hogy

e P(ng) fenndll (ezt nevezziik Alaplépésnek) és

e ha P fennall valamely n > ng természetes szamra, akkor P fennall n + 1-re is
(ezt nevezziik Indukcids 1épésnek).

Bizonyitds. Legyen
A={neN|n>ngés P(n) nem igaz}.

Ellentmonddst keresve tegyiik fel, hogy A # (). Mivel N jdlrendezett, A-nak van
legkisebb eleme, legyen ez n. Ekkor P(n) hamis (mert n € A) és n > ng, mert
P(ng) igaz. Ezért n — 1 > ng és P(n — 1) igaz (mert n volt a legkisebb természetes
szam, melyre P nem igaz). De az indukcids 1épés miatt P(n — 1) igazsiagdbol P(n)
igazsaga is kovetkezik; ez ellentmondés.

Tehat A = (), azaz Vn > ng : P(n) igaz. O

1.21. Definicié (Rekurzid). Egy sorozatot rekurzivan definidlunk, ha a sorozat
tagjait sajat, kisebb indexi tagjai felhaszndlasaval dllitjuk elo.
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Rekurziv sorozatokra klasszikus példa a Fibonacci-szdmok sorozata. Részlete-
sebben, a nulladik és els6 Fibonacci-szamok az fy = 0 és f; = 1; a sorozat tovabbi
tagjait az el6z6 (kisebb indexil) tagjai segitségével az f,11 = f, + fn_1 rekurzidval
definialjuk. A XIII. szazadban ezt a sorozatot Fibonacci a nyulak szaporodasanak
modellezése érdekében tanulményozta, de nem O vezette be (korabban is ismert volt
mAr).

Egy masodik példa bemutatasa érdekében emlékeztetiink ré, hogy adott n termé-
szetes szamra n! jeloli az els6é n darab pozitiv egész szam szorzatat: n!l =1-2-...-n
tovabba az n! kifejezést ,n-faktoridlisanak” nevezziik. A faktorialis fliggvény is
kényelmesen definidlhaté rekurziéval: legyen 1! = 1, ekkor nagyobb szamok fakto-
ridlisai megadhatok az

nm+1)!'=Mm+1) n!

alakban; tehat a fenti médon ebben a sorozatban is, a korabbi n. tagja segitségével
adtuk meg a sorozat késébbi (n + 1)-edik tagjat.
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2. Algebrai strukturak altalaban

Nyugtalanité, és nehezen megvalaszolhaté az a kérdés, hogy ,a szamok mi-
csodak?” Pl. a természetes szamok kavicskupacok? Vagy pénzkotegek? Vagy...?
Az ilyen iranyu vizsgdlédasokbdl az deriilt ki, hogy az esetek tobbségében MIND-
EGY IS, hogy konkrétan a természetes szamok micsodak, a fontos az, hogy - barmik
is legyenek pl. a természetes szamok - milyen Osszefiiggések teljestilnek a rajtuk
végzett miiveletekre (vagy még sarkosabban: milyen szdmoldsi szabélyok vonatkoz-
nak rajuk). A kavicskupacokkal és pénzkitegekkel kapesolatos érvelésekben az pl.
kozos, hogy

»2 kupac + y kupac kavics 0sszesen ugyanannyi, mint y kupac + x kupac kavics”,

és ugyanigy,
X koteg + y koteg bankjegy 6sszesen ugyanannyi, mint y koteg + x koteg bankjegy”.

Tehat nem az a fontos, hogy kavicskupacokat, vagy pénzkotegeket adunk Ossze,
hanem az, hogy a rajuk vonatkozd szdmolési szabdlyok azonosak. Ennek megfe-
leléen, az algebra a ,,miveletek tulajdonsagait” vizsgalja. Ehhez tisztazni kell, mit
tekintiink miiveleteknek. Erre egy meglehetosen altalanos valasz a kovetkezo.

2.1. Definicié (Altalénos algebra).
Legyen A nemaires halmaz, legyen I indexhalmaz, és minden 1 € I-re legyen f; eqy
(esetleg sokvdltozds) figgvény A-n. Ekkor az

A= <A>fi>iel

rendszert algebrai struktirdnak (vagy dltaldnos algebrdnak) nevezzik. Itt A az alap-
halmaz, az f;-k pedig az A algebra miveletei.

Az el6z6 definicio jeloléseit megtartva tehat egy A altalanos algebrat tgy adunk
meg, hogy tisztdzzuk, mi az alaphalmaza, hany mivelet van rajta (azaz mi az I in-
dexhalmaz), és hogy az egyes miiveletek kiilon-kolon hany véltozésak. Semmilyen
megkotés nincs [ méretére: [ lehet iires (ekkor nincs miivelet az algebréankban),
I lehet véges halmaz, de I lehet akar végtelen nagy is (lehet megszamlalhatéan
végtelennél is nagyobb). Mindegyik f; miivelet lehet 1-valtozds, vagy 2-véltozds,
vagy akar mégtobb valtozds; altalanos algebrakban a miveletek valtozdi szamara
mindossze azt a korlatot szabjuk, hogy minden miiveletnek csak véges sok valtozdja
van. Azt azonban fontos hangsilyozni, hogy minden mivelet az alaphalmaz minden
olyan sorozatan értelmezve van, melynek hossza megegyezik a mivelet valtozoinak
szaméaval (azaz minden 2-valtozos miivelet értelmezve van A% minden elemén, min-
den 3-véltozés értelmezve van A® minden elemén, stb.) Megengediink 0-valtozds
miiveleteket is, ezeket az A alaphalmaz kitiintetett elemeivel azonosithatjuk. (Ez

14



az azonositas csak egy nem tul fontos technikai részlet, kezelhetnénk a kitiintetett
elemeket kiilon, de akkor sok érvelés hosszabb lenne). Egy éltaldnos algebrédban
lehet pl. 10 darab 5-valtozés + megszamlalhatéan végtelen 17-valtozos, + 45 darab
70-valtozds muvelet. A klasszikus esetekben I-nek 1, 2, 3, vagy 4 eleme van; a fenti
értelemben pl. minden félcsoport, csoport, gytirt, sth. egyuttal altalanos algebra is.

Az altalanos algebrak absztrakcids szintjén is sok érdekes és tavolrdl sem trivialis
tétel igazolhatd. Mi azonban ebben a félévben a klasszikus algebrai vizsgédlatokban
felmertil6 algebrai strukturakkal foglalkozunk, melyeket elsosorban a szamelmélet, az
egyenletek megoldéasa, vagy a kozonséges sik, illetve tér geometriai vizsgdlédasai ins-
piradltak. Algebrai kalandozédsainkat a gytriikkel kezdjiik, és szamelméleti indittatdsu
kérdésekkel motivaljuk.

2.2. Definicié (Gytrt). Egy (A, +,-,0,1) struktira gytird, ha + és - 2-vdltozés, 0
és 1 pedig 0-vdlzozos miveletek, és teljesul, hogy

1.Ve,y,z€ A: (e +y)+z=a+(y+2) (azaz a + mivelet asszociativ);

2.Vr,ye Atz +y=y+x (azaz a + mivelet kommutativ);

3. NVNreA:0+x=x (azaz létezik additiv neutrdlis elem);

4. VreAJyeA:x+y=0 (azaz létezik additiv inverz);

5. Ve,y,z€ A (v y)-z=x-(y-2) (azaz a - mivelet asszociativ);

6. A - mivelet disztributiv a + mdveletre:

Ve,y,z€ A:x(y+2)=axy+zz és (v+y)z=zz+yz.
A gyliri kommutativ, ha még Vx,y € A : xy = yx is teljesil.

2.3. Példa.
o (N,+,-,0,1) nem gyiird (nincs additiv inverz);
o (Z,+,-,0,1) kommutativ gyiri;
o (R, +,-,0,1) kommutativ gyiiri;
e {n € Z | n pdratlan} nem gyiri (nem zdrt az dsszeaddsra,).

2.4. Tétel (v/2 irracionalitdsa). v2 ¢ Q.

Erre a jolismert allitdasra olyan bizonyitast adunk, mely nem hasznalja a Szamelmélet
Alaptételét (melyet csak késébb, a 3.34 tételben igazolunk majd). Ehelyett a
természetes szamok jolrendezettségére fogunk alapozni.

Bizonyitds. Tegyiik fel indirekt, hogy v/2 € Q. Ekkor Jp,q € Z* relativ primek:
V2= 75’. Ezekre p = v/2q. Tekintsiik a kovetkezé halmazt:

A={neN*"|v2neN}

A # (), mert ¢ € A. Mivel N jélrendezett, A-nak van legkisebb eleme, legyen ez
a. Mivel a € A, ezért v/2a € N. Tovébba (\/§ —1)a < a, mert V2 —1 < 1. Ezért
ellentmondést kapunk, ha megmutatjuk, hogy (v/2 — 1)a € A (mert A-ban a volt a
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legkisebb elem).
Az A halmaz definici6ja szerint (v/2 — 1)a € A-hoz a kovetkezd két allitést kell
igazolnunk:

(1)  (V2—1)a € N* és
() VEA(WI-De)eN.
(1) teljesiil, mert
(V2—1)a=v2a—a & N*.
(2) is teljesiil, mert

V2(V2 = 1)a) = 20 — V24 “€' N,

és ezzel készen vagyunk. O]

2.1. Gyurik és oszthatosag

2.5. Definicié (Oszthatéség). Legyen R gyiird, a,b € R. Azt mondjuk, hogy a
osztdja b-nek (jelolés: a | b), ha Ic € R : ac =b.

Legyen R gyturli. Figyeljik meg, hogy 0-nak minden a € R osztéja, hiszen
ha a € R tetszdleges, akkor ¢ = 0 mutatja, hogy van olyan ¢, melyre ac = 0. A
masik végletet az olyan elemek alkotjak, melyek minden gytriielemnek osztoi, ezeket
nevezzik egységeknek:

2.6. Definicié (Egység). Az e € R gyliriielem egység, ha Vx € R : e | x (minden
elemet o0szt).

2.7. Tétel. Z-ben a szokdsos mieletekkel e € 7 eqység < e =1 vagy e = —1.

Bizonyitds. Ha e € Z egység, akkor e | 1, tehat |e] < 1. Mivel 0 nem osztdja 1-nek,
ezért 0 nem lehet egység. Tehat e = 1 vagy e = —1, ezeken kiviil méas egység nem
lehet Z-ben. Forditva: vilagos, hogy e = 1 és e = —1 valoban egységek. O]

2.8. Példa. Legyen A = {x € Z | x pdros} és R = (A, +,-) a szokdsos mijveletekkel.
e R gylri (tényleg).
o R-ben 2 f10 mert - mivel 4 nem osztéja 10-nek - 2-t pdros szamokkal (azaz A
elemeivel) szorozva sosem kaphatunk 10-et. Hasonldan, —2 J10.
e R-ben nincs eqység, mert ha e € R eqység lenne, akkor e | 2 azaz e = 2 vagy
e = —2 kovetkezne, de az elobb ldttuk, hogy ezek egyike sem osztéja 10-nek,
tehdt nem lehetnek eqységek.

2.9. Definicié (Egységelemes gytiril). R gyiri egységelemes, ha

JeR:VxeR:1-x=2-1=u2x.
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2.10. Definicié (Nullosztémentes gytrt). R gyiri nullosztémentes, ha
Ve,ye R:zy=0= (x=0Vy=0).
2.11. Definicié (Valédi osztd). a valddi osztdja b-nek, haa | b, a # b és a nem egység.

2.12. Tétel. Az Oszthatésag alaptulajdonsagai. Legyen R kommutativ,
eqységelemes, nullosztomentes qyiri. Ekkor az oszthatosdg reldcioja:

1. Reflexiv: Vx € Rz | x;

2. ,Majdnem antiszimmetrikus”:

Vx,yER:(x]y/\y[x)@(Ele,feR eqység: T = ey, y:fx);

3. Tranzitiv: Vx,y,z € R: (x |y ANy | z) = x| z;
4. Vr,y,a,be R:(x|yAx|z)= x| (ay+ bz).
Bizonyitds. © = 1-x mutatja: = | x, ezért 1. teljesiil.

3. igazolasdhoz TFH z |y, y | z. Ekkor Ju,v : zu =y, yv = z, tehat
z(uv) = (zu)v = yv = 2,

azaz uv mutatja, hogy = | z.

2. igazolasat két részre bolntjuk.

=: Hax =y =0, akkor e = f = 1l-el z = ey, y = fx nyilvan teljesiil. Emiatt
feltehetjiik, hogy © # 0. TFH z | y és y | x. Ez azt jelenti, hogy vannak olyan
u,v € R elemek, hogy y = ux és x = vy. De ekkor x = vy = vux azaz 0 = (vu—1)x.
Mivel z # 0 és R nullosztémentes, ezért vu — 1 = 0, azaz vu = 1, specidlisan u | 1
és v | 1, és mivel 1 egység, ezért a mar igazolt 3. miatt u is, v is egység. Ezért az
e =v, f = u egységekkel x = ey, y = fx teljesiil.

<: TFH e, f olyan egységek, hogy ex =y, fy = x. Ezekbdl = | y és y | x azonnal
adddik (az elsé oszthatdsagot e, a masodikat f mutatja).

Végiil 4.-hez TFH z | y, x | z. Ekkor Ju,v : zu = y, xv = z, amibdl
ay + bz = axu + brv = x(au + bv),

tehat z | (ay + b2). O

2.13. Megjegyzés. N-ben (csak 1 az egység) a P = {(z,y) € N | x | y} reldcid
reflexiv, antiszimmetrikus, tranzitiv, tehat részbenrendezés.
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3. Az egész szamok szamelméletének alapjai

E fejezet szerepe kettOs: egyrészt szeretnénk oOsszefoglalni néhany alapveto
szamelméleti fogalmat és eredményt, masrészt szeretnénk elOkésziteni és motivalni
a késobbi algebrai vizsgalédasainkat.

3.1. Maradékos osztas, szamrendszerek
3.1. Tétel (Maradékos osztas N-ben). Legyen a,b € N, b > 0. Ekkor 3lg,r € N:
a=qgb+r és 0<r<hb.

Bizonyitds. Létezés: Legyen ¢ = max{n € N | nb < a}, r = a — ¢b. Ekkor
0 <r <b, mert (¢+1)b> a.

Egyértelmiiség: TFH a = ¢1b + r1 = ¢b + ry, ahol 0 < 71,79 < b. Ekkor
0= (g1 —qo)b+ (r1 —r3), tehdt b | (ry —re). De |1y — o] < b, ezért r| = ry és emiatt
a1 = q2- O
3.2. Tétel (Szamrendszerbeli alak). Legyent € N, t > 2, b € N. Ekkor 3n € N és
ag,...,a, €N, 0<a; <t:

b=ant" + ap1t" -+ art + ao.

Bizonyitas. Teljes indukcid b-re.

Alaplépés: b =0, ekkor n =0, ag = 0 j6.

Indukciés 1épés: Legyen ag a b t-vel valé osztasi maradéka, b = b‘% Az
indukcids feltevés szerint V' = a,t" ' +--- +ay, tehdt b = a,t" + - -+ a1t +ag. O

3.3. Példa (10-esbél 3-as szdmrendszerbe). Atalakitds 525-6t 3-as szimrendszerbe:

b, | 925 175 58 19 6 2
Qm | 0 1 1 1 0 2

Tehdt 525 =2-3°4+0-3*4+1-334+1-324+1-3'4+0-3" = 2011105.

3.4. Példa (3-asbol 10-es szamrendszerbe). Atalakitds 2011105-b6l 10-esbe Horner-
maodszerrel:
((((2:340)-3+1)-3+1)-34+1)-3+0=0525.

3.5. Tétel (Horner-mddszer). Legyen f(x) = a,z™ + ap_12™ ' + -+ + a1z + ao.
Ekkor:
f(l‘) = (((anx + anfl)x + an72)x +---+ Cl1)l’ + ag

3.6. Példa. Szdmitsuk ki f(5) = 323 + 22 — Tx + 1 értékét Horner-mddszerrel:

3 2 -7 1
511 15 85 390
|8 17 18 391

Tehdt f(5) = 391.
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3.2. Ko0z0s 0sztok és tobbszorosok és az euklideszi algoritmus

3.7. Definici6é (Ko6zos osztok). Legyen R gyirid, a,b € R. Ekkor az a és b k6z6s
osztoinak halmaza:

K(a,b)={ceR|c|anc]|b}.

3.8. Definicié (Kittuntetett kozos osztd). d € R kittintetett k6z0s osztdja a-nak
és b-nek (jelolés: d = (a,b)), ha:

1. d € K(a,b);

2. Ve e K(a,b): c|d.

3.9. Definicié (Legnagyobb kozos oszté Z-ben). Z-ben:
LNKO(a, b) = max(K(a,b) N N).

3.10. Megjegyzés.

o Kitiuntetett kozos oszto értelmezhetd kizardlag a gyiri-miveletekkel, de a leg-
nagyobb kozds oszto fogalmdhoz a gyidrin kilon meg kell adni egy tovdbbi rendezési
relaciot 1s.

e LNKO(0,0)-nak nincs legnagyobb eleme, mert K(0,0) = Z.

e Konvencid: LNKO(0,0) = 0.

e Haa # 0 vagy b # 0, akkor Z-ben K(a,b) véges.

o Aldbb, 3.13-ben lesz: Z-ben minden szampdrnak van nemnegativ kitintetett
kozos osztoja.

3.11. Definicié (K6z0s tobbszorosok). Legyen R gyiiri, a,b € R. Ekkor a k6zds
tobbszorosok halmaza:

KT(a,b)={c€R|a|cAb|c}.

3.12. Definicié (Kitiintetett k6z0s t6bbszorés). m € R az a és b kitintetett
kozos tébbszorose (jelolés: m = [a,b]), ha:

1. me KT(a,b) és

2. Ve e KT(a,b) :m | c.

Legyen a,b € Z, b # 0. Definidljuk az rg,r,... sorozatot az alabbi rekurziv
modon:

ro = a;
ry = b;
Tke1 = Tp_1 0Sztasi maradéka rg-val.
Euklideszi algoritmusnak azt az algoritmust nevezziik, melynek bemenete az (a,b)
szampar, és az el6z0 rekurziot kovetve felépiti az rg, r1, ... sorozatot a legkisebb olyan
n-ig, melyre r,, = 0; ekkor az algoritmus eredménye (kimenete) az r,_; érték. Aldbb

latjuk majd, hogy mindig van olyan n, melyre r,, = 0, ezért az euklideszi algoritmus
mindig befejezodik.
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3.13. Tétel (Euklideszi algoritmusra vonatkozé tétel). Akdrmilyen a,b € Z, b #
0 szdmokon is inditjuk el az euklideszi algoritmust, az véges sok lépésben mindig
befejezddik, és r,_1 kimenetére teljesil, hogy r,—1 = LNKO(a,b).

Bizonyitas. TetszOleges mdédon valasszuk és rogzitsiik az a,b € Z, b # 0 bemenetet.
Az euklideszi algoritmus soran eléallé értékekre |rg| > |ri| > |ra| > ---. Mivel N
jolrendezett, ezért az 1.19 Tétel miatt nincs benne végtelen leszallé lanc. Emiatt az
euklideszi algoritmus véges sok 1épésben befejezddik (mondjuk n a legkisebb szém,
melyre r, = 0). Mivel minden 1épésben maradékos osztésokat végeztiink, ezért
vannak olyan ¢y, ¢s... szamok, hogy minden 1 < k < n-re

Tk—1 = QxTk + Tk4+1 AZaZ

Tk+1 = Tk—1 — qgTk-

Ezért
K(T()a Tl) = K(rla Tg) == K(rn*177ﬁn) = K(rnfla O)
és emiatt
LNKO(?"Q, 7’1) = LNKO(’I"n_l, 0) =Tp—1-
Tehat a végeredmény valoban az a és b legnagyobb kozos osztéja. O]

3.14. Tétel (Kiterjesztett euklideszi algoritmus). Tetszdleges a,b € Z-hez van §, 5 €
Z, hogy
(a,b) = da + [b.

Bizonyitas. m-re vonatkozé indukciéval beldtjuk:
Ym 3o, B € L2 Ty = O - @+ By - b.

m=0ra:rg=a=1-a+0-b = =1, 5y =0.
m=1re:ri=b=0-a+1-b =06=0, 6 =1.

Indukcios 1épés: TFH Vk < m-re tudjuk, hogy 3o, Ox:
Te =0k - a+ P - b.
Ezt a 3.13 Tétel bizonyitasaban bevezetett jelolésekkel kombindlva:
Tmt1 = Tme1 = GmVm = (Om-10 + Brm-1b) = @m(0ma + Bnb)

= <5m71 - Qmém)a + (5m71 - Qm/Bm>b
Tehat
5m+1 = 6m71 - qmama 6m+l = Bmfl - Qmﬁm

mutatjak, hogy allitasunk m + 1-re is igaz, és ezzel készen vagyunk az indukcidval.
O
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3.15. Definicié (Relativ primek). Legyen R gyird, a,b € R. a és b relativ
primek, ha (a,b) = 1.

3.16. Tétel (Relativ primek szabélya). Ha a,b,c € Z, a | be és (a,b) = 1, akkor
alc.

Bizonyitds. Mivel (a,b) =1, dx,y € Z : ax+by = 1. Szorozzuk c-vel: acx+bcy = c.
Nyilvan a | acx és feltettiik, hogy a | be, tehét a | bey; ezekbdl a | c. O

3.3. Linearis diofantoszi egyenletek

Diofantoszi egyenleteknek olyan (esetleg tobbvaltozos) egyenleteket neveziink,
melyeknek a megoldésait az egész szamok korében keressiik. Specialisan, a linearis
diofantoszi egyenletek a kovetkezok: legyen a,b,c € Z, a # 0, b # 0. Keressiik
az Osszes olyan x,y € 7Z part, hogy

ar + by = c.

3.17. Tétel. Mint elobb, legyen a,b,c € Z, a # 0, b # 0.
1. ax + by = c-nek van megolddsa Z-ben < (a,b) | ¢;
2. Ha (xo,y0) megoldds, akkor az dsszes megoldds:

—l—bt at teZ
Tr =2 —_ —= _ —
0 d7 Yy Yo d7 )

ahol d = (a,b).

Bizonyitas. 1. Megoldhatoésag;:
e TFH 1z, y, megoldds. Azt szeretnénk belatni, hogy d | ¢. Mivel

d|a és d|b ezért d| (axg+ byo) = c.

e Forditva, TFH d | c. Azt szeretnénk beldtni, hogy van megoldds. A kiterjesz-
tett euklideszi algoritmus miatt van 9, 5 € Z:

d = da + pb.
Tovabba, d | ¢, ezért 3t : dt = c. FEzekkel
c=dt = (da + Bb)t = (6t)a + (St)b

Tehat
ro = 0t, Yo = Pt megoldas.
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2. TFH (x0,y0) megoldas. Legyen t tetszbleges. Belatjuk, hogy = = xy + §t>
y = yo — 5t is megoldas. Helyettesitsiink be:

4o +b( —at>— a2t by — 0™ = awg by =
a | To d Yo d = aXo ad Yo d = X Yo = C,

az utolsé lépésben azt hasznaltuk, hogy (z¢,yo) megoldas.
3. TFH (z0,v0) és (x1,y1) is megoldasok. Beldtjuk:

dt = -t = — =t
X To + .
1 0 / ) hn Yo /

Mivel (xo, o) és (x1,y1) megolddsok, ezért
I. axg + byg =c, Il axi+by; = c.
Vonjuk ki II-bdl I-t:
a(ry —xo) + b(y1 —yo) =0, azaz
a(xy — o) = b(yo — y1)-

Osszunk le d-vel:
a b

(*) E(f’?l —x9) = g(yo — 1)

Mivel d | a, d | b, ezért § és g egész szamok. Tovabbd, & osztéja a baloldalnak,
a b

ezért osztdja a jobboldalnak is. De (3, E) = 1, ezért a relativ primek szabélya (3.16
Tétel) szerint

2 | ( ) = Tt _— = 4
= — ‘Yo — Y1 = =t azaz =1yYo — =t.
d Yo — U Yo — d Y1 = Yo d

Az el6z6 sorban az is kijott, hogy yo — y1 = §t. Ezt (x)-be helyettesitve:

l‘l—ZEOZEt = Z)L’l:ZL'O—f-;lt.

3.4. Kongruenciak és maradékosztaly-gytrik

3.18. Definicié. Legyen m € NT| a,b € Z. Azt mondjuk, hogy a kongruens b-vel
modulo m, ha a és b m-el osztva ugyanannyit ad maradékul, azazm | (a—0b). Jelolés:

a=b (modm).
Nyilvan, az m > 2 eset az érdekes.
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3.19. Tétel. A (mod m) kongruencia reldacio ekvivalenciareldcid Z-n.

Bizonyitds. Rogzitsiik m-et és tekintsik azt a o : Z — N fiiggvényt, mely minden
a € Z-hez a-nak az m-el valé osztasi maradékat rendeli. Vildgos, hogy

a=b (modm) & oa) = o(b),
az pedig ismert (vagy konnyen ellenérizhetd), hogy tetszileges f fliggvényre az
{(a,b) : f(a) = f(b)} relacié ekvivalenciarelacié f értelmezési tartomanyan. O

3.20. Tétel. Legyenm € Z, m > 2, legyenek a,a’ b,/ € Z és TFH a = o' (mod m)
ésb="b (mod m). Ekkor

I.a+b=d +V (modm);

2. ab=d'b (mod m).

Bizonyitds. Mivel a = @’ (mod m) és b = b’ (mod m), ezért m | (a — a') és m
(b—"0"). Ezért van u,v € Z: um=a—da', vom=0b-1.
1. bizonyitasaval kezdjiik. Az el6z6 két sor szerint:

(a+b)—(d+V)=(a—d)+ (b=V)=um+vm=(u+v)m,

tehat m | [(a +b) — (¢ + )] = a+b=d +V (mod m), ezért 1. teljesiil.
2. igazolasara térve (és a bizonyitas els6 két sordban rogzitett jeloléseket tovabbra
is hasznélva) a = a’ + um és b = b’ + vm. Ezekbdl

ab = (a' +mu) (b +mv) = d'V + a'mv + b'mu + m*uv,

és ezért ab — a'b’ = m(a'v + b'u + muv). Ez mutatja: m | (ab — a'b') = ab = 'V’
(mod m). O

Az a € Z szam (mod m) szerinti maradékosztalya:
a={r€Z|x=a (modm)}.
Vildgos, hogy m darab maradékosztaly van.

3.21. Definicib. Legyen m € N, m > 2. Z,, a kévetkezd struktira (a 2.1 Definicid
értelmében):

e Alaphalmaz: mod m maradékosztalyok (m db);

o Miuveletek: tetszbleges a,b maradékosztilyokra

a+

a -

a+b;

a-b.

joal I~ |

3.22. Tétel. Z,, kommutativ gyiiri.
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Bizonyitds. Asszociativitds: Va,b,c € Z:
@+b) +c=a+b+c=(a+tb)+c és
a+(b+e)=a+btc=a+ (b+c).

De (a+b) +c=a+ (b+ ¢), tehat az el6z6 két sor baloldalai egyenldk. Hasonléan

ellendrizhetd a tobbi gylri-axiéma. O
+10 1 2 8 10 1 2 3
0|0 1 2 3 010 0 0 0
3.23. Példa (Z, miivelettabldja). 1|1 2 &8 0 110 1 2 3
212 8 0 1 210 2 0 2
318 0 1 2 310 38 2 1
Itt3-3 =1 (mod 4), mert 9 =1 (mod 4).

3.24. Példa.
e Zg-ban: 2-3 =0 (mod 6), tehdt 2 és 3 nullosztok.
® Zss-ben: 5-7=1 (mod 34), ezért Zss-ben 5 és 7 eqymds inverzei.

3.5. Linearis kongruenciak és a kinai maradéktétel

3.25. Definicié (Linedris kongruencidk). Legyen a,b € Z, m € N, m > 2.
ar =b (mod m)

dsszes megolddsa? (Az ismeretlen x).

3.26. Tétel (Kongruencidk egyszertisitése).

ac=bc (mod m)<a=b (mod —).

(¢, m)
Bizonyitds. TFH: ac = be (mod m). Ekkor 0 = ac — be (mod m), azaz
0=(a—>b)c (modm), azaz
m|(a—"b)c, azaz It e€Z:m-t=(a—Db)c.
Osszuk le (¢, m)-mel:

m C

~t:(a—b)'m.

De ( yniker > = 1, ezért a relativ primek szabélya (3.16 Tétel) miatt
(e.m)”

Megforditva: TFH a = b (mod (C";n)), azaz ﬁ |(a—b)=3HeZ: (C";‘n) t=
a — b. Ekkor:

(c;m)

e | (a—0b) azaz a=b (mod

m Cc

(a—b)c:<

c
mutatja: m | (a — b)c. Tehdt (a — b

\g“
i
=)

E)
o
(o

g
Y
Q
o
i
g

E)
o
(o

g
0



3.27. Tétel (Linearis kongruencia megoldéasa).
1. azx =b (mod m) megoldhaté < (a,m) | b;
2. Ha xg megoldds, akkor az 6sszes megoldds:

xzx(ﬁ—t-L (mod m), t=0,1,...,(a,m)— 1.

(a,m)
Bizonyitds. (1) ax = b (mod m) megoldhaté
< Jr:ar=b (mod m)
< Jr:m| (ax —b)
Sdr,y:m-y=ar—0>
Sdr,y:b=ar—m-y
Sar—m-y=>b (z,y megolddsa az el6bbi linedris diofantoszi egyenletnek)
< (a,m) | b.
(2) Egyrészt, ha zo megoldas, akkor Vi:

a<x0+t-(afn—m)> amtat o= (mod m)

mert xg megoldas = xo +t - (aim is megoldas.
Masrészt TFH x megoldas. Belatjuk: 3t € Z : v = xg + t - J—m) Mivel x és xg
megoldds, ezért axr = b (mod m) és axg = b (mod m), tehét

ar = azrg (mod m).

Ebbdl a kongruencidk egyszertisitési szabélya (3.26 Tétel) miatt: z = xg (mod (arfﬂ)),

azazflt:w—xozt-mVagyisx:x0+t'(an:n)' -

Kinai maradéktétel
3.28. Tétel (Kinai maradéktétel). Ha my, mo,...,m, € N pdronként relativ primek
és ay,...,a, € Z, akkor A\x € Z modulo M = mimsg ---m,.:

r=a; (modmy), z=ay (modmsy), ..., z=a, (modm,).

Bizonyitds. Legyen minden k-ra M = m% Tetsz6leges k-ra, My = 1 (mod my)

megoldhatd, mert (M, my) = 1. Legyen zy olyan, hogy Mz, =1 (mod my).
Viélasszuk X-t igy:

X =a Mixy + asMsxs + - - - 4+ a, M, z,.
Ekkor tetszoleges k-ra
X = agMyzy, = ap -1 =ap  (mod my)
mert minden j # k-ra M; =0 (mod my,) és xy, vélasztasa miatt Mz, =1 (mod my,).

O
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3.29. Megjegyzés. Ha mq, ..., m, nem relativ primek, akkor az
r=a; (modmy), z=ay (modmsy), ..., z=a, (modm,)

kongruencia-rendszer akkor és csak akkor oldhato meg, ha bdarmely két tagjanak van
kozos megoldasa.

3.6. Felbonthatatlan elemek, prim elemek és a szamelmélet
alaptétele

3.30. Definicié. Legyen R gyitri, t € R.
e t felbonthatatlan, hat # 0, t nem egység, és

Va,b € R:t=ab= (a eqység vagy b egység );
e t prim, hat # 0, t nem eqység, ésVa,b€ R:t|ab=t| (a vagy t|Db).

3.31. Példa. Legyen R pdros egészek szokdsos gyurigje. Ebben 6 felbonthatatlan,
de nem prim a kovetkezok miatt. R-ben 6 felbonthatatlan, mert nem bonthato fel 2
pdros szam szorzatdra. Ugyanakkor R-ben 6 nem prim, mert 6 | 2 - 18, de R-ben

612 és 6118, mert 2 és & nem R-beli elemek.

3.32. Tétel. Z tetszioleges eleme akkor és csak akkor felbonthtatlan, ha prim.

Bizonyitds. = Eloszor TFH u € Z felbonthatatlan (kell: « prim). TFH: u | ab.
Mivel (u,a) | u, ezért g € Z : q(u,a) = u. De u felbonthatatlan, ezért (u,a) = 1
vagy ¢ = £1 (a 2.7 Tétel miatt Z-ben ezek az egységek).

1. eset: (u,a) = 1. Ekkor u és a relativ primek, ezért a relativ primek szabdlya
(3.16 Tétel) miatt u | b.

2. eset: ¢ = £1. Ekkor (u,a) = Fu, specidlisan u kozos osztdja u-nak és a-nak,
tehat u | a.

< TFH wu prim, azt szeretnénk megmutatni, hogy u felbonthatatlan. TFH: v = ab
(kell: a egység, vagy b egység). Mivel u prim, ezért u | a vagy w | b; szimmetria
miatt feltehetd, hogy u | a. Mivel u = ab, ezért azt kaptuk, hogy ab | a, azaz b = £1
egység Z-ben. Tehat u valoban felbonthatatlan. O]

3.33. Megjegyzés. Ha u prim és u | ajas - - - a,, akkor 3i :u | a;.

3.34. Tétel (Szamelmélet alaptétele Z-re). Han € Z \ {0, £1}, akkor:
1. Vannak p1,...,pm (nem feltétlendil kilonbozd) primek, hogy n = p1- -+ pm;
2. ez a felbontds eqységszorzoktol, sorrendtol eltekintve egyértelmi;
3. az eldzd felbontasban az azonos primtényezdk szorzatdt hatvdnyalakba irva

n=py'py’ P
ezt nevezzik a felbontds kanonikus alakjanak.
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Bizonyitds. Nyilvanval6, hogy a biznyitdst elég pozitiv n-ekre elvégezni (—1-el szo-
rozva ebbdl az eredmény negativ n-ekre is addédik). Az n > 2 feltétel mellett teljes
indukeiét alkalmazunk n-re és (1)-et és (2)-t egyiitt igazoljuk.

Alaplépés: n = 2. Ekkor m = 1, p; = n megfelel6 felbontas.

Indukciés 1épés: TFH: (1),(2) igaz Yu < n-re. Ha n felbonthatatlan, akkor
mint elobb, m = 1, p; = n megfelel6 felbontds. Ha n nem felbonthatatlan, ak-
kor da,b € Z — {0,£1} : n = a - b. Feltehets, hogy a,b > 0, ekkor nyilvan a,b < n,
ezért az indukcié miatt a = p1-- pm, b =q1 - - qr, igy tehdt n =py - P -1 -+ - Qi
és (1) teljestil n-re.

(2) is teljesiil, mert TFH: n = p1-pm = ¢1-+- @ |n| = 2 mintdjara, ha
az u felbonthatatlan, akkor m = k = 1, p; = ¢;. Ha n nem felbonthatatlan
(azaz m > 2), akkor p; | n = ¢ ---q,. Mivel p; prim, ezért 35 : py | ¢;.
De ¢; is prim, igy a 3.32 Tétel miatt g; felbonthatatlan, ezért p; = £q;. Ezért
P2 Pm = q1 - qj—1(E1)gj+1- - @ Az indukcids feltevésiink szerint viszont ez a
felbontas sorrendtdl és egységszorzoktol eltekintve egyértelmii. Ezért ugyanez n fel-
bontésaira is fennall.

Végiil 3. trivialis. ]

3.35. Megjegyzés. Pozitiv egészek azonosithatok a véges multihalmazokkal: pl.
n = pi*---ps, n az a multihalmaz, melynek py eq-szeres eleme, py ey-szeres eleme,. ..
stb.

3.36. Kovetkezmény.
1. Ha (n,a)=1, (m,a) =1, akkor (nm,a) = 1;
2. haa=0b (modm), akkor K(a,m) = K(b,m) (emiatt: (a,m) = (b,m)).

Bizonyitds. 1. A szamelmélet alaptétele (3.34 Tétel) és a véges multihalmazokra
vonatkoz6 megjegyzés miatt vildgos. 2.-héz TFH a = b (mod m). Ekkor m | a — b
azaz dq : m-q = a — b. Ebbol

(i) a=mqg+bés
(i) b=a—mg.

Ezért, ha ¢ € K(m,b), akkor ¢ | m és ¢ | b igy (i) miatt ¢ | a, tehdt ¢ € K(m,a),
ezért K(m,b) C K(m,a). A forditott irdnyu, K(m,a) C K(m,b) tartalmazas (ii)
segitségével hasonldan ellendrizheto. O

3.7. Maradékrendszerek, Euler-féle ¢ fiiggvény és az Euler-
Fermat tételkor

3.37. Definicié (Euler-féle ¢ fiiggvény). Han € N\ {0}, akkor
on)={keN|1<k<n,(kn)=1},

vagyis p(n) a nemnegativ, n-nél nem nagyobb, n-hez relativ primek szdma.
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3.38. Definicié6 (Teljes maradékrendszer). T C N teljes maradékrendszer (rovi-
den TMR) modulo m, ha

o [T|=m és

o Vi,t' €T t#t' :t#1t (mod m).

3.39. Definicié (Redukalt maradékrendszer). R C N redukdlt maradékrendszer
(réviden RMR) modulo m, ha

e VxeR:(x,m)=1;

o |R] =¢(m) és

o Vt,t' € Rt #t :t#t (modm).

Konnyti meggondolni, hogy ha R C N egy RMR modulo m, akkor minden, m-
hez relativ prim y € N-hoz 3!z € R : 2 = y (mod m): x unicitdsa abbdl adédik,
hogy R elemei paronként nem kongruensek modulo m, x egzisztenciaja pedig a 3.36
Kovetkezménybdl lathato be.

3.40. Tétel. TFH (a,m) =1, b tetszdleges.
1. Ha {t1,...,tm} TMR, akkor {aty +b, ..., at,, + b} is TMR;
2. ha{ri,...., 7o} RMR, akkor {ar,... ,arymm} is RMR.

Bizonyitds. 1. igazolasahoz a 3.38 Definicié két pontjat ellenorizziik. Az vilagos,
hogy az {at;+0,...,at, + b} halmazban m darab elem van (azaz a felsorolt elemek
paronként kiillonbozok). Tovabbd paronként nem-kongruensek egymassal, mert THF
at; +b = at; + b (mod m). Ekkor at; = at; (mod m). Mivel (a,m) = 1, ezért
a kongruencidk egyszertisitési szabélya (3.26 Tétel) miatt ¢; = t; (mod m). De
{t1,...,tm} TMR, ezért i = j.

Hasonléan, 2. igazoldsahoz a 3.39 Definici6 pontjait ellendrizziik. A

{arl, e ,arw(m)}

halmazban valéban ¢(m) darab elem van. TFH ar; = ar; (mod m). Ekkor, mint
az 1. pont bizonyitdsaban, r; = r; (mod m). De {r1,...,74um)} RMR, ezért i = j.
Kell még: Vr € R: (ar,m) = 1. De ez teljesiil: mivel (a,m) =1 és (r,m) = 1, ezért
a 3.36 Kovetkezmény 1. pontja miatt valéban (ar,m) = 1. Ezzel azt kaptuk, hogy
a 3.39 Definicié osszes pontja valéban teljesiil a {ary, ..., arym)} halmazra is. [

3.41. Tétel. ¢ multiplikativ, azaz ha (n,m) =1, akkor
p(n-m) =¢(n) - p(m).

Bizonyitds. Tekintsiik a kovetkezo m x n tablazatot:

1 2 3 n
n+1 n+2 n+3 e 2n
2n+1 2n + 2 2n+3 o 3n

(m—Un+1 (m—1)n+2 (m—1)n+3 -+ m-n
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Els6 sor: {1,2,...,n}, ez TMR modulo n ezért az elsé sorban ¢(n) db n-hez relativ
prim szam van.

Oszlopok: az i-edik oszlop: i,n+14,2n+1,..., (m—1)n+1, ezeket az elemeket gy
kapjuk, hogy a {0,1,...,,m — 1} halmaz elemeit n-el szorozzuk, majd hozzdadunk
még i-t. Ezért a 3.40 Tétel miatt minden oszlop TMR modulo m. Ezért minden
oszlopban ¢(m) db m-hez relativ prim szdm van.

Relativ primek: most két médon is leszamoljuk a tablazatban szereplé, m - n-
hez relativ prim szamokat. Egyrészt, egy szam akkor és csak akkor relativ prim
n - m-hez, ha relativ prim n-hez és m-hez is. A fentiek szerint az els6 sor ¢(n)
db n-hez relativ prim szamot tartalmaz. Mivel egyazon oszlopon beliil az elemek
kongruensek modulo n, ezért p(n) db oszlop tartalmaz n-hez relativ prim szdmokat
és a 3.36 Kovetkezmény 2. pontja miatt minden ilyen oszlop minden eleme relativ
prim n-hez. Tovébb4, fentebb dtgondoltuk, hogy minden oszlopban ¢(m) db m-hez
relativ prim szdm van. Ezért sszesen p(n) - p(m) db szdm van a tabldzatunkban,
melyek relativ primek n - m-hez.

Masrészt definicié szerint: a tabldzatban (n - m) db ilyen szdm van. Ezek
alapjan valéban ¢(n) - p(m) = p(n - m). O

3.42. Tétel (Euler-féle ¢ fiiggvény kiszamoldsa). Ha n = pi*ps? - - - pir, akkor

pn)=(p—1p* - (p = Dp =m0 (1 - pil) (1 - p%) (1 - pl> :

Bizonyitds. El6szor az r = 1 esetet vizsgdljuk (vagyis azt az esetet, amikor n = p*
primhatvany). Ekkor pontosan a pj-el oszthaté szdimok nem lesznek relativ primek
n-hez, és pﬂl = p?*l darab n-nél nem nagyobb, p-vel oszthatd szam van. Ezért

e(n) =pit —pi "t =pP(pr — 1)

Az altaldnos esetet (amikor n nem feltétleniil 1 darab, hanem r darab - paronként
kiilonb6z6 alapt - primhatvany szorzata) ¢ multipikativitdsaval (azaz a 3.41 Tétellel)
intézziik el:

o(n) = PPy - p) = e )ey’) - o) =
(pr — L)p o (pr — 1)pE
Végiil
e1—1 er—1 e1, e er 1 1 1
on)=@—-pi" (o —)py— = (pi'p5? o) (1—— ) (1—— ) [ 1——

DD 6D
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3.43. Tétel (Euler-Fermat). Ha (a,m) = 1, akkor a*™ =1 (mod m).

Bizonyitds. Tekintsiik a {t1,2,. .., t,(m)} redukalt maradékrendszert modulo m. A
3.40 Tétel miatt {aty, aty, ..., atyam } is redukalt maradékrendszer modulo m. Ezért
minden 1 és p(m) kozé es6 i-hez pontosan 1 darab (1 és ¢(m) kozés es6) j van, melyre
at; =t; (mod m). Emiatt

aty - aty - atpmy =t -ta - tuem  (mod m)

azaz
a®(m) (titg - - .t¢(m)) = tito - ty(m) (mod m).

Mivel Vi : (t;,m) = 1, azaz tity - - - tym) relativ prim m-hez, ezért (a 3.26 Tétel
szerint) egyszerisithetiink vele:

a?™ =1 (mod m).

3.44. Tétel (Kis Fermat-tétel). Legyen p primszdam.
(1) Hapta, akkor a?~* =1 (mod p).
(2) Tetszdleges a egész szdmra a? = a (mod p).

Bizonyitds. (1) Ha p prim és p t a, akkor (a,p) = 1 és ¢(p) = p — 1, igy a 3.43
Euler-Fermat tétel miatt:
a? =1 (mod p).

(2)-t esetszétvalasztassal bizonyitjuk.
1. eset: pta.
Ekkor (1) alapjan a?~! =1 (mod p). Mindkét oldalt a-val szorozva:

a’* =a (mod p).

2. eset: p|a
Ekkor a = 0 (mod p), tehat:

a>=0 (modp) é a=0 (modp)

igy a”? = a (mod p). O
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4. Specialis algebrai struktirak (félcsoportok, cso-
portok, ... stb.)

4.1. Definicié (Félcsoport). Az (A,-) struktira félcsoport, ha a szorzds asszoci-
ativ:
Ve,yoz€Aix-(y-2)=(x-y) -z

4.2. Definicié (Monoid). Az (A, -, 1) struktira monoid, ha:
e (A, ) félesoport, és
eVreA:1-z=x-1=uz (azaz létezik egységelem).

4.3. Definicié (Csoport). Az (A, -, 1) struktira csoport, ha:
e (A, -, 1) monoid, és
eVeeAdr e A:x-azt =212 =1 (azaz minden elemnek létezik inverze).

4.4. Definicié (Abel-csoport). Egy csoport Abel-csoport, ha:
Ve,ye A:x-y=y-x
(azaz a szorzds mivelete kommutativ).

4.5. Definicié (Test). Az (A,+,-,0,1) struktira test, ha:
o (A, +,0) Abel-csoport,
o (A\{0},-,1) csoport és

o A szorzds disztributiv az 0sszeaddsra nézve.

4.6. Példa. Példdk:
(Z +.,0): Abel-csoport,
,1): kommutativ monoid,

(N,
(Z —l— - 0,1): gydrt, de nem test,
(Q,+,-,0,1): test.

Figgvények tulajdonsagai

4.7. Definicid. Legyen f : A — B fiigguény.
o Az f figguény injektiv, ha:

Ve,ye Arx#y= f(z) # fy).
o Az f fligguény sziirjektiv, ha:
Vye B3z e A: f(x) =

o Az [ figguény bigektiv, ha injektiv és szirjektiv (kolcsondsen egyértelmi
leképezés).
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Struktiramegorzo leképezések

A kovetkezd definicidkban azt szeretnénk precizzé tenni, hogy két struktura
ugyanolyan (lényegében azonos), vagy legalabb hasonlit egymésra abbdl a szem-
pontbdl, hogy elemeik olyan moédon is megfeleltethetok egymésnak, hogy a megfe-
leltetés a miveletekkel kompatibilis legyen. Ilyen esetekben teljesiil ugyanis, hogy a
két srtrukturaban ,ugyanugy”, vagy legalabb ,nagyon hasonléan” kell szamolni.

4.8. Definicié (Izomorfizmus). Legyenek A = (A, f;)icr és B = (B, ¢;)ier azonos
tipusu struktiurdk.
Egy a: A — B leképezés 1zomorfizmus, ha:

1. « byekcio, és
2. o mivelettarto:

Vie Ve, ...z, € Az a(fizr, ... xn)) = gi(a(xy),. .., a(x,)).

Egy o : A — B leképezés homomorfizmus, ha a mivelettartds teljesil (de az 1.
feltételt nem kétjiik ki).

4.9. Megjegyzés. Kozépiskolas tanulméanyokbdl ismeros lehet a grafok izomor-
fidjanak fogalma: két graf akkor és csak akkor izomorf, ha csicsaik kozott meg
lehet adni egy , éleket meg6rz6” bijekcidt (amely tehat élt élbe, nem-élt pedig nem
élbe visz). Az izomorf grafokat pedig azonosnak (vagy legaldbb lényegében azo-
nosnak) tekinthetjiik. A 4.8 Definicié mogott nagyon hasonlé gondolat huzdédik
meg: két algebrai struktira izomorf (lényegében azonos), ha elemeik kézott van
mivelettartd bijekcié. A 4.8 Definici6 tehdt a grafok izomorfizmus-fogalmanak al-
gebrai strukturakra vonatkozé természetes adaptacioja.

4.1. Struktirik és azonossagok

4.10. Definicié (Véltozok és termek). Legyen V # () egy vdltozéhalmaz (dltaldban
V =A{z,y,z,...}, de lehet véges is).
A termek halmazdt a kovetkezdképpen definidljuk:
(1) Ha x vdltozo vagy kitintetett konstans, akkor x term;
(2) Haty,..., t, termek és f n-vdltozds fiigguény, akkor f(ty,... t,) is term;
(8) Minden term az el6z6 két szabdly véges sokszori alkalmazdsdval dall eld.

4.11. Példa. Példdk:
o z(y+ 2) egqy gyliri-term;
o z((y+) nem term;
e 2(y + z) nem csoport-term (csoportban 1 db kétvdltozds mivelet van).

4.12. Definicié (Azonossiag). A t; = ty szimbdlumsorozatot azonossdgnak ne-
vezzik, ha tq,ty termek.
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A 2.2 Definiciéban szereplé gytriiaxiomék, csakigy mint a 4.1-4.4 Definiciokban
szereplo félecsoport-, csopartaxiomak,... stb. mind mind azonossagok. De pl. tes-
tekben a multiplikativ inverzre vonatkozé feltételek nem azonossdgok (mert a null-
elemnek nincs reciproka, ezért a multiplikativ inverz képzése nem olyan miivelet,
amely minden test-elemen értelmezve van).

4.13. Tétel (Azonossigok megbrzése). Legyenek A = (A, f;)icr és B = (B, gi)icr
azonos tipusu strukturdk. Tegyik fel, hogy a : A — B szirjektiv homomorfizmus.

(1) Tetszbleges t(xy,...,x,) termre és ay,...,a, € A esetén:

a(tA(al, ceap)) = tB(a(al), o aay))

ahol pl. t4(ay, ..., a,) az A struktirdnak azt az elemét jeldli, amelyet a t term
ad eredményiil, ha a benne szerepld miveleteket A-ban elvégezziik az aq, . . ., a,
elemekre.

(2) Ha t; =ty azonossdg igaz A-ban, akkor B-ben is igaz.

Bizonyitds. (1) A t termben eléforduld fiiggvényjelek m szdma szerinti indukciot
alkalmazunk.

Alaplépés (m = 0): t valamelyik valtozé vagy konstans. Ekkor (1) mindkét
oldalan ugyanannak az A-beli elemnek az a szerinti képe all, ezek nyilvan egyenldk.
(Kicsit részletesebben, pl. ha a t term az z véltozd, melybe a € A-t helyettesitiink,
akkor (1) baloldalat igy értelmezhetjiik: ,.A-ban a-val tovabbi miiveleteket nem
végziink, majd az eredménynek (vagyis a-nak) vessziik az « szerinti képét”. Ha-
sonléan, ebben az esetben (1) jobboldala igy értelmezhetd: ,vessziikk az a elem «
szerinti képét, és ezzel a képpel B-ben tovabbi miiveleteket mar nem végziink”.
Vildgos, hogy a baloldal és a jobboldal el6z6 értelmezései szerint mindkét esetben
a(a)-t kapunk eredményiil, tehat az Alaplépés esetében (1) baloldala és jobboldala
valéban egyenlé.)

Indukciés 1épés: Tegyiik fel, hogy t = f(t1,...,t) és (1)-et tudjuk mar a
t1,...,tx termekre. Ekkor

a(t(ay, ..., an)) = a(fAt{a),. .., ;@) (de o homomorfizmus)

a))) (ind. feltevés)

(2) Tegyiik fel, hogy t; = t5 igaz A-ban. Kell: igaz B-ben is. Legyen by, ..., b, €
B tetszOleges. Mivel « szirjektiv, ezért vannak olyan aq,...,a, € A elemek, me-
lyekre a(ay) = by, ..., a(a,) = by.
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Ekkor:

t7(br, ... 0n) = tP(alar), ..., afan)) (1) alapjén)
= a(tMar, ... a,)) (t; =ty igaz A-ban)
= a(ts(ar, ..., a,)) (megint (1) alapjén)
= t5(alay),...,ala,)) = t5(by, ..., b,). v

]

4.14. Kovetkezmény. Nincs olyan gytirtiazonossdg, amely pontosan a nullosztomentes
gyirikben igaz.

Bizonyitds. Ellentmondast keresve tegytik fel, hogy van olyan t; = t, gytirtiazonossag,
amely pontosan a nullosztémentes gytiriikben igaz. Tekintsiik a kovetkezo strukturakat:
e 7Z: nullosztomentes gytri;
e 74 nem nullosztémentes gytiri.
Legyen «: Z — Zy, f(n) =n (mod 4).
Ez sziirjektiv homomorfizmus. Mivel Z nullosztéomentes, ezért t; = ty igaz Z-ben.
Ezért az el6z6 4.13 Tétel miatt t; = ty igaz Zs-ben is. De Z4-ben van nulloszto,
ellentmondas. O
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5. Komplex szamok

5.1. A komplex szamok bevezetésének motivacidja

Leopold Kronecker (1823-1891) kordnak neves német matematikusa szerint
LA természetes szamokat Isten teremtette, minden mas az ember miive.”

Valéban, egészen 6si kultirak ismerték, és hasznaltak a természetes szamokat. Ugyan-
akkor, ahogy azt a 2. fejezet elején lattuk, meglepden nehéz kérdés annak tisztazasa,
hogy pontosan mik is a természetes szamok. Ezért, ezen a kurzuson a természetes
szamok fogalmat ismertnek tekintettiik és tekintjiik (illetve tovabbi vizsgélatukat
mas kurzusokra halasztjuk), de kiemeljitk a kovetkezéket.

e Egyrészt a természetes szamok azonosithatdk egy (egyiranyban végtelen) félegyenes
pontjaival a szokdsos médon (tigy, hogy szomszédos természetes szamoknak egységnyi
tavolsdgu pontok felelnek meg).

o Misrészt, a természetes szamok korében pl. az

(1) z+3=1

egyenlet nem oldhaté meg: akarmelyik természetes szamot adjuk is értékiil z-nek,
a baloldal eredménye sosem lesz 3-nél kevesebb, ezért x értékét nem tudjuk ugy
valasztani, hogy a jobboldalon szereplé 1-et kapjuk eredménytil.

Az (1)-hez hasonlé tipust egyenletek megoldhatésiga érdekében érdemes beve-
zetni az egész szamokat: ezek kozott lehetnek negativak is. Negativ szamokat is meg-
engedve konnyen megtaldlhatjuk az (1) egyenlet megolddsat. Ugyanakkor, a negativ
egész szamok fogalma mar nem annyira szemléletes: pl. egy buszon akkor utazik —2
darab utas, ha 2 utasnak fel kell szallni ahhoz, hogy a busz iires legyen. Ezt ebben
a formaban nehéz elképzelni (de pl. az egészen szemléletes, hogy negativ szamokat
is megengedve egyszertien tudjuk modellezni a ,profit és koltség” vagy ,toke és
addssag” ellentétes fogalomparjait). Az egész szdmok halmaza egészen konkrétan
megkonstrualhaté a természetes szamok halmazabdl, e konstrukciéval kapcsolatban
a 2025 6szi kurzus 4. adag héazi feladatai koziil a 7. feladatra utalunk. E konstrukcié
soran meg kellett adni, hogy

1. Mik az egész szamok;
2. Mikor tekintiink két egész szamot egyenlének;
3. Hogyan kell a szokdsos miiveleteket elvégezni az egész szamokon.

Az 1. és 2. pontokkal kapcsolatban (a részletek felidézése nélkiil) azt jegyezziik
meg, hogy az egész szamok azonosithatok a természetes szamok rendezett parjainak
bizonyos ekvivalenciaosztalyaival. A konstrukcié végén azt mondhatjuk, hogy ha
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tudnank, mik a természetes szamok, akkor tudnank azt is, hogy mik az egész szamok.
Ismét kiemeljiik a kovetkez6 aspektusokat.

e Mindenek elott a természetes szamok Osszeadasra és szorzasra vett félcsoportjai
természetes modon beagyazhatok az egész szamok Osszeadasra és szorzasra vett
félcsoportjaiba (azaz van olyan injektiv fiiggvény, mely a természetes szdmokat
képezi az egész szamok halmazaba, és megtartja az 0sszeadas és szorzas miiveletét,
tehét durvan fogalmazva van injektiv homomorfizmus N-b6l Z-be).

o Az egész szamok azonosithatok egy (mindkét irdnyban végtelen) egyenes pontjai-
val a szokdsos médon (igy, hogy szomszédos egész szamoknak egységnyi tavolsagi
pontok felelnek meg).

o Végiil, az egész szamok korében pl. a

(2) 2z+4=1

egyenlet nem oldhaté meg: akarmelyik egész szamot adjuk is értékiil z-nek, a
baloldal eredménye paros lesz, ezért x értékét nem tudjuk tgy vélasztani, hogy
eredményiil a jobboldalon szereplé paratlan 1-et kapjuk.

Az el6z6 bekezdésben szerepld (2)-hoz hasonl6 egyenletek megoldhatésédga érde-
kében ismét érdemes ujfajta szamokat bevezetni, ezek lesznek a racionalis szamok,
melyek akdar tort értékiiek is lehetnek. A raciondlis szamok korében kénnyen meg
tudjuk oldani a (2)-h6z hasonld egyenleteket, emellett a (pozitiv) raciondlis szdmok
konnyen el is képzelhetok: pl. egy almat 3 egyenld részre felszeletelve viszonylag
pontos (bar a szeletelés 6hatatlan pontatlansdga miatt nem teljesen pontos) médon
(fizikailag, érzékszervi tapasztaldssal is) érzékelhetiink % darab almat. Amint azt a
2025 6szi kurzus 4. heti gyakorlatra szant 8. feladataban vazoltuk, az egész szamok
esetéhez hasonldan, a racionalis szamok teste is egészen konkrétan megkonstrudlhaté
az egész szamok gylriijébol. Ismét azt kell tisztazni, hogy

1. Mik a racionalis szamok;
2. Mikor tekintiink két raciondlis szamot egyenlonek;
3. Hogyan kell a szokasos miiveleteket elvégezni raciondlis szamokon.

Ahogy azt altalanos iskolaban megtanultuk, a raciondlis szamok egész szamokbdl
all6 (szamldlora és nevezére tagolt) rendezett parokbdl képzett ekvivalenciaosztalyok
(két egész szamokbdl 4116 péar ekvivalens, ha kozos nevezére bévitve Sket, a szamlaléik,
mint egész szamok egyenlékké vélnak). A raciondlis szdmok konstrukcidja végén
ismét azt mondhatjuk, hogy ha tudnank, mik az egész szamok, akkor tudnank azt
is, hogy mik a racionalis szamok. Ismét kiemeljiik a kovetkezdket.

e Van olyan injektiv fliggvény, mely az egész szamokat képezi a raciondlis szamok
halmazéba, és megtartja az dsszeadds és szorzas miiveletét (azaz, a részleteket elna-
gyolva: van injektiv homomorfizmus Z-b6l Q-ba).

36



e A raciondlis szdmok azonosithatdk egy (mindkét irdnyban végtelen) egyenes bizo-
nyos pontjaival a szokasos mddon, és egy ilyen azonositas utan a racionalis pontok
halmaza stirli lesz a szamegyenesen: barmely két kiillonbozo raciondlis szam kozott
van tovabbi (valdjaban van végtelen sok tovébbi) raciondlis szam.

e A valos szamok bevezetésének nem algebrai okai vannak. Noha a raciondlis szamok
a szamegyenes stri részhalmazat adjak, még mindig nem kaptuk meg a szamegyenes
Osszes pontjat. A valds szamok bevezetésének oka és célja az, hogy kitoltsiik a
szamegyenesen azokat a hézagokat, amelyek a racionalis szamok bevezetése utan
még mindig megmaradtak. A raciondlis szamok egy masfajta bovitését indokolna,
ha pl. a

3) 2*=-1

egyenletet szeretnénk megoldani. A racionalis szamok halmazanak ilyen bovitéseivel
kapcsolatban az aldbbi 2 lehetoséget emlitjiik meg:

Algebrai szamok: raciondlis egyiitthatés polinomok gyodkei,

pl: 54+2v2,  VV3+V2+1.

Gyokkifejezések: termek a (Q,+,+,0,1, ¢/ )nen+ struktirdban.

A 2.4 Tétel szerint QQ valodi részhalmaza a gyokkifejezéseknek és meg lehet mutatni,
hogy a gyokkifejezések valddi részhalmazat alkotjdk az algebrai szamoknak (és mel-
lesleg: az algebrai szdmok nem is feltétlentil valésak). Az algebrai szdmok fogalmara
és a gyokkifejezésekre alabb még vissza fogunk térni.

A (3)-hoz hasonlé egyenletek még a valds szamok korében sem oldhaték meg:
minden valés szam négyzete nemnegativ, ezért nem tudunk olyan valds értéket adni
x-nek, hogy (3) baloldala egyenld legyen a negativ jobboldalaval. A (3)-hoz ha-
sonld egyenletek megolddsa (akér a szamfogalom bévitése ardn) egészen a reneszénsz
koraig komoly fejtorést okozott a matematikusoknak, és tovabbi évszazadokra volt
sziikség a kérdéskor pontos tisztazédsahoz. Ebben a fejezetben aldbb a komplex
szamokat és alaptulajdonsigaikat ismertetjiikk. Az el6z6 bekezdésekben ismétlodo
mintazat szerint kibévitjlik a szamfogalmat a valds szamokon tilra, mégpedig azért,
hogy a (3)-hoz hasonlé egyenletek megoldhaték legyenek. Az ujfajta szdmokat
komplex szamoknak fogjuk nevezni. A komplex szamokat is valds szamparokkal
azonosithatjuk, és egészen pontosan meg fogjuk majd adni, hogy az tjfajta (komp-
lex) szamokon hogyan kell a szokdsos miiveleteket elvégezniink. Konstrukciénk
ismét olyan lesz, hogy egy alkalmas injektiv homomorfizmus a valés szamok R
testét bedgyazza a komplex szamok C testébe. Ismét elmondhatjuk majd, hogy
ha tudnank, hogy mik azok a valés szamok, akkor azt is tudnank, hogy a komplex
szamok micsoddak. Emellett - mivel a valds szamok mar teljes mértékben kitoltik
a szamegyenest - a komplex szamokat nem egy egyenes, hanem egy sik pontjaival
tudjuk azonositani.

Felmeriil a kérdés, hogy esetleg még bonyolultabb egyenletek megoldhatésaganak
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érdekében tovabbi szamfogalom-bévitésre lenne-e sziikség, és ha ez igy van, akkor
a szamfogalom-bovitéseinknek végére ériink-e valaha. Ezzel kapcsolatban jé hirtink
van, ugyanis igaz a kovetkezo:

5.1. Tétel (Az Algebra Alaptétele). ! Minden komplex-egyiitthatds, legaldbb elséfoki
polinomnak van gyoke C-ben.

Bizonyitds. Bizonyitas év végén — s6t masik félévben. O

Ez a tétel a természet egy kisebbfajta csodaja: azt allitja, hogy a polinom-
egyenletek megoldhatdsaga szempontjabol megéllhatunk a komplex szamoknal még
akkor is, ha polinomegyenleteinkben szerepelhetnek az ijfajta komplex szamaink is.

Végiil megjegyezziik, hogy a szamfogalom bovithet6 a végtelen nagy (vagy akér
a végtelen pici) mennyiségek irdnyaba is; a végtelenség mas-més aspektusait meg-
ragadva a végtelen nagy mennyiségekkel (szamossiagokkal, rendszamokkal) a hal-
mazelmélet, a végtelen pici mennyiségekkel a (nemsztenderd) analizis foglalkozik.
Ezek (akéar tobb) 6nallé tantargyat kitoltd teriiletek; ebben a kurzusban a végtelen
mennyiségeken végzett miiveletekkel és azok tulajdonsagaival nem foglalkozunk.

5.2. Komplex szamok definicidja

5.2. Definicié (Komplex szamok halmaza és egyenldsége). C =R x R és
(a,b) = (¢,d) & (a=c) A (b=d).

Jeldlés: az (a,b) € C komplex szdmot a + bi alakban is irjuk, és a kérdéses komplex
szam algebrai alakjanak nevezzik.

Az el6z6 Definicid jeloléseit megtartva hangsilyozzuk a kovetkezoket. A fenti,
szigoru algebrai alak mellett 0 + bi helyett irhatunk egyszertien bi-t, és hasonléan,
a + 07 helyett irhatunk egyszertien a-t is.

Egy komplex szam tehat egy valos szampar: a z = a + tb komplex szamnak a a
valds, és b a képzetes része, ezekre alabb az 5.5 Definiciéban vezetiink be jeloléseket.
A raciondlis szamok esetében a tortvonal kiiloniti el a szamlalét a nevezotél. Eh-
hez némileg hasonldan, az algebrai alakban az ¢ szorzotényezo jeloli meg a komplex
szamunk képzetes részét. A kovetkezo definiciéban megadjuk, hogyan kell 6sszeadni
és Osszeszorozni két komplex szamot. Latjuk majd, hogy az algebrai alak jelolései
kényelmesek lesznek az egyszeriibb miiveletek elvégzésére. Lesz egy 1j szamolési
szabalyunk is: i = —1. Ezek szerint az 1j ¢ szdm megolddsa lesz a valésak korében
megoldhatatlan 2> = —1 egyenletnek; emiatt néha az i = /—1 jelolést is alkal-
mazzak (ami egy picit pontatlan: egyrészt egyelére nem definidltuk negativ szdm
négyzetgyokét; masrészt, ha mar definidltuk is volna, egy ilyen jeloléshez akkor is be
kéne latni, hogy —1-nek pontosan 1 darab négyzetgyoke van. Ezzel szemben az dertil

'Ezt a tételt djabban a Klasszikus Algebra Alaptételének nevezik.
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majd ki, hogy két olyan kompex szam is van, melyek négyzete —1: az egyik ilyen
szdm ¢ a masik pedig —i azaz szigortan vett algebrai alakban 0+ 1i és 0 4 (—1)q).
Emiatt a 5.12 Definiciéban tovabbi magyarazattal fogunk majd szolgalni, hogy pl.
az v/—1 jelolést hogyan alkalmazzuk.

5.3. Definicié (Miiveletek).
o Osszeadds: (a,b) + (c,d) = (a + ¢,b+d) azaz
a+bi+c+di=(a+c)+ (b+d)i.
e Szorzds: (a,b) - (c,d) = (ac — bd,ad + bc)i azaz
(a+ bi)(c+ di) = ac + adi + bei + bdi® = (ac — bd) + (ad + be)i,
ahol tehdt 1> = —1.

A miveletek el6bbi definicidja alapjan valéban praktikus az algebrai alak hasznalata:
komplex szamokkal ,igy szamolunk, mint a szokasos kéttagu osszegekkel, azzal a
szabéllyal kiegészitve, hogy i = —17.

5.4. Tétel. (C,+,-,0,1) test.

Bizonyitds. A testaxiémdk ellenérzésével. A bizonyitasra egy masik (révidebb, de
absztraktabb, és tovabbi el6késziileti 1épéseket igényld) lehetéség az lehetne, hogy
igazoljuk: C izomorf egy gylir (polinomgytirii) specidlis homomorf képével. Mi-
vel a 4.13 Tétel szerint a gylirithomomorfizmusok megorzik a gytiriiazonossagok
igazsagat is, ezért ebbdl azonnal adédna, hogy C egy gytiri. Azt pedig kiilon (vi-
szonylag roviden) meg lehetne gondolni, hogy a homomorfizmust olyan specialis
modon is vélaszthatjuk, hogy értékkészletében (azaz C-ben) a nemnulla elemek mind
invertalhatok legyenek. O]

5.3. Komplex szamok algebrai alakja és a miiveletek alaptu-
lajdonsagai

5.5. Definicié (Algebrai alak). Ha z = (a,b) € C, akkor a+bi a z algebrai alakja.

5.6. Definicié (Valds és képzetes 1ész). z = a + bi esetén:

R(z) = a: valds rész;

3(z) = b: képzetes rész;

|z| = Va? +b%: a z komplex szdm abszolit értéke (= 0-tdl vald tdvolsiga);
Z =a — bi: z konjugdltja.

Ahogy korabban megjegyeztiik, a szdmegyenes minden pontja megfelel egy valés
szamnak. Mivel egyetlen valds szam négyzete sem negativ, ezért az ¢ szamot nem
tudjuk elhelyezni a szamegyenesen, hanem azon kiviil helyezziik el: felvesziink egy, a
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szamegyenesre meroleges, origdn atmend tGjabb egyenest — amit képzetes tengely-
nek neveziink — és i-t a képzetes tengely egyik olyan pontjaval azonositjuk, melynek
1 a tavolsaga az origétol. A valds szamok eredeti szamegyenese és a képzetes ten-
gely egylitt megad egy derékszogli koordinatarendszert. Ennek segitségével az a4 1b
komplex szamot a sik (a,b) koordindtdju pontjaval azonositjuk, és az azonosités
utdn a komplex szdmok sikjardl (vagy szamsikrél) beszéliink — pontosan ugyanugy,
ahogy a valés szamok esetében hasznaljuk a ,szamegyenes” kifejezést. A komp-
lex szamok Osszeadasa egybeesik a nekik megfeleld helyvektorok, mint sikvektorok
osszeadasaval. Alabb, a 5.14 Megjegyzésben latjuk majd, hogy a komplex szamok
szorzasanak is van egy nagyon vildgos geometriai jelentése, amely azonban nem tel-
jesen nyilvanvald; ismertetése tovabbi elOkésziileteket igényel.

5.7. Tétel (Konjugalas tulajdonsigai). Legyen z € C.

|

1. z=z;

2. z-z=1z]* € R.

Bizonyitds. (1) a+bi=a—bi=a+bi V.
(2) z-z2=(a+bi)(a—bi) =a* —abi +abi +b0* = a®> + V> = |z|*. V O
5.8. Példa (Osztas algebrai alakban).

5+2  (5+2)(1—i) b—5i+2—2* 7-3i

147 (I+d)(1—1d) 2 2

5.9. Tétel. A konjugdlds automorfizmus. Részletesebben, az
f:C—=C, f(2)=z
fugguény egy gytriizomorfizmus C-bol C-be, azaz:
1. f(z1+ 22) = f(21) + [(22);
2. f(z122) = f(21) f(22).

Bizonyitdas. Legyen zy = ay + byi, 20 = as + boi. Ki fogjuk szamitani 1. bal- és
jobboldalat, és latjuk majd, hogy valéban egyenloek.

f(z1+ 22) = f((a1 + a2) + (b1 + ba)i) = (a1 + az) — (by + bo)i

f(Zl) + f(ZQ) = (a1 — bll) + (CLQ — bgl) = (a1 + (12) — (bl + bQ)Z v

2. Hasonldan igazolhaté. O]
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5.4. Komplex szamok trigonometrikus alakja

5.10. Definicié (Trigonometrikus alak). Legyen z = a + bi € C, z # 0. Ekkor z
felirhato trigonometrikus alakban:

z =r(cos ¢+ isinp)

ahol:
e r = |z| = Va® + b a komplex szam abszolit értéke;
e © a komplex szim argumentuma (szége), amelyre:

a .
cosp = —, sinp = —
r r

Az argumentum csak 21 egész szdma tobbszorosei erejéig van meghatdrozva.

5.11. Tétel (Szorzas trigonometrikus alakban). Legyenek z; = ri(cos p1 + isin¢q)
€s 29 = ro(cos @y + isin o) komplex szdmok. FEkkor:

2129 = T1r2[cos(p1 + p2) + isin(vr + va)l.
Bizonyitas.

2129 = 1179(C08 1 + i sin 1) (cos Y + i 8in p9)
= r173[(COs @1 COS g — Sin 1 sin pg) + (oS @1 Sin s + sin ;1 cos s )]

= 11r2[cos(p1 + p2) +isin(pr + pa)].

5.5. Komplex gyokok és egységgyokok
5.12. Definicié (Komplex gyokok). Legyen z € C, n € N, n > 1. Ekkor:

Ve={weC|uw" =z}

Ezek szerint a z komplex szdm n-edik gyoke egy halmaz: az {/z halmaz azokat
a komplex szdamokat tartalmazza, melyek n-edik hatvanya éppen z.

5.13. Tétel (Osztas és gyokvonds trigonometrikus alakban). Legyenek
21 = 11(C08 p1 + i sin 1), 29 = 19(COS g +isinps) # 0

komplex szdmok és legyen n € N.

z r .
JRet—_— (cos(p1 — w2) +isin(p; — ¢2));
Z9 T2
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2. 2" = r"(cos(ny) +isin(ny))  (Moivre-formula);

3.
2k 2k
V2 = {W(cos (u) + i sin (M)) | k=0,1,....,n— 1}.
n n
Bizonyitds. 1. Ellenorizheto:

r .
2 (cos(ipr — o) + isin(pr — p2)) - 2 = =1
2

2. Trivialis (indukcié n-re).

3. Tetszoleges k € N esetén:

o7 (e (5 o ()]

= r(cos(¢ + 2km) + isin(p + 2km))
= r(cosp +isinp) = z.

Ezért a jobboldali halmaz elemei mind benne vannak az {/z halmazban. Ezek
paronként kiilonbozoek, mert a sin és cos fliggvények legkisebb kozos periddusa
2m. Mivel 27 kozos periddusa sin-nek és cos-nak, ezért nagyobb k-k nem adnak 1j
gyokoket: k =0,...,n— 1. Végiil, {/2-nek mds elemei a mar igazolt 2. miatt nem
lehetnek.

O

5.14. Megjegyzés. A 5.13 Tételbol latszik, hogy tetszoleges z € C-vel vald szorzas:
nytjtva forgatds (nydjtas |z|-szeresre + origd koriili forgatds z argumentumaéval).
Specidlisan, ha a z € C komplex szam abszolitértéke 1, akkor a z-vel vald szorzas
geometriai hatdsa éppen a z argumentumédval valé elforgatas (0 koriil).

5.15. Példa. Legyen n € N*; ekkor az /1 halmaz elemei a kévetkezdk:

g0 = 1(cos0 +isin0) = 1;

27 . 27
egr=1{cos| — ) +isin| — :

n n

47 .. (A4r
gg=1{cos| — ) +isin| — :

n n

s e (220 (20

Megjegyezziik még, hogy az €1-el valo szorzds 2%—nel vald elforgatds (0 koriil).
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A kovetkezo definicioban az el6z6 példat altalanositjuk.

5.16. Definicié (Rend). Legyen z € C. A z rendje az a legkisebb n € N, n > 1
(ha van ilyen), melyre 2" = 1.

e HaVn € N-re z" # 1, akkor rend(z) = oo,

e Ha z-nek van rendje, akkor |z| = 1.

e € C: n-edik egységgyok, ha ¢” = 1 (specidlisan € = 1 is n-edik egységgyok).
Tovabbi példék: i 4. egységgyok, hiszen it = 1.
5.17. Definicio. ¢ € C primitiv n-edik egységgyok, ha  n-edik eqyséqggyok és
rendje n.

5.18. Megjegyzés. Rogzitett n-re legyen
A={eeC|e" =1} (n-edik egységgyokok halmaza) és

tekintsiik az A = (A, -) strukturat, ahol - a C-bél 6roklédé szorzas miivelete. Ekkor
A izomorf a (Z,,+) csoporttal.
Tovabba, ha e a legkisebb pozitiv szogl eleme A-nak, és z € C, akkor

Ve={c"2% | k=0,1,...,n—1}.
27 _
5.19. Példa. Legyen n € N rogzitett, eg,€1,...,6,_1 az 0sszes n-edik eqyséqgqgyok.
Ekkor

hiszen az e-al val6 szorzas hatésa: nel val6 0 koriili forgatas.

1. bizonyitas. Legyen ¢ a legkisebb pozitiv szogl n-edik egységgyok:

(%) o ()
e=¢,=cos|— | +sm|— ).
n n

Ekkor ¢, = ¢*. Legyen

n—1 n—1
A= Er — 8k.
k=0 k=0
Ekkor - .
eA Zak“ =) F=4
k=0 k=1
Tehét eA = A, azaz (¢ — 1)A = 0. Mivel € # 1, ezért A = 0. O

2. bizonyitds. A mértani sorozatok Osszegére vonatkozo képlet szerint

—_

3

JEE S B e U
N - -1 e—1

0.

i
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5.6. Komplex szamok és sikgeometria

Ebben az alfejezetben a komplex szamokat — algebrai alakjukat derékszogl
koordinatakként hasznalva — azonositjuk a sik pontjaival. Ennek megfeleléen pl.
kozvetleniil fogunk egyes komplex szdmok mértani helyérél beszélni (ahelyett, hogy
a komplex szdmunknak megfelel pont mértani helyérél beszélnénk).

5.20. Példa. Hol vannak azok a z € C komplex szamok, melyekre
|z 4+3—1i| =27
Megoldas. Atalakitjuk:
|z — (=3 +1)] =2.

Tehat azoknak a z kompelx szdmoknak a mértani helyét keressiik, melyek tavolsaga
—3 4 1-t0l 2. Ez egy kor:

e Kozéppont: —3 + 1;

e Sugar: 2.

&

N

5.21. Példa. Hol vannak azok a z € C komplex szamok, melyekre

|z 41| = |z —i?

1. Megoldas. z tavolsaga i-t6l és —i-t6l azonos. Ezért a kérdéses z komplex
szamok mértani helye az (i, —i) szakasz felezomerélegese (mint egyenes).

R
1
valés tengely
R
P —i
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2. Megoldas. Vegylik fel z-t algebrai alakban: z = x + iy és fogalmazzuk at a
feltételtinket:

|z + iy +i| = |z + iy — 1|
[z +i(y + 1) = |z +i(y = 1)
V24 (y+1)2 = /22 + (y — 1)?  (abszolitérték nem negativ valds).

Négyzetre emeliink:

2+ (y+1)? =2+ (y—1)°
2y rl=a 4y -2y +1

2y = -2y
4y =0
y=0.

Tehat z a valds tengelyen van (és a valés tengely mindegyik pontja megfeleld).

5.7. Binomialis egyiitthaték és a Binomialis Tétel

5.22. Definicié (Binomidlis egyiitthatd). Legyenn € N, k € N, 0 < k <n. Az (Z)
szimbolum (melyet binomidlis egyitthatonak nevezink) azt a szamot jeloli, ahdny k
elemi részhalmaza van eqy n elemi halmaznak. Ismertnek tekintyik, hogy

(1) = e

5.23. Példa (Pascal-hdromszog).

1
11
1 2 1
1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

A Pascal-haromszog szélein 1-esek vannak, beljebb minden elem egyenl6 a felette
levé két elem Osszegével. A Pascal-haromszog sorait, és a sorokon beliil az eleme-
ket 0-t6l sorszamozzuk. Ismertnek tekintjiik, hogy ezzel a konvenciéval a Pascal-
haromszog n. soranak k. eleme éppen (Z) Példaul, a Pascal-haromszog 2. soranak

0. eleme (g) =1, 2. sordnak 1. eleme (f) = 2, stb.
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5.24. Tétel (Binomialis tétel). Tetszdleges kommutativ gyiiri tetszéleges a,b ele-

meire és n € NT-rq .
(a+0)" = Z (Z) a" ok

k=0

(ahol egy ¢ gyliriielem az m € N szammal valé mc szorzatdn az m-tagi c+c+ ...+ ¢
ismételt dsszeadds eredményét értjiik).

Bizonyitds. (a+b)" = (a+b)(a+0b) - - (a+b) (n db) zardjelek felbontasaval: hanyszor
kapunk a"~*b*-t? Pontosan annyiszor, ahdnyféleképpen ki tudunk vélasztani k da-

rab b-t az n darab tényezd koziil, azaz (Z)—szor. O]

5.25. Megjegyzés (Pascal-tetraéder). A (a+ b+ )" = ((a +b) + )" kifejtéséhez
hasonloan definidlhatjuk a trinomidlis egyiitthatokat.

A Binomialis tétel alkalmazasai

5.26. Példa. . .
n __ n __ n n—k1k __ n
2" = (141) _Z(k)1 1 _Z<k)
k=0 k=0
5.27. Példa.
" n " n
0=(1-1)"= 1" F(—1)k = —1)k h 0.
=3 (e = e () e

5.28. Példa. Egyrészt a Binomidlis Tételt (5.24 Tételt) alkalmazva:
1+4)" = 1"k = i*.
o= (=)

Masrészt a hatvanyozdst trigonometrikus alakban elvégezve:
(1+49)" = (V2)" (cos% + isin %) = /2 (cos % + i sin %) .

A wvalds és képzetes részek osszehasonlitdsdval:

n

- k2T L oon/2 nw k=2 (Y oony2 o T
Z(l) <k) 2 cos —~, Z(l) (k; 2 sin — -

k=0 k=0
k pdros k pdratlan

5.29. Példa. Legyen ¢ € R, n € N tetszbleges. Fejezziik ki sin(np)-t és cos(ng)-t
sin(yp), cos(yp)-vel.
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Az 6tlet az, hogy a (cos ¢ + isin p) komplex szam n-edik hatvanyat két médon
(egyszer a Binomidlis Tétel segitségével, egyszer pedig a trigonometrikus alakok-
ra vonatkoz6 hatvanyozéassal) szamoljuk ki; mivel ugyanazt a dolgot szamoljuk ki

kétféle modon, a két eredmény egyenld lesz...
Egyrészt Binomidlis tétellel:

(cos g+ isin ) = zn: <Z) (cos @)™ * (i sin )*

k=0

n
ny . _ .
<k) i* cos" T psin® .
k=0

Masrészt trigometrikus alak hatvanyaként:
(cos +ising)™ = cos(ny) + isin(nep).
A valés részek Osszehasonlitasabol:

cos(ny) = Z (—1)k/2 (Z) cos" " psin® o;

k=0
k péros

hasonléan, a képzetes részek Gsszehasonlitasabol:

. _ _1)(k=1)/2 n n—k ,sink o,
sin(nep) Z (—1) ) cos" T psin®

k=0
k paratlan

5.30. Példa (n = 3 eset).
.. 3 3 3 .. 0 3 2 .. 1
(cosp +ising)” = 0) p(isinp)” + | ) cos p(isinp)

3 3
+ (2) cos (i sin )% + <3> cos” (i sin p)?
= cos® ¢ + 3icos® psin p — 3cospsin® p — isin® p
= (cos® ¢ — 3 cos psin p) + i(3 cos® psin g — sin® ).

Masrészt: (cos ¢ + isinp)® = cos(3p) + isin(3p).
A walos részek egqyenldségébil:

cos(3p) = cos® p — 3 cos psin? .

A képzetes részek eqyenldséqgébol:

sin(3p) = 3 cos? @ sin p — sin® .
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6. Polinomok

Alapdefiniciok

Polinomokkal korabban ebben az anyagban is taldlkoztunk mar, s6t kozépiskolai
tanulmanyainkbol is ismer6s lehet a polinomok fogalma. Eddigi ismereteink szerint
az r-et, mint hatarozatlant tartalmazé polinomok

2
ap + a1x + asx” + ...

alaku véges 0sszegek; egy polinomot tehat gy szoktunk megadni, hogy megadjuk az
egyes x-hatvanyok egyiitthatéit. Mivel a polinomok véges 0sszegek, az elsé néhany
egylitthaté felsorolasa utén elég azt rogziteni, hogy a tovabbi (nagyobb kitevés z-
hatvanyokhoz tartozd) egytitthaték mind nulldk. Més szavakkal, egy polinomot
azonosithatunk a nemnulla egyiitthatéi véges sorozataval (tigy, hogy a sorozatunk
nulladik tagja z° egyiitthat6jat, elsd tagja x!' egylitthatdjit, stb. adja meg). Ezt
teszi precizzé a kovetkezo definicié, melyben nem az a lényeg, hogy konkrétan hogyan
definidltuk a polinomokat, hanem az az igazan fontos, hogy a polinomokat igy-vagy-
ugy, de teljesen precizen definialtuk. Késébb latjuk majd, hogy az aldbbi definicié
praktikus jelolést biztosit rengeteg kérdés tisztazasdhoz.

6.1. Definicié (Polinomok halmaza). Legyen R kommutativ, egységelemes gyiiri.
Az R feletti polinomok halmazdt a kovetkezéképpen definidljuk:

A={a:N— R|3IN eN:Vn> N :a(n) =0}
A miiveletek:
o Osszeadds: (a+b)(k) = a(k) +b(k) (Vk € N);
e Szorzds: (ab)(k) = Z a(m)b(k —m) (Vk € N).

m=0
Az igy kapott (A,+,-) struktirdt R|x]-el jeldljik, és megeldlegezve a 6.5 Tételt, R
feletti egyvdltozos polinomgyiiriinek nevezzik.

6.2. Definicié (Jeldlés és alakok). Ha a € A egy polinom, akkor a kévetkezd alakban
irhatjuk:

a=ay+ ax + ax® + - + apa”
ahol ap, = a(k) a k. egylitthato és x a hatdrozatlan.

Altaldban 2°-t nem irjuk ki és ha a, = 0, akkor nem mindig irjuk ki a megfeleld
tagot.

Polinomok foka és specialis tulajdonsagai

6.3. Definicié (Fok). Legyen a € R[x]. Ekkor aza polinom fokdt a kévetkezdképpen

definialjuk:
— ha Vk : a; = 0;
deg(a) = { AR
max{k | ar # 0}, kilonben.

48



Ha b=by+bix+---+bx" és b, #0, akkor

e b, ab polinom féegytitthatoja;

e hab, =1, akkor a b polinom monikus;

o a byx¥ alaki ésszeadanddkat a b polinom tagjainak nevezziik.

6.4. Tétel (Alaptulajdonsigok).

1. A ¢ : R — Rlz], p(a) = a (jobboldalon a konstans polinom wvan) fiigguény
injektiv homomorfizmus;

2. Ha f,g € Rx], akkor
deg(f + g) < max{deg(f), deg(g)};
3. Ha R nullosztomentes, akkor

deg(f - g) = deg(f) + deg(g).

Bizonyitds. Az éllitasok R[z]-ben valé megfeleljét kozépiskolaban mar megismertiik;
a bizonyitas R helyett tetszoleges R gytriire hasonléan végezhetd6 el. O]

6.5. Tétel (Gyfirtitulajdonsdgok).

1. R[x] kommutativ egységelemes gyiird;
2. Ha R nullosztdmentes, akkor R|x] is nullosztdmentes.

Bizonyitds.

1. A gytirtiaxiémék kénnyen (de hosszadalmasan) ellenérizheték, ezért nem részletezziik,
hogy:

Az 6sszeadas kommutativ csoportot alkot;

A szorzas asszociativ és kommutativ;

A disztributivitas teljesiil;

Az 1 konstans polinom egységelem.

2. Tegytik fel, hogy R nullosztémentes. Legyenek f,g € R[z]|, f #0, g # 0.
Ekkor deg(f) > 0 és deg(g) > 0, igy az eléz6 tétel (3) pontja miatt:

deg(f - g) = deg(f) + deg(g) = 0.
Ezért f-g # 0.
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6.1. Polinomok oszthatésaga és maradékos osztasa

6.6. Definicié (Oszthatésig). Legyenek f,g € R[x]. A 2.5 Definiciora emlékeztetve,
az R[z] gyliri esetében is azt mondjuk, hogy f osztéja g-nek (jeldlés: f|g), ha

dh € Rlx]:g=f-h.

6.7. Definicié (Maradékos osztds). Azt mondjuk, hogy f € R[x] maradékosan
oszthatd g € R[x]-szel, ha

dg,r € Rlz]: f=g-q+r és deg(r) < deg(g).
Ekkor q-t hanyadosnak, r-et maradéknak nevezzik.

6.8. Példa (Ellenpélda). Z[x]-ben x> nem oszthaté maradékosan 2x-szel:

Tegyiik fel, hogy x* = (2x)h + 7, ahol deg(r) < 1.

Ekkor deg(r) <0 és ezért r =0, de h féegyiitthatdja is egész szdm kellene, hogy
legyen, emiatt nem talalhato megfeleld h.

6.9. Tétel (Maradékos osztas feltétele). Legyen R kommutativ, egységelemes gyiiri
és [ € Rlz|. A kovetkezd dllitdsok ekvivalensek:

1. f-fel lehet maradékosan osztani, azaz

Vg € Rx] 3h,r € Rlz]| : g=f-h+r, deg(r)<deg(f);

2. f foegyiitthatoja invertdlhato R-ben.

Bizonyitds. (1) = (2): (1) miatt f # 0, legyen n = deg(f). (1) alapjan a g = 2"
polinomot is el lehet maradékosan osztani f-el, ezért

Jh,r € R[x] : 2™ = f-h+r, ahol deg(r) < deg(f).
A foegytitthatdk osszehasonlitasabol:
1 = a, - (h féegyiitthatdja),

mert deg(r) < deg(f). Ezért a,, invertdlhaté R-ben.

(2) = (1): Legyen f = a,z™+- - -+a1x+ay, ahol a,, invertdlhaté. Ellentmondast
keresve tegytik fel, hogy van olyan g € R[z], amit nem lehet f-fel maradékosan
osztani; legyen m a legkisebb fokszam, amelyre van ilyen g és legyen g € R[x]
olyan, hogy deg(g) = m és g-t nem lehet f-fel maradékosan osztani. Vegyiik fel g
egylitthatoit:

G =bpnx™ + by 1x™ 4 by + by,

Figyeljiik meg, hogy m > n (kiilénben g = 0 f + ¢g j6 maradékos osztés lenne).
Tekintsiik a kovetkez6 polinomot:

g =4g— (aglbmxm_n)f'
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Ekkor deg(g) < m, ezért m vélasztasa (illetve g fokszamanak minimalitdsa) miatt
g maradékosan oszthaté f-fel:

Jh,re R[x]:g=h-f+r, deg(r)<deg(f).

Ezért
g=3+ (a; ' bpa™ ™) f = (h+a, bpa™ ") f + 7.

Ez ellentmondas, hiszen az el6z6 sor szerint ¢ is maradékosan oszthaté f-fel. O]

6.10. Tétel (Maradékos osztéas egyértelmiisége). Ha f € Rlx| fbegyitthatdja in-
vertdalhato, akkor a maradékos osztas egyértelmd.

Bizonyitds. Tegyiik fel, hogy
g=hif+ri=haf +ro
ahol deg(r) < deg(f) és deg(rs) < deg(f). Ekkor

(x) (i —ho)f =1y — 1.

Ellentmondast keresve tegytik fel, hogy h; # ho; ebbol:
e deg((hy — ha)f) > deg(f) (mert f féegylitthatéja invertalhato);

o deg(ry — 1) < deg(f).
Ezek szerint (x) baloldaldnak foka legaldbb deg(f), jobboldaldnak foka pedig szi-
gorian kisebb ennél. Ez ellentmondas, ezért mégiscsak hy = hg és ebbdl ry = ry. [

6.11. Kovetkezmény. Ha R test, akkor R[z|-ben minden nem nulla polinommal
lehet maradékosan osztansi.

Bizonyitds. Testben minden nem nulla elem invertalhaté, igy minden nem nulla
polinom foegyiitthatdja is invertalhato. n

6.2. Polinomfiiggvények

6.12. Definicié. Legyen f € R[z], [ = apx™ + ap_ 12" '+ - +ag és c € R. Ekkor
f c-nél vett helyettesitési értéke:

fle) = anc” + ap_1c" '+ +ag.
Az f-hez tartozo polinomfiiggvény:
pr:R—= R, pg(c) = f(c).
6.13. Példa. Legyen fi = x, fo = 22 a Zy felett.
c| file) fole)

0o 0 0
1 1

~
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Itt fi1 # fo mint polinomok, de py, = py, mint fiigguények.
6.14. Definicié. ¢ € R gyoke f-nek, ha f(c) = 0.

6.15. Megjegyzés. Klasszikus kérdés: Adott f € R[z]-nek keressiik meg a gyokeit!
Hogyan keressiik a gyokoket? ¢ €77 (Altaldban, — nem mindig — ha f € R]z|, akkor
c-t R-ben keressiik).

6.16. Példa. Legyenek fi(x) = 2" — 2 és folz) = x® + 1. Hdny gyokik van? A
kilonbozo Q, R, C testekben és a Z gyiriben:

Q R C Z
Alo 12 n 0
2l 0 0 2 0

6.17. Megjegyzés. A 6.21 Kovetkezményben latjuk majd, hogy kummutativ, nul-
losztomentes gytirtik feletti polinomgytiriikben a gyokok szama mutat valamiféle
rendezettséget (legfeljebb annyi gyok van, mint a polinom fokszdma). A 6.22 pont-
ban latunk majd patologikus példakat olyan (nullosztét tartalmazé) kommutativ
gylrtire, melyben az el6z¢ allitds nem igaz; ott a gyokok szamanak furcsa visel-
kedése a nullosztok létezésén mulik. A gyokok szaménak szempontjabdl nemcsak
a nulloszték, hanem az alapgytiri kommutativitasa is lényeges: a 2025 &szi kur-
zus 10. heti gyakorlatara szant 5. feladataban lattuk, hogy a kvaterniék NEM-
KOMMUTATIV teste felett van olyan maéasodfoki polinom, melynek végtelen sok
gyOke van; itt a problémat a kommutativitds hidnya okozza (hiszen minden test
nullosztémentes).
A reneszansz idejében mar intenziven vizsgaltdk a harmadfoki, sot még magasabb-

fokd polinom-egyenleteket is. Ugyanakkor a negativ szamok fogalma nem volt még
teljesen rendbe téve. Emiatt, a mai jeloléseinket hasznalva, a masodfoku

f(z) =2+ ax +b € R[z]

polinom vizsgalata is nehézkes volt. Mivel egyiitthatoként neagtiv szamokat nem
hasznaltak még, az el6z6 f-re az f(x) = 0 egyenletet 4 kiilénboz6 esetre bontotték,
és kiilon kezelték az

z? = ax + b;
2?4+ ax =0
2? +b=ax;

2 4+ar+b=0

alaki egyenleteket (tgy értve, hogy mind a 4 esetben a,b, ¢ nemnegativ szamok).
Latjuk majd, hogy e technikai nehézségek ellenére meglep6en messzire jutottak a
harmad- és negyedfoki egyenletek megoldésa terén.
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6.3. Polinomok gyokei és faktorizacio

6.18. Tétel (A behelyettesités homomorfizmus). 2 Legyen R kommutativ gyiird,
c € R és legyen
®.: Rlz] = R, ®c(f) = f(c),

Ekkor ®. (azaz a c-t behelyettesitd figguény) gyiirdhomomorfizmus.

Bizonyitdas. Azt kell ellenérizniink, hogy ®. megtartja a gytri-miveleteket. Ehhez
legyenek f, g € R[x], mondjuk

f= Zakxk, g= Zbkajk.
k k

Ekkor egyrészt

(f+g Zakxk + Zbkfﬂ = Zak—l—bk =
k
Zak—i—bkc —Zakc —|—Zbkc = )+ ®.(9).

Maésrészt, hasonldéan

q)c(fg):@c((;akxk)(;bkmkn: (; Zb ) -
sz: (a;b5-5) " = Zakc Zbkc = ®.(f)Pc(9)-

k  j=0

6.1. Konvencio.
A tovabbiakban R mindig kommutativ, egységelemes gytirii.

6.19. Tétel. Legyen f € R[x], ¢ € R. FEkkor ekvivalensek:

(a) f(c) =0 (azaz c gyoke f-nek);
(b) (x—c)| f (azaz x — ¢ osztdja f-nek).

2Ez a tétel teljesen kimaradt abbdl az anyagbdl, amit a hallgatéktdl kaptam. Lefrom a bi-
zonyitast Ujra, de ebben a bizonyitasban a jelolések nem feltétlentil lesznek azonosak azzal, ahogy
eldaddson (emlékeim szerint 2025 oktdéber 17.-én) elmondtam.
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Bizonyitds. (a) = (b): x — ¢ féegyiitthatdja 1, ezért a 6.9 Tétel miatt lehet vele
maradékosan osztani: vannak olyan ¢, € R[z] polinomok, melyekre

f=(@—=c)qg+r, deg(r)<l.
Mindkét oldalba c-t helyettesitve, a 6.18 Tétel miatt

0= f(e) = (c = )a(c) +r(e) = (o),

tehat r = 0.

(b) = (a): Tudjuk, hogy 39 € R[z] : f = (x — ¢)g. Ismét, mindkét oldalba c-t
helyettesitve és a 6.18 Tételre hivatkozva azt kapjuk, hogy f(c) = (¢ —¢)g(c) =0,
azaz c gyoke f-nek. O]

6.20. Tétel. Ha R nullosztomentes és c1, . .., ¢ kiilonbozd gyokei f-nek, akkor

(x—c)(x—co) - (x—ck) ]| f

Bizonyitds. Indukci6 k-ra.

Alaplépés: k =1, az el6z6, 6.19 Tétel miatt.

Indukcios lépés: Tegyiik fel, hogy cq,..., ¢, kilonbozo gyokei f-nek. Az el6zo,
6.19 Tétel szerint: (x — 1) | f, azaz 3g € R[z] : f = (x — ¢1)g. Ismét a 6.18 Tétel
miatt, tetszoleges 2 < i < k-ra:

flei) = (ci —c1)gles) = 0.

Mivel a ¢y, ...c, gyokok paronként kiilonboznek, ezért ¢; — ¢; # 0, és igy a nul-
losztémentesség miatt g(c¢;) = 0. Ezért co, ..., ¢, gyokel g-nek, és alkalmazhaté az
indukcié. O

6.21. Kovetkezmény. Ha R kommutativ, nullosztomentes gyird, f € R|x], deg(f) =
n, akkor f-nek legfeljebb darab n kulonbozo gyoke lehet.

Bizonyitds. Legyenek f gyokei ¢y, co,- -+ € R. Az 6.20 Tétel ismételt alkalmazasaval

f-bél az (x — ¢1), (x — ¢2), ... linedris tényezéket egyesével ki lehet emelni. Minden
ilyen kiemelés 1-el csokkenti a fokszamot, tehdt a kiemeléseket legfeljebb deg(f) = n-
szer lehet megismételni. Ezért a gyokok szama nem lehet nagyobb n-nél. O]

6.22. Példa. A 6.21 Kovetkezmény nullosztot tartalmazé gytriikben nem marad
érvényben. Pl. a mdsodfokt z2 — 1-nek Zg-ban gyoke 1,3,5,7, ez Osszesen 4 darab
(ezzel kapcsolatban még a 6.55 Példara is utalunk).
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6.4. Gyokok és egyuitthatéok kapcsolata

Mint emlitettiik mar, a polinomegyenletek megoldasanak klasszikus problémaja
az, hogy adott polinom egyiitthatoibdl allitsuk elé a gyokeit. Erre a kérdésre vissza
fogunk térni, ebben az alfejezetben azonban a forditott, és joval egyszertibb kérdést
vizsgaljuk: hogyan allnak el6 a gyokokbdl az egytlitthatok, azaz adott cq,...c,
gytriielemekhez hogyan talalhatjuk meg egy olyan polinom egyiitthatoit, melynek
pont a cy,...c, gylrielemek a gyokei. Ez a forditott, és konnyebb irdany hasznos
lesz az eredeti, gyokok eldallitasara vonatkozé kérdések vizsgalatanal is.

6.23. Tétel (Victe-formuldk). Legyen f = 2" + ap_12" 1 + -+ + a1z + ag monikus
polinom. Ha f = (x —c1)(x —¢a) -+ (x — ¢p), akkor:

Ap—1 = —<61+C2+“‘+Cn);

Gp_o = C1Cy + C1C3 + + - - + Cp_1Cp;

ap = (—1)"cico- -y
Bizonyitds. A szorzatot kibontva:
(= )@= ) (3= ) =8 = (1 -+ €2)a™ ok (=1)p -

Az a,_j egyiitthat6 egyenld (—1)*-szor a {ci, . .. ¢, } halmaz Gsszes k-elemii részhalmaza
szorzatainak Osszegével. O

Gyakorlati szempontbdl az el6z6 tétel azt mutatja, hogy szorzat alakban adott
polinomok esetében a szorzast (zardjelek felbontasat) csak indokolt esetben célszerii
elvégezni, mert ezt barmikor, viszonylag konnyen megtehetjiik. Ugyanakkor egy
egyiitthatoival adott polinom szorzatta alakitasa sok fejtorést okozhat.

6.24. Példa. Oldjuk meg C-n:

u+v=4;

uv = 3.
A Viete-formulak miatt u és v gyokei az
7 —4r+3=0

mésodfoki egyenletnek. Ennek gyokei: x = 1 és © = 3, tehdt (u,v) = (1,3) vagy
(3,1).
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6.5. Harmadfoku egyenletek C felett

Altalanos alak és redukcié

e Altaldnos alak: ax3 4+ bx? + cx +d = 0.
e Redukalt alak: y3 + py + ¢ = 0.

6.25. Tétel (Harmadfoku egyenlet redukéldsa). Minden harmadfoki
ar® + b’ +cx+d=0, a#0
alaki egyenlet dtalakithato y3 + py + q = 0 alakiira.

Bizonyitas. A féegyutthatéval osztva feltehetjiik, hogy polinomunk monikus:

d

b
24 -2t xS =0.
a a a

A baloldali polinomot rendezziik at x + 3—121 hatvanyai szerint:

pabegede () () - () e ) -

a 3a 3a? 3a a 3a) 3a2  a
<+b>3+<c b2><+b>+b3 b3 bc+d
x4+ — - — )+ — —_——— - — 4 -,
3a a 3a? 3a 9a¢3 27a®> 3a? «a
ez, az
b c b 2h° be d
Tr = _— — = - — — g _ J—
y 3a’ P a 3a?’ 1 27a3 34?2  a
jelolésekkel y3 + py + g = 0 alaki. m

Az 3 + py + g = 0 egyenlet megoldasa C-ben.

Feltehetjiik, hogy p # 0, mert p = 0 esetén y értékeit azonnal megkapnank a —g-bol
valé (komplex) kobgyokvondssal.
Keressiik y-t y = u + v alakban. A Binomidlis tételb6l (5.24 Tételbol)

y? = (u+v)® = v’ 4 3u’v + 3uv® +0° =

u? 403 + 3uv(u +v) = v + v+ 3uw - g,

azaz
y® —3uv -y — (v +v°) =0,

és ez mindig igaz, ha y = u + v. Annak érdekében, hogy az el6z6 sorban szerepl6
egyenletet kapcsolatba hozzuk az y3 + py + g = 0 egyenlettel, kovetkezd 1épésként
olyan u, v-t keresiink, melyekre p = —3uwv és ¢ = —(u® + v3), azaz
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Az eléz6 (1) feltételbdl kovetkezik, hogy

3) wo=—-(2)

3
de ez a kovetkeztetés nem fordithaté meg: w? = — (g) -bél w = — (%’) nem kovet-

kezik, mert harom (kiilonb6z6) komplex szdm is van, melyek kébe —(§>3 (hiszen
— <§>—et a harmadik egységgyokokkel szorozva mindharom szam kobe — (%’) ’ lesz).
Ezt fejben tartva, keressiink olyan u, v-t, melyre (2) és (3) teljesiil. Lathatjuk, hogy
u? és v3 Osszegére és szorzatdra vonatkozé elSirdsokat kell kielégiteniink, ezért a
mésodfoki egyenletekre vonatkozé Viete-formuldk (azaz a 6.23 Tétel) alapjan u® és
v3 gyokei a kovetkezé masodfoki egyenletnek:

2 o E)g_o
27+ qz <3 .

Ennek megoldésai:

Tehat:

Ebbol v+ v-re 9 db lehetdség is adédhat, mert a komplex kobgyokvonas eredményei
altalaban 3-elemi halmazok. Ugyanakkor a 6.21 Kovetkezmény alapjan harmad-
foku egyenletiinknek (legfeljebb) 3 darab gyoke lehet. A hamis-gy6kok megjelenését
az okozza, hogy az (1) — (3) kovetkeztetés nem fordithaté meg (azaz, amint azt
atgondoltuk, (3)-bdl nem kovetkezik (1)). Tudjuk azonban, hogy w-nak és v-nek
nemcsak a fenti (3) feltételt, hanem az ennél erésebb (1) feltételt is teljesitenie kell,

azaz teljesiilnie kell uv = —£-nak is.
Vélasszuk u értékét a (4)-bol ad6dé 3 lehetdség koziil tetszolegesen; u # 0, mert
(1) alapjan u = 0-bdl p = 0 kévetkezne. Legyen v’ = —£- ekkor u - v' = —% és
N3 — _£3__(2)3.i_ 3
WP=(-Lp=-(2) S=v

tehat u,v'-re igaz, hogy u + v’ gyoke y* + py + g-nak.
Legyen € a 120°-hoz tartozé harmadik egységgyok, ekkor a lehetséges értékek
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u-ra: ug, Ug-€ 6s ug -2, ezekbdl meghatarozhaték v megfelel$ értékei ug-hoz, ug - e-
hoz és ug - €2-hez. Ott tartunk tehat, hogy harmadfoki egyenletiinkhoz taldltunk 3
gyokot, de azt még nem tudjuk, hogy megtalaltuk-e az 6sszes gyokot (hiszen elvileg
elképzelheto lenne, hogy a fenti médszerrel megtalalt 3 gyokiink koziil néhény akkor
is egyenld lenne egymassal, ha a harmadfoki egyenletiinknek 3 kiilonboz6 gyoke
van). Szerencsére nem ez a helyzet, a fenti mddszerrel el6 tudjuk dllitani harmadfoki
egyenletiink Osszes gyokét. Ezt tigy lehetne ellendrizni, hogy az

(x — (ug +vo))(x — (u1 + v1))(x — (ug + v2))

polinomban felbontva a zdréjeleket (elvégezve a szorzéasokat), éppen y> + py + ¢
adddna, ami mutatnd, hogy a fenti médon minden gyokot megkaptunk (ezt a hossza-
dalmas szdmolast elhagyjuk, vizsgan sem kell tudni).

Osszefoglalva, azt kaptuk, hogy 4 + py + ¢ = 0 megolddsa a kovetkezé. Ha
p =0, akkor y = /—q. Ha p # 0, akkor y = u + v, ahol

és v = —£; ezeket nevezik Cardano-képleteknek. O]

A harmadfoku egyenletek most ismeretett megoldasi modszerének nagyon érdekes
torténete van, eldadason meséltem réla. Javaslom, hogy nézz utana a ,harmad-
foku egyenlet”, ,, Gerolamo Cardano” és ,,Niccolo Tartaglia” Wikipewdia-oldalainak
(Cardano személyét ne keverd 6ssze a Cardano elnevezésii kriptovalutéval). Ugyan-
csak elmeséltem, hogy R, illetve C felett a negyedfoku egyenletek megoldhatok tgy,
hogy minden (R, illetve C feletti) negyedfokid polinom két mésodfoku szorzatdra
bomlik. Kézelebbrdl, az egyik masodfoki tényezo egytitthatdit igyesen vélasztva, a
masik masodfoki tényezo hatarozatlan egytitthatoira harmadfoku feltételek adédnak,
melyeket a Cardano-képletekkel meg lehet hatarozni. Meséltem arrdl is, hogy a leg-
alabb otodfoku egyenleteknek nincs szokasos megolddképlete, egész egyszertien azért,
mert (az 5.1 alfejezet elején, a raciondlis szamok utdn bevezetett terminolégiaval)
nem minden algebrai szam gyokkifejezés: pl. az

2 —4x — 2

polinom gydkei algebrai szdmok (hiszen minden raciondlis egyiitthatds polinom min-
den gyoke algebrai), de meg lehet mutatni, hogy az el6z6 polinom egyetlen gyoke sem
gyokkifejezés, ezért e gyokoket egész egyszertien nem tudjuk megnevezni racionélis
szamok, az alapmiveletek, és gyokvonasok segitségével - emiatt megolddképlet sem
létezhet. Roviden meséltem még Galois-rél, Abel-rél, és arrdl, hogy bizonyos szer-
kesztési feladatok (kockakett6zés, szogharmadolds) miért nem oldhaték meg.

A harmadfoku egyenletek megoldasanak els6 1épése az volt, hogy polinomunkbdl
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kikiiszoboltiik a masodfoku tagot, azaz y° + py+q alakira hoztuk tigy, hogy alkalma-
san valasztott u paraméterrel atrendeztilk x — u hatvanyai szerint. Alfejezetiinket
azzal zarjuk, hogy ez mindig megtehetd.

6.26. Tétel (Polinomok (x—c) szerinti felirasa). Legyen R kommutativ, eqységelemes
gytri, f € Rlz|, c € R. Ekkor f felirhaté (x — ¢) hatvdnyai szerint:

f=bux—0)"+byq(z—c)" P4+ bi(z— )+ b

Bizonyitds. Teljes indukcié deg( f)-re.
Alaplépés: deg(f) = 0.

f=a=0-(z—c)+ag (azaz by = ay)

megfelelo atrendezés.
Indukcids 1épés: Osszuk el f-et maradékosan (z — c¢)-vel:

f=(x—c)g+d, deg(g) <deg(f).
Az indukcios feltevés szerint g felirhaté igy:
g=by(x — )" T+ by1(z =)+ + by
Ebbél
f=@—=0buz—c)" "+ +b]+d=by(x—c)"+ -+ bi(x—c)+bo.

ahol by = d. O
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6.6. Szimmetrikus Polinomok

Ebben az alfejezetben olyan polinomokkal fogunk foglalkozni, melyekben tobb
véltozé (hatdrozatlan) is szerepelhet. A tobbhatérozatlani polinomok gytir{iinek
rekurziv definicigjaval kezdiink.

6.27. Definicié. Legyenek x4, ...x, hatdrozatlanok. Az R[x1] egyhatdrozatlani poli-
nomgytrit definidltuk mdr a 6.1 Definiciéban. Ha az (n — 1)-hatdrozatlani

R[Z‘l, NP ,.In_l]
polinomgydrit definidaltuk mdr, akkor legyen
Rlxy, ...z, = Rlzy,..., 20 1][z0)

Az el6z6 definicidban szamit a véaltozok sorrendje: pl. R[x][y] és Rly|[x] formalisan
nézve kiilénbozé gytirik (az elsében y-nak olyan polinomjai vannak, melyekben az
egyiitthatok x polinomjai, a masodikban pedig x olyan polinomjai vannak, me-
lyekben az egyiitthaték y polinomjai). Noha ezek a gytirik szigoru értelemben
kiilonboznek, annyira természetes médon izomorfak, hogy azonositani fogjuk éket,
és ugy szamolunk benniik, hogy az x és y hatarozatlanok ,egyenrangiak”, fiigget-
leniil attdl, hogy az R alapgytirtit a hatarozatlanok milyen sorrendjében bovitettiik
sokhatarozatlanu polinomgytriivé. Példaul, a kéthatarozatlani

4y 4 7€ Rz, y]

polinom tekinthetd az (y?)z? + (y*)x + 7 € R[y|[z] polinomnak, de tekinthetd az
(z2+2)y*+7 € R[z][y] polinomnak is. Ez a nagyvonalisdg a gyakorlatban semmilyen
problémat nem fog okozni.

6.28. Definicié. Egy f(x1,...,x,) polinom szimmetrikus, ha barmely két viltozdjdt
feleserélve a polinom nem vdltozik.

6.29. Példa. f(z,y) = 2% +y? — 3(x® + y*)7 szimmetrikus.

A 2025 6szi kurzus 11. adag hézi feladataiban a 7. feladat szerint minden

permutacié el6éllithat6 transzpozicidk kompozicidjaként. Ezért az f € R[zq, ..., x,]
polinom akkor és csak akkor szimmetrikus, ha az {1,2,...,n} halmaz tetsz6leges 7
permutacidjara

f(xb o 7xn) = f<$w(1)7 R 7x7r(n)>-
6.30. Definicié (Elemi szimmetrikus polinomok).

01 =21+ Xog+ -+ Tp; (?) =n db dsszeadando

n . ,

Oy = T1XTo + X1x3+ -+ + Tp_1Tp; (2> db osszeadando

n . ,

Op = T1X2 " Ty ( > =1 db osszeadando.
n
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Altaldban: oyt igy kapjuk, hogy vesszik az {xi,...,x,} halmaz dsszes k-elemd
részhalmazdt, e k-elemi részhalmazok elemeit dsszeszorozzuk, és az dsszes ilyen (k-
tényezds) szorzatot dsszeadjuk.

6.31. Példa. zyzox3 + 71 + 2 + x3 szimmetrikus, de nem elemi (hiszen elemi
szimmetrikus polinomokban minden dsszeadandd ugyanannyi-tényezds szorzat).

Kovetkez6 célunk a Szimmetrikus Polinomok Alaptételének (6.37 Tétel) iga-
zolasa, mely durvan szélva tgy foglalhaté ossze, hogy minden szimmetrikus polinom
eléallithatoé (rdadasul pontosan 1 mddon allithaté eld) elemi szimmetrikus polinomok
polinomjaként. E tétel igazolasahoz tovabbi elokésziiletekre lesz sziikséglink.

Lexikografikus rendezés

6.32. Definicié. Legyen (A, <) rendezett halmaz, I ={1,...,n} véges halmaz. Ek-
kor I lexikografikus hatvanya az a rendezés, melynek

e alaphalmaza
AT = {A elemeibdl alkotott, I-vel indexelt sorozatok};
e rendezése: ha s #t, s;=1t; mindeni=1,...,d — 1-re és sq < tgq, akkor s < t.

A lexikografikus rendezés tehat olyan, mint a szigoru névsor szerinti rendezés:
s-ben és t-ben megkeressiik az els6 eltérést (az el6z6 definicidban ez a d. poziciénal
van), és s pontosan akkor elézi meg t-t, ha az elsé eltérés poziciéjanél s-ben kisebb
érték van, mint ¢-ben.

6.33. Tétel. Ha (A, <) jolrendezett és I véges, akkor a lexikografikus hatvdny is
jolrendezett.

Bizonyitds. Ezt a tételt nem bizonyitottuk, ebben a kurzusban semmit nem kell
tudni ennek a bizonyitdsarél. Annyit hadartam el, hogy ha a lexikografikus hatvany
nem lenne jolrendezett, akkor lenne benne végtelen leszall lanc. E lanc parjait
szinezziik meg [ szinnel aszerint, hogy melyik pozicioban térnek el. Ramsey tétele
szerint kapnank a végtelen leszalld lancunkban egy olyan végtelen részsorozatot,
melyben az egymast koveté elemek mindig ugyanabban a poziciéban (mondjuk
az i. poziciéban) térnének el, ezért az el6bbi részsorozatban szereplé sorozatok
1. koordinatai A-ban is adnanak egy végtelen leszallo lancot, ami ellentmondana A
jolrendezettségének. O

6.34. Definicié. Tébbhatarozatlani polinomjainkat a kitevdik szerint lexikografiku-
san rendezzik. f € Rlxq,...,x,] f6tagja L(f) az a tag, amelynek kitevé-sorozata
lexikografikusan a legnagyobb.
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6.35. Tétel (Szorzat fétagja). Ha f,g € R[xy,..., x|, akkor L(f-g) = L(f)- L(g).
Bizonyitds. Legyen

L(f) = axill coexdn és L(g) = bt aln.
Ekkor egyrészt L(f)- L(g) kitev6-sorozata (dy +e1, ..., d, +e,). Masrészt, vegyiik f
és g két tetszoleges tagjat, az f-bél valasztott tag kitevé-sorozata legyen (d, ..., d))

és a g-bol vélasztott tag kitevé-sorozata legyen (e, ..., el ). Ha kiszemelt tagjain-

rn

kat Gsszeszorozzuk, szorzatuk kitevé-sorozata (dy + €,...,d, + €}) lesz, és ez lexi-
kografikusan kisebb (d; + ey, ..., d, + e,)-nél, hiszen a fétag definicidja értelmében
(dy,...,d)) lexikografikusan kisebb, vagy egyenld (di, ..., d,)-nél és (¢}, ..., e,) lexi-
kografikusan kisebb, vagy egyenlé (e, ..., e,)-nél. Emiatt fg fétagjanak kitevé-so-
rozata L(fg) = (dy +e1,...,d, + e,), ahogy allitottuk. O

6.36. Példa (Elemi szimmetrikus polinomok f6tagjai).
L(oy) = L(zy + -+ x,) = 215

L(O'Q) = L(.Z‘ll’z + -+ xn—lxn) = (l’lxg) = X1X9;

L(o,) = L(xy- xp) =21+ Xy

Szimmetrikus polinomok eléallitasa

6.37. Tétel (Szimmetrikus Polinomok Alaptétele). Ha f € R[zy,...,x,) szimmet-
rikus polinom, akkor g € Rlyy, ..., yn]:
flzy,...,z,) = glor,...,00).

Bizonyitds. Bizonyitasunk egyuttal médszert is ad g eléallitasara. Tegyiik fel, hogy
L(f) =ra"ay? -2, Mivel f szimmetrikus polinom, ezért valtozéit tetszélegesen
permutalva nem véltozik meg. Emiatt az {1, ...n} halmaz minden 7 permutécidjara
igaz, hogy f-ben van olyan tag, melynek kitevé-rendszere (m(mq), 7(ms),. ..., 7(my,)).
Ezek a permutalt kitevorendszerek lexikografikusan mind kisebbek, vagy egyenléek
f fotagjanak kitevo-rendszerénél, ami azt jelenti, hogy az mq, ms...m, szidmokra
teljesiil, hogy

(x) My >mg > > Mpg > My,

Viélasszuk a ki, ..., k, € N szamokat ugy, hogy:
k1+l€2+"'+kn:m1;
kot oo+ ko = ma;

kn—l + kn = Mn-1;

k, = m,.
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llyen ki, ..., ky,-et az eléz6 egyenleteken alulrdl felfele haladva (x) miatt valéban

tudunk vélasztani. Tekintsitk most a gy = r - %1252 .. - z¥ polinomot. Ekkor:

L(gl(017 s 7Un)) =T xT1$312 o len = L(f)
fgy tehat fi = f — g1(01,...,0,) egy olyan szimmetrikus polinom, melynek fétagja
lexikografikusan kisebb, mint f fétagja. Ezt az eljarast ismételgetve a fotag kitevo-
sorozata lexikografikusan csokken, ezért a lexikografikus hatvany jolrendezettsége
(6.33 Tétel) miatt véges sok 1épésben befejezddik és megkapjuk g-t.

Egyértelmiiség. Ellentmondast keresve tegyiik fel, hogy ¢1,92 € Rly1,...,Unl,

g1 # g2 de
g1(o1, ..., 00) = go(o1, ..., 00).

Ekkor

(a) (91_92)(017"'a0n) :Oa de

(b) 91— 92 # 0.
Ezért (b) miatt L(g1—g2) # 0. A 6.18 Tétel szerint a behelyettesités homomorfizmus,
ezért (L(g1 — g2)) (01, ..., 0,) # 0, amib6l viszont (g1 — g2) (071, ..., 0,,) # 0 kévetkezik,
ellentmondva (a)-nak, és ezzel készen vagyunk. O

A szimmetrikus polinomok vizsgalataval meglep6 Osszefliggéseket taldlhatunk a
gyokkifejezések kozott. Egy ilyet (a kivancsisdg felkeltése érdekében) bizonyitas
nélkiil kozliink:

6.38. Példa. A = B, ahol

A=V5+122+2V5
B:\/11+2@+\/16—2\/2_9+2\/55—10\/2_9.

és
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6.7. Oszthatésag polinomgytiriikkben

Ebben az alfejezetben szisztematikusan megvizsgaljuk a polinomgytirik oszt-
hatosagi relacidit. Egy rovid emlékeztetovel kezdiink.

Emlékezteto

Legyen R tetsz6leges gyfiri (nem feltétlentil polinomgytirii), és legyen ¢ € R olyan
gytiriielem, amely 0-tél és R egységeitdl is kiilonbozik. A 3.30 Definicié szerint

e cprim, hac|ab=c|avagy c|bés

e ¢ felbonthatatlan (irreducibilis), ha ¢ = ab = a egység vagy b egység.

Tovabba, ha R kommutativ, egységelemes, nullosztémentes gytirti, akkor a 6.5
Tétel szerint R[z| is kommutativ, egységelemes, nullosztémentes gytirii. Ezért a
2.12 Tétel alkalmazhaté R[z|-re, és azt kapjuk, hogy az R|x]-beli oszthatdsag is
reflexiv, ,majdnem antiszimmetrikus”, tranzitiv relacié, mely megorzodik linearis
kombinaciéra, azaz igazak az alabbiak:

1. Vf € Rla]: | f;

2. Vf,g € R[x]: (flg, gl f) e 3er, ez egységek: f =eig, g = eaf;

3.Vf.g.h€R[z]: (f|g, g|h)=f|hés

4. Yf,g,hyu,v € R[z]: (f | g, f|h)= [ (ug+vh).

Egységek polinomgytriiben

6.39. Tétel. Legyen R kommutativ, eqységelemes, nullosztomentes gytrd. Ekkor:
f € R[z] egység R|x]-ben < f € R és [ egység R-ben.

Bizonyitds. (=) Tegyiik fel, hogy g € R|x] egység, azaz Yh € R[z] : g | h. Emiatt
(mivel 1 € R[z]), g | 1. Speciélisan deg(g) = 0, azaz g € R. Tovébbd, 1 egység
R-ben ezért 1 osztdja R Osszes elemének. Tehat az R-beli oszthatosag tranzitivitasa
miatt ¢ is osztdja R minden elemének, vagyis g egység R-ben.

(<) Tegyiik fel, hogy g € R egység R-ben. Ekkor g | 1 R-ben és — mivel 1 egység
Rx]-ben is, ezért — minden h € Rlz] : 1| h. Ezért (most az R[x]-beli) oszthatésag
tranzitivitdsa miatt g osztéja R[z]| Osszes elemének, vagyis g egység R[x]-ben. [

Kituntetett kozos oszto
6.40. Definicié. Legyen f,g € Rlx|, h € R[z| kitintetett kézos osztdja f-nek és
g-nek, ha:

1. h| féshlg;
2.¥reRlx|:r|fésr|g=r]|h.
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6.41. Tétel. Legyen R kommutativ, egységelemes, nullosztomentes gyiri, f,q €
Rlz|. Fkkor f és g kitiintetett kozds osztdja egységszeres erejéig egyértelm.

Bizonyitds. Tegyiik fel, hogy hy, hey kitiintetett kozos osztéi f-nek és g-nek. Ekkor
hy | he és hy | hy, vagyis hy és he kolcsondsen osztjdk egymdst, emiatt (az el6z6
Emlékeztetd 2. pontja szerint) egymas egységszeresei. O

Test feletti polinomok

6.42. Tétel. Ha K test, f,g € K[z] (f # 0 vagy g # 0), akkor egységszeres erejéig
egyértelmiien létezik [ és g legnagyobb kozds osztoja (jelolés: (f,g)).

Bizonyitds. Egyértelmuiség: A 6.41 Tétel szerint ez nemcsak testekben, hanem
kommutativ, egységelemes, nullosztomentes gytirtikben is igaz.

Létezés: A 6.9 Tétel miatt testekben minden (nemnulla) polinommal lehet
maradékosan osztani. K [z]-ben a maradékos osztés elvégzésekor a maradék-polinom
foka szigorian kisebb, mint az o0szt6 polinom foka. Ezért (N jolrendezettsége miatt)
K[z]-ben az euklideszi algoritmus véges sok lépésben befejezédik. Ugyanigy, ahogy
azt a 3.13 Tétel bizonyitasaban lattuk, az euklideszi algoritmus soran képzodé utolsd
nem nulla maradék kitiintetett kozos oszto. O

6.43. Megjegyzés. A fokszdmok dsszevetésébdl azonnal adédik, hogy (mindegyik)
kitlintetett kozos osztéd egyben maximélis fokd kozos osztd. Ezért néha polinom-
gytirtik esetében is hasznéljuk a legnagyobb kozos oszté kifejezést (amin legnagyobb
foki kozos osztdt értiink).

Tovabba, a Z-re megismert kiterjesztett euklideszi algoritmus és a ra vonatkozo
tétel (3.14 Tétel) — sz6 szerint megismételheté bizonyitdssal — érvényben marad
K|z]-re is:

Vf,g € Klz] ((f.g) #0) Ju,v € K[z] : (f,9) = uf +vg.

Felbonthatatlan és prim polinomok

6.44. Tétel. Legyen K test, f € K[z felbonthatatlan (irreducibilis) <= f prim.

Bizonyitds. <: Tegyiik fel, hogy f prim, és f = g - h. Azt kell belatnunk, hogy
g vagy h valamelyik egység K[z|-ben. Specidlisan, f # 0, ezért g # 0 és h # 0.
Egyrészt, mivel f prim, ezért f | g vagy f | h; mondjuk f | g (az f | h eset teljesen
szimmetrikusan kezelhetd).

Masrészt, a bizonyitds els6 mondata szerint g | f. Tehat f és g kolesonosen
osztjak egymast, emiatt egymads egységszeresei; specidlisan, a 6.39 Tétel miatt deg(f) =
deg(g). Mivel f = g-h, ez csak gy lehet, ha deg(h) = 0, azaz h € K. Mivel azonban
K test, ezért h egység K-ban, igy a 6.39 Tétel miatt K[x]-ben is.
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=:Tegyiik fel: f € K|x| felbonthatatlan és f | g - h. Most azt kell beldtnunk, hogy
flgvagy f|h. De(f,g)]|fezértIueKlz]: f=u-(f g). Mivel f felbonthatat-
lan, ezért u egység vagy (f,g) egység.

1. eset: u egység. Ekkor f és (f,g) egymads egységszeresei, ezért f | (f,g). Mivel
(f,9) | g, ezért az oszthatdsig tranzitivitdsa miatt f | g.

2. eset: (f,g) egység. Ekkor Jv,w € K[z]: (f,9)=1=v- f+w-g. Ezért

(x) h=1-h=@w-f+w-g)-h=v-f-h+w-g-h.

Az €el6z6 sor legvégén 1évé Gsszegben nyilvan f | (v - f - h). Tovédbba a bekezdés
elején feltettiik, hogy f | g+ h, ezért f | w-g-h. Tehdt f osztéja (x) jobboldalanak,
emiatt h-nak is. O

Szamelmélet alaptétele test feletti polinomokra

6.45. Tétel. Legyen K test. A szamelmélet alaptétele érvényes K|x]-re, azaz ha
feKlz|, f#0 és f nem egység, akkor:

1. Van felbonthatatlan gy, ...,gm € Klx]: f = g1 gm;

2. Ez a felbontas sorrendtol és eqységszorzoktol eltekintve egyértelm.

Bizonyitds. Indukcié n = deg(f)-re.

1. Alaplépés: n =1, azaz deg(f) = 1. Ebben az esetben f-et egy els6foku és egy
nulladfoku polinom szorzatara lehet csak felbontani. De minden ilyen felbontasban
a nulladfoku tényezo egység, mert K test. Ezért f irreducibilis, és onmagénak egy
1-tényezos felbontdsa. Tovabbéa az el6z6 gondolatmenet azt is adja, hogy f min-
den felbontasdban valamelyik tényezo egység, ezért a felbontas egység-szorzo erejéig
egyértelmii.

2. Indukciés 1épés: TFH: éllitasunk igaz minden n-nél kisebb, vagy egyenl6 foku
polinomra, és THF deg(f) =n + 1.

1. eset: f felbonthatatlan. Ekkor, az n = 1 esethez teljesen hasonldan, f
sajatmaganak egy 1-tényezoOs felbontésa, és ez egységszorzd erejéig egyértelmi is.
2. eset: f nem irreducibilis, azaz van g, h € K|x]:

f=g-h, deg(g), deg(h) < deg(f).

Az indukciés feltevés miatt g és h felbonthato: vannak g¢1,... Gy, Guit, - - - Guio i0-
reducibilis polinomok, melyekre:

g=g1°Gu €S
h = Gu+1 " Gutv-
De ekkor

f:g'h:gl"'gu'gqul"'gquv
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f egy felbontasa irreducibilis tényezokre. Ezzel a felbontéas 1étezését belattuk. Kell
még (2), azaz az egyértelmiség. TFH f = g1---g, = hy - - - hy, az f két felbontdsa ir-
reducibilis tényez0k szorzatdra. Kell: p = m és Vi 37 : g; és h; egymds egységszeresei.
Vildgos, hogy g1 | hi -+ hy. Mivel gp irreducibilis, ezért a 6.44 Tétel miatt prim
is. Emiatt valamelyik k-ra g | hx. De hy irreducibilis, ezért g, és hy egymaés
egységszeresei. Osszunk g;-el:

Go Gn="h1--hj_1-e-hj1- P,

ahol e valamelyik egység, és a két oldalon &ll6 polinom(ok) kozos foka kisebb, mint
deg(f). Ezért az indukcios feltevés miatt ez a felbontas sorrendtol és egységszorzéktol
eltekintve egyértelmii. Ezért ugyanez f felbontdsaira is igaz. n

6.46. Tétel. Legyen K test.
1. Ha f € Klz|, deg(f) = 1, akkor f irreducibilis;
2. Ha f € K[x], deg(f) = 2 vagy deg(f) = 3, akkor (f irreducibilis <= nincs
gyoke K[x] — ben).

Bizonyitds. (1) Bizonyitasat lényegében elvégeztitk mar a 6.45 Tétel bizonyitdasdnak
alaplépésében: THF f € K|x], deg(f) = 1 és TFH: f = g - h. Azt kell belatnunk,
hogy g egység vagy h egység. Mivel deg(f) = deg(g)+deg(h) = 1, ezért a fokszdmok
Osszevetésébdl: deg(g) = 0 vagy deg(h) = 0 = valamelyik 0-t4l kiilonboz6 testelem
K[x]-ben, de K test = g vagy h egység.

(2) =: TFH f € Klz], 2 < deg(f) < 3, és f(c) =0, c € K. Ekkor a 6.20 Tétel
szerint f oszthaté z—c-vel, vagyis 3h : f = (x—c)-h, ekkor deg(h) = deg(f)—1 > 1.
Ezért (x — ¢) nem egység és h nem egység, vagyis f nem irreducibilis. Mellesleg
itt deg(f)-re a fels6 korlatot nem is hasznéltuk: azt kaptuk, hogy ha egy legaldbb
masodfoki polinomnak van gyoke K-ban, akkor a polinom nem irreducibilis K felett.

<: TFH: 2 < deg(f) < 3, f-nek nincs gyoke. TFH: f felbonthatd, azaz vannak
olyan (nullatdl és) egységektol kiilonbozé g, h € Klz|, melyekre f = g - h. Ekkor
g és h fokaira kizérdlag a kovetkez6 lehetdségek adédnak: deg(g) = 1, deg(h) = 2,
vagy forditva. Ha pl. g az els6foki, mondjuk g = ax + b, akkor kénnyen adédik,
hogy g-nek van gyoke K-ban: ax +b =0 &z = —%; emiatt f-nek is van gycke
K-ban. O

Az el6z6 tétel 3-nédl nagyobbfoki polinomokra nem marad érvényben: pl. a
negyedfoki ((z%+1)? (R feletti) polinomnak nincs gyoke R-ben, de mégsem irredu-
cubilis.

6.8. Formalis derivaltak és tobbszoros gyokok
6.47. Definicié (Tobbszoros gyok). f € K|x]-nek ¢ € K n-szeres gyoke, ha
(z—o)" | f,

vagyis [ kanonikus alakjiban (x — c) kitevdje legaldbb n.
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6.48. Definicié. Legyen R kommutativ gyiiri, a € R, n € N. Ekkorna = a+---+a
(n-szer).

Hangsulyozzuk, hogy n nem feltétlendil gyiribeli szam, ezért n - a nem feltétlenil a
gytribeli szorzas.

Formalis derivalt

6.49. Definicié. Legyen R kommutativ, eqységelemes gyiiri. Ha
f=a, 2" +a, 12" '+ -+ a2+ ap € Rlz],
akkor f formadlis derivdltja:
f =na,a" '+ (n—1Da,_ 12" 2+ 4 2a00 + a;.

6.50. Példa. Legyen f(x) = 22° + 222,
o Ha f € Clx] akkor [’ a szokdsos: [’ = 62* + 4x.
e Ha f € Zs|z] akkor f' = 02* + 2 =z (mert 6 =0 (mod 3)).

A formalis derivaltrél megjegyezziik még a kovetkezoket. A fenti értelemben csak
polinomoknak definidltuk a formalis derivaltjat, masfajta fliggvényeknek nem. Itt a
,formalis” jelz6 arra utal, hogy a definiciéhoz csak olyan eszkozoket hasznaltunk, me-
lyek minden gytiriben rendelkezésre allnak; nem hasznaltunk semmilyen tavolsag-
fogalmat, nem emlitettiink kiilonbségi hanyadosokat, mégkevésbé ezek hatarértékeit
(mert egy absztrakt gytiriiben legaldbbis nem vildgos, hogy hogyan kéne a hatérétrék
fogalmat értreni, ha nincs beépitve, nincs - a gytrtimiveletek mellett — kiillon meg-
adva valamilyen tavolsdg-fogalom). Definiciénkat az motivalja, hogy a valds test
feletti polinomok esetében az imént definidlt formalis derivalt egybeesik a poli-
nomfiiggvények, mint valds-valds fiiggvények szokasos derivaltfiiggvényeivel. Ugyan-
akkor vannak olyan derivalhaté valds-valds fiiggvények, melyek nem polinom-fiigg-
vények, ebbdl a szempontbdl a mi definiciénk kevéshé altalanos. Viszont a formélis
derivéltakat nem csak R feletti polinomok esetében vizsgalhatjuk, hanem tetszéleges
(kommutativ, egységelemes) gytiriik felett, ilyen értelemben a formélis derivalt al-
talanosabb, mint a bevezeté analizis derivalt-fogalma. Valés polinomok esetében
régdta ismertek kiillonbozo osszefiiggések polinomok tobbszoros gyokei és derivaltjaik
gyokei kozott. Alabb ezekbdl az Osszefiiggésekbdl mutatunk be néhanyat, melyek
tetszéleges (kommutativ) test felett érvényben maradnak. Végig tisztan algebrai
keretek kozott maradunk; kovetkezd célunk vizsgdlataink technikai el6készitése (az-
zal, hogy a szokasos derivaltakra vonatkozd néhany szamolasi szabalyra algebrai -
emiatt minden kommutativ test felett érvényes - bizonyitdst adunk).

6.51. Tétel (Derivéldsi szabélyok). Legyen K test, f,g € K|x], c € K. Ekkor:
1. (¢)) =0;
2. (cf) = c(f');
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3. (f+g9)=[f+4;
4. (f9) = f'a+ 14>
5 ((x —c)™) =m(x —c)™ L

Bizonyitds. (1): c=c-2°= (¢)=0-c-z7!' =0.

(2) egyszerii szamolassal addédik:

n / n n
= <Z cakxk> = Z keapah—t = CZ kagz"™ = c(f").
k=0 k=1 k=1

(3) igazolasdhoz legyen f = ag + a1z + -+ + ana™, g = by + byx + -+ - + ba™ és
legyen N = max(n, m). Ezekre

N
f—l—g (Z ap + bk ) Zk ak+bk Z ka 33k 1+Z kbkl’ f’—i—g’.

(4) igazolasahoz legyenck

A két polinom szorzata:

n m ! n m
= (Z Z aibjl‘i—i_j) = Z(l + j)aibjm”j_l.

i=0 j=0

Szamitsuk ki a jobb oldal tagjait kiilon-kiilon.

A derivaltak: . .
f = Ziaimifl, g = Zjbjxjfl.
i=1 j=1

Ezért (4) jobboldaldnak els6 dsszeadanddja

f g = (i 1a;T ) <Zb l']) = iilalb]l'z—i_j_l
i=1 j=0

=1
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és hasonldéan, masodik 0sszeadanddja:

o= () (S ) -

i=0 j=1

3

m
E j(liijEH—]_l.

=0 j=1
E két tag Osszege (azaz (4) jobboldala):
f, g + f . g, = Z Z iaibjxiﬂ_l + Z Zjaibjx”j_l

i=1 j=0 i=0 j=1
m

i=0 j=0

Ezek alapjan (4) baloldala és jobboldala megegyezik, és ezzel (4) bizonyitdsaval
készen vagyunk. (5)-hoz elészoris vegyiik észre, hogy

o ()t i w100

k —
k=0
B - n—1 k—1 n—k
=n (k . 1>x ‘
k=0
k=0

Tobbszoros gyokok és gyokteszt

6.52. Tétel. Legyen f € K[z|, c€ K, k € N, k > 2. Ekkor ekvivalensek:
1. ¢ f-nek k-szoros gyoke;
2. ¢ f-nek és f'-nek (k — 1)-szeres gyoke.

Bizonyitas. (1) = (2): TFH ¢ f-nek k-szoros gyoke. Ekkor Jg € Klz] : f =
(z — ¢)*g. Ezért

fr=klz =0 lg+ (z = 0)f¢ = (x - ) (kg + (z — )g),
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ez mutatja: ¢ f’-nek (k — 1)-szeres gyoke (nyilvan f-nek is).

(2) = (1): TFH ¢ f-nek és f'-nek (k — 1)-szeres gyoke. Specidlisan, g € K|z] :
f = (x —c)*1g. Mindkét oldalt derivalva:

(+) f=k-D@-0g+@-) .

Tovabba, (2) szerint ¢ f'-nek (k — 1)-szeres gyoke, ezt (x) jobboldalaval Gsszevetve
(x —¢) | g. De ekkor (z — c)* | f, vagyis ¢ f-nek k-szoros gyoke. O

6.53. Megjegyzés. 1. Gyokkeresésnél érdemes redukalni a fokszamot (mert leg-
feljebb 4-edfoki polinomokra van megolddéképlet).
2. Az (f—J;,) polinom gyokei egyszeresek, azonosak f gyokeivel, ez hasznos fokszam-
redukcio lehet.

3. A gyokok pontos elallitasa helyett prébalkozhatunk kozelité modszerekkel.
6.54. Tétel (Rolle-féle gyokteszt). Ha f € Z[z], f = ap+ax+---+ap,2", p,q € Z

relativ primek, és f § =0, akkor q | a, ésp | ag.

Szavakban: ha egy egész egyiitthatos polinomnak a tovabb mdr nem egyszerisitheto
§ raciondlis szam gyoke, akkor a p szamldlo osztoja a polinom konstans tagjanak, és

a q nevezd osztoja a foeggyiithatonak.

A tétel segitségével meg tudjuk keresni egy egész egyiitthos polinom 0Osszes raci-
onalis gyokeit: soroljuk fel a féegyiitthato és a konstans tag osztéinak hanyadosait,
igy véges sok raciondlis szamot kapunk. Ezeket egyenként kiprobalva (visszahe-
lyettesitve) megtaldlhatjuk polinomunk 6Gsszes raciondlis gyokét. A féegyiitthatd
és a konstans tag osztoinak hanyadosaibdl allé lista tartalmazhat olyan raciondlis
szdmokat is, melyek nem gyokei a polinomunknak (ennek igy kell lennie, ha a
féegytitthaténak, vagy a konstans tagnak sok osztéja van a polinom fokahoz képest).
De a megvizsgalandé racionalis szamok halmaza véges, ez elméleti szempontbol
azért érdekes, mert a racionalis szamok végtelen halmazat le tudtuk sziikiteni egy
véges halmazra, mely minden racionalis gyokot tartalmaz. Ennek az a gyakorlati
jelentésége, hogy a raciondlis gyokok megkeresésére javasolt mddszeriink véges sok
lépésben befejezddik.

Bizonyitds. f <§> = 0 miatt

ao—i-alg—l—”-—i-anp—nzo.
q q

Szorozzuk be mindkét oldalt ¢™-el:
q"ao+q"tap + -+ anp” = 0.

Mivel a jobboldali 0 oszthatd p-vel és g-val is, ezért a baloldal is oszthato p-vel és
g-val. Mivel q | ¢"ap + ¢" ta1p + -+ + an_1p" " 'q, ezért q | a,p”. De (¢,p") = 1,
emiatt q | a,.

Hasonldan, p | ¢"ag, amibdl p | ag adddik. O
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6.55. Példa (Polinomok gytiriitkben). Gyirikben nem feltétleniil igaz az egyértelmd
szorzatra bontds. Ennek illusztrdlasara mutatunk néhdny perverz példdt.

o Zs|z]-ben: 2 — 1= (z + 1)(z — 1) = (z + 3)(z — 3).

A 6.46 Tételben ldttuk, hogy testek felett minden elséfoki polinom irreducibilis.
Gylrik felett ez sem feltétlenul marad érvényben:

o Zg|x]-ben: v = (2x + 3)(3z + 2).
S6t Z-ben 6 nem irreducibilis: 6 = 2-3, bdr 6 Q-ban sem irreducibilis (Q-ban egység).

6.9. Irreducibilis polinomok C[z|-ben és R[z]-ben

Irreducibilis polinomok C[z]-ben

6.56. Tétel. [ € Clz] irreducibilis < deg(f) = 1.

Bizonyitds. <: C test ezért a 6.46 Tétel szerint C felett minden els6fokil polinom
irreducibilis.

=: TFH f € Clz] irreducibilis: ha deg(f) < 0 akkor f = 0 vagy f egység Clz|-ben,
ezért nem irreducibilis. Ha deg(f) > 2, akkor az algebra alaptétele miatt deg(f) db
gyoke van: ci, ..., caeg(f) € C, és a megfeleld gyoktényezk f-bdl kiemelhetOk:

f=an(z—ci)(x =) (T = Caeg(p):
Ezért f nem irreducibilis. Azt kaptuk, hogy ha f irreducibilis, akkor foka kizardlag
1 lehet. [

Irreducibilis polinomok R[z]-ben
6.57. Tétel. Ha f = > arz* € Rlz], c € C, f(c) =0, akkor f(¢) =0 (azaz, ha egy

valds egyiitthatos f polinomnak a ¢ komplex szam gyoke, akkor ¢ is gyoke f-nek).

Bizonyitds. Mivel f mindegyik a; egytlitthatéja valds, ezért minden k-ra ap = ay.
Ezt azzal kombindlva, hogy (az 5.9 Tétel szerint) a konjugdlds automorfizmus:

0=0=f(c) Zakck Za_kckzzakek:f(é)a

vagyis ¢ valéban gyoke f-nek. O

6.58. Tétel. Ha c € C, akkor (z — ¢)(x — ¢) valds egyiitthatds.
Bizonyitds.
(x—c)(x —¢) =2% — (c+e)x + ce = 2> — 2R(c)z + |c|*.

Mivel R(c) € R, |c|* € R, ezért készen vagyunk. O
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6.59. Tétel. Ha f € R[z|, deg(f) > 1, akkor van g1, ..., g, € Rlz], Vi :

e deg(g;) = 1 vagy
e deg(g;) = 2 és gi-nek nincs gydke Rlz|-ben.

Szavakban: R felett minden legaldabb elséfoki polinom olyan szorzattd bonthatd, mely-
ben minden tényezo vagy elséfoki, vagy olyan mdsodfoki, melynek nincs valds gyoke.

Bizonyitdas. Tudjuk, hogy f-nek annyi komplex gyoke van, mint a foka. Legyenek
ezek: dy,...,d, € R, B1,01,...,Bm,Bm € C\ R. Legyen ¢ az f féegyiitthatdja.
Ekkor:

f=clz—di)- (@ —da)(@— i) —P1) (¥ = Bn)(x = Brn)-

Minden j-re legyen g; = (z — 3;)(z — f3;). Ekkor deg(g;) = 2, a 6.58 Tétel miatt g;
valds egylitthatds, és (nyilvédn) nincs gyoke R-ben. O

6.60. Tétel. f € Rlz| ekvivalensek:
1. f irreducibilis R[z]-ben,
2. deg(f) =1 vagy (deg(f) = 2 és f-nek nincs valds gyoke R-ben).

Bizonyitds. (1) = (2): A 6.59 Tételben szerepld felbontasbdl:

f:p1~~.pnq1...qm_

Ezért, ha f irreducibilis, akkor 1 < deg(f) < 2. Ha deg(f) = 2, akkor a 6.46 Tétel
szerint nincs gyoke R-ben.

(2) = (1): R test, ezért (ismét a 6.46 Tétel szerint) R felett minden els6foki polinom
irreducibilis és ha deg(f) = 2 és f-nek nincs gyoke R-ben, akkor f irreducibilis. [

6.10. Irreducibilis polinomok Z[z]-ben és Q[z]-ben

6.61. Definicié (Primitiv polinom). f = a,2™ + -+ + a1 + ag € Z[z] primitiv,
ha LNKO(ag,a1,...,a,) = 1.

6.62. Megjegyzés. Ha [ irreducibilis, akkor primitiv, ugyanis ha ¢ (# £1) valddi
kézios osztdja lenne ay,. .., a,-nek, akkor f = ¢ %x’“ az [ egy olyan felbontdsa
lenne, melyben a jobboldal egyik tényezdje sem eqység (hiszen ¢ nem eqység Z-ben).

6.63. Példa. Z[z]-ben: 22 4+ 4 = 2(2* + 2).
Z[z]-ben ez olyan felbontds, melyben eqyik tényezd sem eqyséq (az ilyen felbontdsokat
roviden valddi felbontdsoknak, vagy nemtrivialis felbontdsoknakis nevezik).

6.64. Definicié (Redukcié modulo n). Legyen n € N, p,, : Z — Z,,

pn(2) = & (mod n),
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és legyen @, : Zlx] — Zn|x],

() = 3 e

Szavakban: tetszdleges f € Z[x]-re @, (f)-et dgy kapjuk, hogy f egyiitthatoit kilon-
kiilon (mod n) wvessziik.

6.65. Példa. Ha f = 32? — Tox +4 ésn = 3, akkor
o3(f) = 02% — 1z + 1.
6.66. Tétel. Elozo jelolésekkel, tetszdleges n > 1-re:
on 1 Llx] = Zy[x]  homomorfizmus.

Bizonyitds. Legyen f,g € Zlx], f = ara®, g = bpa”

Spn(erg):%On(Z(akerk ) > pnlax + by
—Z,un ag) + pn(bg))x —Zun ag)x +Zun (by)x

= Qpn(f) + ¢n(9).

Hasonléan,

6.67. Tétel. Ha f € Qlx], f #0, akkor 3r € Q*, g € Zlx]: f =r-g, g primitiv.
Ha f € Zlx], akkor r € Z.

Szavakban: minden nem-nulla raciondlis egyiitthatos f polinom elddllithato egqy r
pozitiv raciondlis szam és eqy g € Zlx| primitiv polinom szorzataként, az elddllitds
eqyértelmi, és ha f egész-eqyiitthatos, akkor r egész szdam.

Bizonyitds. Az otlet a kovetkezo: f-et felszorozzuk egytitthatéi nevezdinek legki-
sebb kozos tobbszorosével, majd ebbdl kiemeljiik az egyiitthatok legnagyobb kozos
osztojat —amit kapunk, primitiv polinom lesz. Részletesebben, legyen B az f egytitt-
hatéi nevezdinek legkisebb kozos tobbszorose, és legyen A az (egész-egyiitthatds)
B - f polinom egyiitthatéinak legnagyobb kozos osztdja. Végiil legyen r = % > 0.

Ezekkel:
B A B

/= B A

-B-f= —r—f

B
74



Vilagos, hogy A és B valasztasa miatt % f egész egyiitthatos polinom, sét primitiv
polinom (mert B- f egyiitthatdéinak legnagyobb kozos osztdja épp A volt). Tovabba,
ha f mar eredetileg is egész egytitthatds volt, akkor B = 1, és emiatt r € Z is teljestil.

Be kell még latnunk a felbontéas egyértelmtiségét. Ehhez TFH: f = rigy és f = 1290
az f két felbontdsa (ahol tehdt r,72 € Q1 és g1,92 € Z[x] primitiv polinomok).
Ezekbél

1 9
G=—f=—"0.
r1 1

Itt :—f egy pozitiv raciondlis szam, ezért vannak olyan a,b € N szamok, hogy :—f =7
és felteheto, hogy a jobboldali tort tovabb mar nem egyszertisithetd, azaz a és b

relativ primek. Tehét

a
(x) g1 = 592'

Mivel g egytitthatoi egész szamok, ezért §g, egyiitthatoi is egész szdmok, ami csak
ugy lehet, ha b (k6z6s) osztdja go mindegyik egyiitthatéjanak. De go primitiv poli-
nom, ezért egyiitthatéi legnagyobb kozos osztéja 1 és emiatt b = 1 (hiszen b > 0).
Ekkor viszont (x) miatt a kozos osztdja ¢; egylitthatdinak, amibdl g; primitivsége
miatt a = 1 kovetkezik. Ezek szerint a = b = 1, tehat (%) alapjan g; = go (és emiatt
ry = 7"2). L]

Gauss-lemma és irreducibilitas

6.68. Tétel (Gauss-lemma). Ha f,g € Z[z| primitiv polinomok, akkor f - g is
primativ.

Bizonyitds. Indirekt tegyiik fel, hogy f-g nem primitiv. Ekkor dp primszam: p osztja
f - g Osszes egylitthatéjat. Tekintsiik a 6.64 Definiciéban szerepld ¢, : Z[x] — Z,[z]
modulo p redukalé fliggvényt; ez a 6.66 Tétel miatt homomorfizmus.

Ekkor egyrészt p valasztdsa miatt ¢,(f - g) = 0. Mdasrészt viszont

(%) wlf - 9) = 0p(f) - u(9)-

Mivel f és g primitivek, ezért ¢,(f) # 0 és ¢,(g) # 0. Tovdbbd Z, test, tehdt
nullosztémentes, ezért (x) jobboldala nem lehet nulla. Ez ellentmond e bekezdés
els6 mondatanak. O

A Zz]-beli és Q|x]-beli irreducibilitas kozti kapcsolat
6.69. Tétel. Legyen f € Z|x] primitiv polinom. Ekkor:

f irreducibilis Z[z]-ben < f irreducibilis Q[x]-ben.
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Bizonyitds. Nyilvan elég azt belatni, hogy
f felbonthat6 Z[z]-ben < f felbonthaté Q[z]-ben.

=: Ha f felbonthaté Z[x]-ben, akkor ugyanez a felbontas mutatja, hogy felbonthaté
Q[z]-ben is.

«: Tegyiik fel, hogy f felbonthaté Q[z|-ben: Jgi1,92 € Qlz] : f = g1 - g2, ahol
0 < deg(g1),deg(g2) < deg(f). A 6.67 Tétel szerint g, és go eléallithaté primitiv
polinomok segitségével:

gi=r1-g;, re€Q, g€ Zz]primitiv,
Go="2-Gs, T2 € Qb g5 € Z[z] primitiv.

Ezekkel f = (ri7m2) - (gi¢3). De a Gauss-lemma (6.68 Tétel) miatt gjgs primitiv.
Mivel f = 1- f is primitiv, ezért a 6.67 Tétel (egyértelmiiségre vonatkozé része)
szerint rirg =1 és f = gf - g5; ez [ egy Z[x]-beli felbontdsat adja. O

Karakterizaciok

6.70. Tétel (Irreducibilis polinomok Z[z|-ben). Egy f € Z[x] polinom pontosan
akkor irreducibilis, ha:

1. deg(f) =0 és f primszam, vagy

2. deg(f) > 1, f primitiv és irreducibilis Q[x]-ben.

Bizonyitds. =
e Ha deg(f) =0, akkor f € Z. Ttt az irreducibilitds megegyezik a primséggel.
e Hadeg(f) > 1és f nem primitiv, akkor legyen c az f egyxiitthatéinak LN KO-
ja. Bzzel f =c-1f ahol ¢ > 1 és 1f primitiv, tehat f felbonthaté.
e Ha deg(f) > 1 és f primitiv, akkor az el6z6 tétel (6.69 Tétel alapjan f Q|x]-
ben is irreducibilis.
<: ha deg(f) = 0 (azaz f € Z) prim, akkor f Z[z]-ben is nullad fokuak szorza-
taként &ll eld, de ilyen nemtrividlis felbontds nem létezik. Végiil, ellentmondéast
keresve TFH f primitiv, deg(f) > 1 és irreducibilis Q[z]-ben, de f-nek Z[z]-ben van
nemtrivi felbontasa. Egy ilyen felbontds mindkét tényezdje legaldbb elsofoki, mert
f primitiv, de ekkor ez a Z[x]-beli felbontas egyuttal Q[z]|-beli nemtrivi felbontés is
lenne, ellentmondas. O

6.71. Tétel (Irreducibilis polinomok Q[z]-ben). Egy f € Qx| polinom pontosan
akkor irreducibilis, ha:

dg € Z[zx] primitiv, irreducibilis polinom és JIr € Q: f =r-g.

Bizonyitds. (=:) TFH f € Q[z] irreducibilis Q[z]-ben. A 6.67 Tétel szerint f
felirhaté f = r - g alakban, ahol r € Q és g € Z[x] primitiv. Mivel f irreducibilis
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Q[z]-ben, ezért g-nek is irreducibilisnek kell lennie Q[x]-ben (mert r egység Q-ban).
Ezért a 6.69 Tétel miatt ¢ irreducibilis Z[z]-ben is.

(«<:) TFH ¢ primitiv, irreducibilis Z[x]-ben és r € Q. Azt kell beldtnunk, hogy
f = r - g irreducibilis Q[z]-ben. A 6.69 Tétel miatt g irreduciblis Q[z]-ben is.
Tovébba r egység Q-ban, ezért f valdban irreducibilis Q[z]-ben. O

Szamelmélet alaptétele Z[z]-ben

6.72. Tétel. Z[x]-ben is igaz a szamelmélet alaptétele:
Ha f € Z[z], deg(f) > 1, akkor 3\ f = g1 - - - gr. € Z]x] irreducibilis faktorokra bontds.

Bizonyitds. Létezés. Az alapotlet a kovetkezo: elOszor bontsuk fel f-et egy egész
szam és egy primitiv polinom szorzatara, a primitiv tényezoét bontsuk irreduchilis
tényezokre Q felett, végiil gondoljuk meg, hogy ebbdl hogyan kapunk Z feletti fel-
bontést.

Részletesebben, a 6.67 Tétel szerint van olyan r € Q és f* € Z[x] primitiv poli-
nom, hogy f = r- f*. De f egész-egylitthatos, ezért a 6.67 Tétel szerint r is egész
Szam.

Mivel Q test, ezért (a 6.45 Tétel szerint) Q[x]-ben igaz a Szdmelmélet Alaptétele.
Tehat vannak Q[z]-ben irreducibilis hy, ..., hy € Q[z] polinomok, melyekre:

F=hyhy

A (6.67 Tétel szerint) minden hj-hez (j = 1,...,k) 3r; € Q, Jg; € Z[x] primitiv
polinom:

hj=1j-9;.
Mivel mindegyik h; irreducibils Q[z]-ben és r; egység Q-ban, ezért mindegyik g, is ir-
reducibils Q[z]-ben. De mindegyik g; primitiv is, ezért a 6.70 Tétel miatt mindegyik
g; irreducibilis Z[z]-ben is. De ekkor:

Fehiohe=(r-g) (rh-g) = (r1- 1) (g1 ge).

Tovabba, a Gauss-lemma (6.68 Tétel) szerint a g - - - gy szorzat egy primitiv poli-
nom. De f =r- f*is f egy primitivvé bontéasa, ezért a 6.67 Tétel egyértelmiiségre
vonatkozo része miatt r = ry-- -1 egy egész szam. Ezt Z-ben primek szorzatara
bonthatjuk:

Tk :pl...pé'
Ezekkel f felbontdsa Z[x]-ben:
f=p1-pe-gr- gk
ahol tehat
® pi,...,p; € Z primek (0-adfoku irreducibilis polinomok);

7



® g1,...,0k € Z|z] (primitiv) irreducibilis polinomok.
Egyértelmiiség.? Elszor tegyiik fel, hogy f € Z[z| primitiv és f két irreducibilis
tényezokre bontasa:
J=g1gx=h1- Dy

Mivel f primitiv, ezért mindegyik g; és h; legalabb elséfokd. Mivel mindegyik g; és
h; irreducibilis Z[z]-ben, ezért primitivek is. Ezért a 6.69 Tétel miatt mindegyik g;
és h; irreducibilis Q[z]-ben is.

De a 6.45 Tétel miatt a Szamelmélet Alaptétele test feletti polinomgytiriikben
igaz, ezért f megadott két felbontasa sorrendtol és QQ-beli egységszorzoktdl elte-
kintve egyértelmii. Mivel azonban mindegyik g; és h; primitiv, ezért (a 6.67 Tétel
egyéretlmiiségre vonatkozo része miatt) a szobajovoé Q-beli egységszorzok csak +1-
ek lehetnek. Ezzel primitiv f-ekre a felbontds Z[z]-beli egyértelmiiségét belattuk.

Ha f € Z[z] tetsz6leges (nem feltétleniil primitiv) polinom, akkor a 6.67 Tétel
szerint pontosan egy olyan r szam és primitiv f* van, hogy f = r- f*. Mivel f egész
egyitthatos, ezért r egész szam; ez Z-ben egyértelmiien bonthaté fel primszamok
szorzatara. Végil, az el6z6 bekezdés szerint, a primitiv f* egyértelmiien bonthaté
fel irreducibilisek szorzatéra Z[x]-ben. O

Lattuk, hogy Z-ben és testek feletti polinomgytriitkben be lehet vezetni, és el
lehet végezni a maradékos osztast. Erre alapozva a kiterjesztett euklideszi algorit-
mus segitségével igazolhaté a kitiintetett kozos osztok 1étezése, és az, hogy a prim és
irreducibilis elemek egybeesnek; a Szamelmélet Alaptételének analogonjait mindig
ezek segitségével igazoltuk.

Ugyanakkor a 6.8 példdban lattuk, hogy Z[z|-ben a maradékos osztds elvégzése
nem lehetséges mindig, tehdt az el6z6 bekezdésben Osszefoglalt sémat nem tudjuk
adaptalni Z[z]-re. A 6.72 Tétel szerint a Szdmelmélet Alaptétele mégis érvényben
marad Z[z]-ben: bizonyitdsunk azon mult, hogy a 6.45 Tétel értelmében test feletti
polinomgytiriikben (tehat Q[x]-ben is) a Szamelmélet Aleptétele igaz, és Z[x] és Q[x]
valamilyen értelemben nagyon kozel vannak egymashoz. Végiil pedig azt jegyezziik
meg, hogy a Szamelmélet Alaptételébol egyszertien kovetkezik, hogy barmely két
elemnek van kitiintetett kozos osztéja. Ezért kitlintetett kozos osztdk Z[x]-ben is
léteznek, noha a maradékos osztast nem lehet mindig elvégezni.

Kronecker kitaldlt egy viszonylag egyszerii (de nem tul hatékony) algoritmust,
melynek bemenete Z[z| egy eleme, az algoritmus mindig véges sok 1épésben megill,
és helyes vdalaszt ad arra a kérdésre, hogy bemenete irreducibilis-e Z[z]-ben. Ez-
zel egyiitt, Q[z], Z[z] irreducibilis elemeire szép jellemzés (sziikséges-és-elégséges
feltétel) nem ismert. Ezért azzal folytatjuk, hogy megadjuk a Q[z]-beli irreducibi-
litds néhany - a gyakorlatban hasznosnak bizonyult - elégséges feltételét.

3Emlékeim szerint eléaddson ezt idéhidny miatt nem részleteztem. A hallgatéktél kapott
anyagban mégis volt egy elég zavaros vazlat errdl, ezért a rend kedvéért kiegészitettem, de az
egyértelmiiségrdl vizsgdn elég annyit tudni, hogy a ,Q[z]-beli felbontds egyértelmiiségébdl kovet-
kezik a Z[x]-beli felbontds egyértelmiisége”. A létezés bizonyitdsat - természetesen - részletesen,
pontosan kell tudni.
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Schonemann-Eisenstein kritérium

6.73. Tétel. Legyen f = a,z™ + ap_ 12" '+ -+ + ayx + ag € Z|x].

1. Schénemann-Eisenstein kritérium. Ha dp € N olyan prim, hogy:
(a’) p | g, P | ay,...,p | An—1;
(b) ptay és
(C) p2 J( Qo,
akkor f irreducibilis Q[z]-ben.
2. Forditott Schonemann-Eisenstein kritérium. Ha dp € N olyan prim,
hogy:
((l) p | a1y, 0n,
(b) ptag és
(c) P* 1 an,
akkor f irreducibilis Q[x]-ben.

Schonemann-FEisenstein kritérium bizonyitdsa. A 6.67 Tétel szerint van r € Q és
primitiv f* € Z[z], hogy f =r- f*. Mivel f egész-egyiitthatds, ezért r egész szam.

Ellentmondast keresve TFH: f nem irreducibilis Q[z]-ben = f* sem irreducibilis
Q[z]-ben. De f* primitiv, ezért a 6.69 Tétel szerint f* Z[x]-ben sem irreducibilis:
dg,h € Z[x] : f* = g - h. Tehat

f=roft=rg-h,

deg(f) = deg(g)+deg(h). Tovabba f* primitiv, tehat egyetlen szorzatra bontasdban
sem lehetnek nulladfoki tényezok (mert a nulladfokd tényezd$ osztand f* Osszes
egylitthatéjat). Emiatt 1 < deg(g),deg(h) és igy deg(g), deg(h) < n. Vegyiik fel g
és h egytitthatoit, legyen mondjuk

g="bpx™ + -+ bz + by,

hzckxk—l-'--—l—clx—i—co.
Mint a 6.64 Definiciéban, legyen i, : Z — Z,, j1,(x) = & (mod p) és legyen
op : Zlz] = Zy[z], ¢p(f) = [ egyiitthatéi (mod p).
Az éllitdasban megadott feltételek miatt (és mivel a 6.66 Tétel szerint ¢, homo-

morfizmus):

o 0, (f) = tp(an)z™ = pp(a,)z"+0z" 1+ -+0 (mert p osztja f Gsszes tobbi egylitthat6jat) és
® op(f) =wp(r-g-h)=pp(r-g)-ep(h).

Ezért @,(r - g) | pp(an)x™ és o,(h) | pyp(an)x™. De Zy[z]-ben p,(a,)x™ egy irreducu-

bilis tényezdkre bontasa

n

pp(an)z”™ = (pp(an)z) - - - - 2,
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ezért az Alaptétel miatt osztoi is konstans-szor z-hatvany alakuiak, azaz Ju,t € Z,:

op(r-g) =u-2™,
wp(h)=1- xk,

és egyrészt m + k = n, mésrészt m, k < n miatt m,k > 1. Tehat o, (r - g) konstans
tagja 0 és ezért r - g konstans tagja (azaz by) oszthat6 p-vel. Hasonléan: h konstans
tagja (azaz cg) szintén oszthat6 p-vel. Végiil: f-nek ag a konstans tagja és ag = by-co.
Emiatt ag oszthaté p?-el is; ez ellentmond a tétel feltételeinek. O

Forditott Schonemann-Fisenstein bizonyitdsa. Az el6z6 bizonyités jeloléseit megtart-
va, ellentmondést keresve TFH: f nem irreducibilis Q[z]-ben. Ebbél (pontosan
ugyanigy, mint az el6z6 bizonyitasban) azt kapjuk, hogy Ir € Z, g, h € Z[x]:

f=0-g)-h, 1<deg(g),deg(h)<n.
A feltételek szerint:

@p(f) = Np(%) #0és
©p(f) = p(r - g) - pp(h).

Ezek szerint ¢,(r - g) | pp(ao) és @p(h) | pp(ap). Tehat o, (r - g) és ¢,(h) nulladfokd
polinomok. Mivel azonban r - g és h legalabb elsofokuak, ez csak tgy lehet, ha
r - g féegyiitthatéja (azaz b,,) és h féegyiitthatdja (azaz cy) oszthaték p-vel. Ekkor
azonban f féegyiitthatéja (azaz a,) az a, = by,cp egyenléség miatt oszthaté p*-el,
ami ellentmond az allitasban felsorolt feltételeknek. O

6.74. Megjegyzés. Ha f = a,z2" + - - - + a1z + ap, akkor
S(f) = apx™ + a1z 4+ +a,

az f reciprok polinomja. Pl.: ha f = 32?—7x+2, akkor S(f) = 22?—Tz+3. Konnyen
ellenérizhetd, hogy rogzitett n € N-re (tetszéleges kommutativ, nullosztémentes
gytir(i felett) a legfeljebb n-edfoku polinomok kozott S miivelettarté bijekcid. Erre
alapozva a Schonemann-FEisenstein kritérium és a forditott Schonemann-FEisenstein
kritérium gyorsan bebizonyithaté egyméasbol.

A Schénemann-Eisenstein kritériumok Q[x]-beli irreducibilitdst garantédlnak. Ha
f € Z[z] primitiv és teljesiil valamelyik Schénemann-Eisenstein feltétel, akkor a
6.69 Tétel értelmében f Z[z]-ben is irreducibilis. A Schénemann-Eisenstein feltétel
elégséges, de nem sziikséges az irreducibilitashoz. Példaul

2723 + 8

irreducibilis Q[z]-ben (mert egyetlen gyoke sem raciondlis, azaz nincs gyoke Q-ban,
és harmadfoki). De egyik kritérium sem teljesiil: konstans tagja 2-hatvény, ezért
a Schonemann-Eisenstein kritérium esetében csak p = 2 jon szoba; féegytitthatdja
pedig 3-hatvany, ezért a forditott Schonemann-FEisenstein kritérium esetében csak
p = 3 jon szoba. De
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e p=2: 22 =48 = Schonemann-Eisenstein nem alkalmazhato;
e p=23: 32 =9 27 = forditott Schonemann-Eisenstein nem alkalmazhaté.

6.75. Megjegyzés (Algoritmikus aspektus). Léteznek hatékony irreducibilis ténye-
z6kre bonté algoritmusok (LLL-algoritmus: Lenstra-Lenstra-Lovasz).

Irreducibilis polinomok fokszamairol

Lattuk, hogy Clz|-ben az irreducibilis polinomok elséfokiak, R[x]-ben pedig leg-
feljebb masodfokiak. A kovetkezo tételben megmutatjuk, hogy Q[z]-ben, illetve
véges testek feletti polinomgytiriikben az irreducibilis polinomok fokai nem marad-
nak korlatosak.

6.76. Tétel.

1. Q[z]-ben minden n € N*-ra van n-edfoki irreducibilis polinom.
2. Legyen I = {f € Zy[z]| | f irreducibilis}. Ekkor I végtelen és Z,|x]-ben az
wrreducibilis polinomok fokszdma nem marad eqy kozos korldt alatt.

Bizonyitds. (1)-hez elég az x™ + 2 polinomot vizsgédlni: ennek irreducibilisa kovet-
kezik a Schonemann-Eisenstein kritériumbdl (p = 2-vel).

(2) igazolasa hasonld lesz Eukleidész, a primszamok végtelenségére vonatkozé jol is-
mert bizonyitasdhoz. Ellentmondést keresve TFH [ véges. Legyen g = (H el f ) +1.

Mivel Z,, test, g is irreducibilis tényezOkre bonthatd, de g nem oszthaté I egyetlen
elemével sem, ez ellentmondas. Tehdt I végtelen. De rogzitett n-re Z,[z]-ben csak
véges sok n-edfokid polinom van, ezért:

{deg(f) : f € Z,|z] irreducibilis} nem korldtos.

Végiil megjegyezziik, hogy az el6z6 érvelés szd szerint érvényben marad Z,[z] helyett
tetszbleges véges testre. n

6.77. Példa (Schonemann-Eisenstein alkalmazdsa).

o ' + 4 irreducibilis? p=2: 2|4, 211, 22 =4 | 4 = nem alkalmazhatd.

o 23 — 2 irreducibilis? p =2: 2|2, 211, 22 = 412 = irreducibilis.

o 223 + 322 + 62 + 12 irreducibilis? p = 3: 3| 3,6,12, 312, 32 =9¢12 =
irreducibilis.
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7. A linearis algebra alapjai

Elokésziiletek
7.1. Definicié (Permutéciécsoport). Ha I halmaz, akkor
Sym(I)={f:1— 1] [ bijekcid}.

A csoportmiveletek a fiigguény-kompozicio, és a figguény-invertdlas (ezekkel tényleg
csoportot kapunk).

Han €N, akkor [n] ={1,2,3,...,n}.
Sym([n]) elemei megadhatdk tgy, hogy [n] elemeit sorba tessziik (mindegyiket
pontosan 1-szer hasznalva).

7.2. Példa. Ha n =5, akkor

12 3 45 tdcid
5 1 9 3 4) €9y permutacio.

Muwel a felsé sor mindig ugyanaz, dltalaban elhagyjuk.

7.3. Definicié (Inverzid). Legyen o = ajas...a, az [n] egy permutdcidja. Ebben
(i,7) inverziot alkot, ha i < j de a; > aj.

7.4. Példa. 5 1 2 3 4-ben inverzidk: (1,5),(2,5),(3,5), (4,5).

7.1. Vektorterek fogalma

7.5. Definicié (Vektortér). Legyen K test, V halmaz (vektorok).
V' wvektortér K felett, ha:

o +: VxV =V (vektorok ésszeaddsa),

o - K xV =V (testelemmel szorzds)
olyan figgvények, hogy:

1. (V,+) Abel-csoport;

2. Va € K,Vu,v €V : a(u+v) = au+ av;

3. NVa,pe K,Yu eV :(a+ fB)u=au+ fu;

4. Yo, € K,Yu eV :a(fu) = (af)u;

5. Yu eV :lu=u (1 az alaptest multiplikativ eqysége).

7.6. Megjegyzés. A vektor-Osszeadds kummutativitdasa kovetkezik a tobbi vek-
tortér-axiomabol, ugyanis tetszoleges u,v € V-re egyrészt

1+ 1D)(u+v)=(ut+v)+ (u+v)=u+v+u+u,

masrészt
I+Du+v)=01+Du+(1+1)v=u+u+v+w.

Ezekb6l u + v +u + v = u+ u + v + v, ahonnan (balrdl u-t, jobbrdl v-t kivonva)
v+ u = u+ v adddik.
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7.7. Példa.

o K =R (esetleg K = C test);
e n =2 (vagy n =3) mellett V.= K"; miveletek koordindtdikként:

ha (ay,az) € R?, (by,by) € R?, ¢ € R, akkor

(a1,az2) + (by,b2) = (a1 + by, as + bs)

c(ay, az) = (caq, cas),

R? ezekkel vektorteret alkot.

Linearis kombinacio
7.8. Definicié (Linedris kombinécié). Ha adottak vy, ..., v, € V vektorok, akkor a
szamolasi szabdlyok (a 7.5 Definicidban megadott vektortér-aziomdk) miatt ezekbdl

pontosan c1vy+cCova+- - -+ Cuv, alakid vektorok dllithatok eld (cq, ..., c, € K). Ezeket
a kifejezéseket nevezzik vy, ..., v, linedris kombindcidinak.

7.2. Linearis egyenletrendszerek
7.9. Definicié (Linearis egyenletrendszer).

a11T1 + A2 + -+ + ATy = b1

A21T1 + A22Xo + * ++ + ATy = b2

Am1T1 + A2l + -+ + Qpp Ty = bm

Itt ayq ... Gmn, b1, ... by, adottak, és feladatunk az xq, ... x, ismeretlenek értékeinek
meghatdrozdsa.

Mivel a linedris egyenletrendszerek nagyon hasonlé alakiak, az egészet 0sszefog-
lalhatjuk egy tablazatba (matrixba). Tabldzatunk i-edik soranak j-edik pozicidjaba
a;;-t irva, majd a tablazat jobb szélét egy tovabbi oszloppal kiegészitve, melybe
feliillrél lefele by, bo, ... értékeit irjuk, minden informéciét rogzitettiink (abban az
értelemben, hogy egy ilyen tablazatbdl fel tudjuk irni egyenletrendszeriink el6z6
definiciéban megadott alakjat).

7.10. Megjegyzés.
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e Sormodell: Latjuk majd, hogy minden egyes linedris egyenlet (azaz egyenlet-
rendszerink minden egyes sora) egy hipersikot ir le, ezért az egyenletrendszer
megoldasa hipersikok metszete lesz.

e Oszlopmodell: Legyen

an a2 A1m by
as1 a22 ao2m by
Uy = . , U2 = . U = . ’ b=
Qn1 An2 Qpm bn
e Az egyenletrendszerink megolddsdsa sordn valojaban az a feladatunk, hogy
allitsuk elo b-t uq, . .., u, linedris kombindciojaként: olyan x+, ..., x, kell, hogy

Ty + e+ Ty = b teljesiiljon.

Linearis egyenletrendszerek megoldasa

7.11. Példa. Oldjuk meqg a kovetkezd eqyenletrendszert:

r+y+22=0
20 +2y+32 =2
r+3y+3z2=4
T+ 2y+2=>5.

Megoldas lépésenként. Egy 1-ismeretlenes linedris egyenletrendszert nagyon kénnyen
meg tudunk oldani. Ha tobb ismeretlentink van, akkor probalkozhatunk azzal,
hogy valamelyik ismeretlent kikiiszoboljiik, igy egy olyan egyenletrendszert kapunk,
amiben kevesebb ismeretlen van. Ezt ismételgethetjiik, amig 1-ismeretlenes egyen-
letrendszert nem kapunk. Hogyan kiiszoboljiink ki ismeretleneket? Ha az egyik
egyenletiink valahanyszorosat egy masik egyenletiinkhoz adjuk, akkor az 1j egyen-
let kévetkezni fog a kordbbiakbdl (abban az értelemben, hogy ami a régi egyen-
letrendszernek megoldédsa volt, az megolddsa marad az 1j egyenletrendszernek is).
Ezzel a médszerrel tigy tudunk kiejteni (kikiiszobolni) ismeretleneket, hogy az egyik
(mondjuk az i-edik) egyenletnek olyan szamszorosat (mondjuk c-szeresét) adjuk egy
mésik egyenlethez (mondjuk a j-edikhez), hogy valamelyik ismeretlen egyiitthatéja
a j-edik egyenletben épp —c-szerese legyen ugyanennek az ismeretlennek az i-edik
egyenletben szerepld egyiitthatojanak. Példankon ezt az otletet fogjuk illusztralni;
a modszer szisztematikusabb valtozatait Gauus-elimindciénak nevezik.
frjuk fel a kibovitett matrixot és végezziik el az elemi soratalakitasokat:
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1 1 210 11 210 11 210
2 2 3 2 Ro—R2—2R; O O —1 2 R3—R3—R; O O —1 2
1 3 3|4 1 3 3|4 02 1|4
1 2 115 1 2 115 1 2 115
11 210 11 210 ) 1 1 210
Ri—Ra—Ry 00 —11]2 Ro<sRs 0 2 1 |4 | BamRa—35Re 02 1 |4
02 114 00 —1|2 00 —1|2
01 -1|5 01 -1|5 00 —2]3
11 210
RioRi-3Fs | 0 2 1 |4
00 —1]2
00 010
Az utolsé sor: 0z + Oy + 0z = 0 mindig teljesiil.
Most oldjuk meg visszafele (lemtrél felfele) haladva:
—lz=2=2z=-2
2t 2=4=2y-2=4=2y=6=>y=3;
r+y+22=0=2r4+3-4=0=>2r—-1=0=2x=1.
Tehat a megoldas: x =1,y =3, z = —2. O]

Elemi soratalakitasok

7.12. Definicié (Elemi sormiiveletek).

1. Sorcsere: két sor felcserélése;
2. Sor szorzdsa: egy sor szorzdsa # 0 skaldrral;
3. Sorok d6sszeaddsa: eqyik sorhoz hozzdadjuk eqy mdsik sor skaldrszorost.

7.13. Megjegyzés. Az elemi soratalakitasok nem valtoztatjak meg az egyenletrend-
szer megoldashalmazat. Ez a kovetkezok miatt van igy. Az vilagos, hogy az elemi
soratalakitasokkal mindig olyan egyenletrendszerhez jutunk, hogy eredeti egyenlet-
rendszeriink minden megoldasa megoldasa marad az 1j egyenletrendszernek is.

De minden elemi soratalakitas ,, visszacsinalhato”: egy masik, alkalmasan valasztott
elemi soratalakitassal az 1j egyenletrendszeriinkbdl visszakaphatjuk az eredetit. Ezért
az eloz6 bekezdés gondolata azt is adja, hogy 1j egyenletrendszeriink minden meg-
oldasa egyuttal megoldasa az eredeti egyenletrendszernek is.

Az el6z6 két bekezdés szerint az eredeti és az 1j egyenletrendszeriink megoldés-
halmazai kolcsonosen tartalmazzak egymast, ezért az eredeti és az 1j egyenletrend-
szer megoldasainak halmaza egyenl6 egymassal.
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7.14. Megjegyzés. A fenti példdban:
o A negyedik egyenlet redunddns volt (a tébbi kévetkezménye);
e Pontosan 1 megoldds volt (azaz a megoldds egyértelmi): (1,3, —2).

7.3. Vektorterekrol bévebben

7.15. Definicié. Legyenck V és W wvektorterek a K test felett. Ekkor W altere
V-nek, ha W CV (azaz W elemei egyittal V-nek is elemei) és a W-beli vektorokon
minden miveletnek ugyanaz az eredménye, mintha V -ben végeznénk el dket.

Tipikus esetben adott egy V vektortér és vektoroknak egy W C V részhalmaza,
és a V-ben adott vektortér-miiveleteket akarjuk W elemein elvégezni. Mikor lesz
ezekkel a miiveletekkel W a V' egy altere? A vektortér-axiomék nyilvanvaléan kivétel
nélkiil érvényben maradnak, hiszen, ha néhany W-beli vektor megsértené pl. a vek-
torosszeadasra vonatkozo asszociativitasi szabalyt, akkor ugyanezek a vektork V-ben
is ellenpéldét szolgaltatnanak az asszociativitdsra (ami nyilvan lehetetlen, mert V'
vektortér). Az egyetlen problémat az jelentheti, hogy minden vektortérben barmely
két vektort Ossze lehet adni és barmely vektort meg lehet szorozni barmelyik test-
elemmel. Ha tehat W is vektorteret alkot a V-beli miiveletekkel, akkor sziikséges,

hogy

o W barmely két vektoraval egyiitt azok V-ben szamolt Osszegét is tartamazza
(azaz Yu,v € W: (u+" v e W),

e IV barmely vektoraval egyiitt annak minden (V-ben szamolt) skalarszorosat is
tartamazza (azaz Yu € W,c € K : (¢-¥ u e W).

Ezekre a feltételekre egytitt gy hivatkozunk, hogy W zart a V-beli miiveletekre.
Az el6z6 két bekezdés szerint W C V' a V-bdl orokolt miuiveletekkel akkor és
csak akkor lesz altere V-nek, ha W zart a V-beli miveletekre. Mostantol - picit
pontatlanul - egy vektortér altereinek mindig csak az alaphalmazat adjuk meg, és
hallgatélagosan ugy értjiik, hogy a vektortér-miiveletek mindig V-bol oroklodnek.

7.16. Definicié (Generdlt altér). Legyen K test, V wvektortér K felett, n € N,
{v1,..., 0.} CV. Ekkor a {vy,...,v,} dltal generdlt altér:

Span{vy,...,vn} ={ v+ -+ Ao, 0 A € K}

Konnyli meggondolni, hogy az eléz6 definiciéban szereplé Span{vy, ..., v,} zart
a V-beli miveletekre, ezért altere V-nek. Tovabba, ha W C V olyan altér, melyre
{v1,...,v,} €W, akkor Span{vy,...,v,} C W is teljesiil. Ezért Span{vi, ..., v,}
a legkisebb altere V-nek, ami tartalmazza a vy, ..., v, vektorokat.

7.17. Definicié (Linedris fiiggetlenség). F' C V' linedrisan figgetlen, ha eqyik f € F
sem fejezhetd ki a tobbivel (azazVf € F: f & Span(F\ {f})).

7.18. Definicié (Generdtorrendszer). G C V' generdtorrendszer, ha Yv € V' kife-
jezhetd G-beliek linedris kombindcidjaként (azaz Vv € V : v € Span(G)).
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7.19. Definicié (Bézis). B C V bdzis, ha B figgetlen generdtorrendszer.

7.20. Tétel (Linedris fliggetlenség ekvivalens feltételei). Legyen V vektortér K felett
és legyen {vy,...,v,} CV . Ekvivalensek:
1. {vy,...,v,} linedrisan figgetlen;
2. Ha My + - + Ao, = 0 (nullvektor), akkor \y = --- = X\, = 0 (vagyis a
nullvektort csak a trividlis linedris kombnindcicval lehet elballitani).
Bizonyitds. (1) = (2): Ellentmonddst keresve tegyiik fel, hogy van nem csupa-nulla
A, ..M (azaz 37 A; # 0), hogy

=1
Ekkor

1 n
Uj = _)\_j Z )\iv’h
=1
1#]
ami — ellentmondva (1)-nek — mutatja, hogy v; € Span({vi,...,v,} \ {v;}).
(2) = (1): Tegyiik fel, hogy {v1,...,v,} nem fiiggetlen. Ekkor 3j, hogy v; ki-
fejezhetd a tobbi linedris kombindcidjaként, azaz van olyan Ay, ... A1, Aji1,... Ay,

hogy
Uj = )\11)1 + -+ Aj—lvj—l + /\j+1Uj+1 + -+ /\nvn.

Ekkor (mindkét oldalbél v;-t kivonva)
)\1111 4+ -+ )\j_ﬂ)j_l —1- ’Uj + )\j+11}j+1 + -+ )\nvn = O

ahol v; egylitthatéja —1 (tehat, (2)-nek ellentmondva, v; ,A-ja” nem nulla, mégis a
nullvektort kaptuk). O

Bazis ekvivalens tulajdonsagai

A generalt alterek bevezetésénél mar hasznéltuk egy V' vektortér részhalmazaira
a ,,legkisebb” kifejezést. Altaldban is, egy alaphalmaz részhalmazait a tartalmazas
szerint rendezziink: az egyik részhalmaz nagyobb a mésikndl, ha részhalmazként
tartalmazza azt. Vigyazzunk: ez csak részbenrendezés: lehetnek olyan halma-
zok, melyek egyike sem részhalmaza a masiknak, ezért egyik sem kisebb/nagyobb
a masikndl (vagyis a szébanforgé halmazok 6sszehasonlithatatlanok). Ugyanebben
az értelemben hasznaljuk majd a ,,minimalis” és ,,maximalis” kifejezéseket. Hal-
mazok egy B Osszességében az X halmaz maximalis, ha nincs olyan B-beli halmaz,
melynek X részhalmaza lenne (azaz B-ben nincs X-nél nagyobb halmaz). Telje-
sen hasonléan, X minimalis, ha nincs B-ben olyan halmaz, mely részhalmaza lenne
X-nek. Mégegyszer hangsilyozzuk azonban, hogy B-ben lehetnek olyan halmazok,
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melyek Osszehasonlithatatlanok egy minimalis, illetve maximalis halmazzal. Tehat
pl. egy maximalis halmazra csak az igaz, hogy nincs nala nagyobb halmaz B-ben,
de az nem feltétleniil igaz, hogy egy maximalis halmaz minden B-beli halmaznal
nagyobb.

A generdlt alterek esetében a legkisebb kifejezést jogosan hasznéltuk: legyen V
vektortér, és legyen

B={WCV:uv,...,v, € W, Waltere V-nek}.

Ekkor Span{vi,...,v,} nemcsak minimélis részhalmaz B-ben, hanem valéban leg-
kisebb: ugyanis Span{vy,...,v,} tényleg részhalmaza B Osszes elemének.

7.21. Tétel (Bézis ekvivalens jellemzései). Legyen B = {vy,...,v,} C V. Ekviva-
lensek:

1. B bazs;

2. B minimdlis generdatorrendszer;

3. B maximdlis fiiggetlen rendszer;

4. Yo eV A, ..., € K hogy v =X vy + -+ + AU,

7.22. Megjegyzés. A (4)-es tulajdonsdgnal [A\1,..., \n] a v vektor koordindta-
vektora a B bdzisra vonatkozoan.

7.23. Példa. R2-ben:
1 0 .. , L ‘
e B = {(0) , (1)} bazis, ez a szokdsos koordindtakat adja:
x
e av
Y

= ) vektor B-re vonatkozd koordindtd-vektora: |x,y].

Bizonyitds. (ciklikus bizonyités)

(1) = (2): B generétorrendszer, mert definici6 szerint minden bazis generdtorrendszer.
B minimalis generatorrendszer, mert Vi-re v; ¢ Span(B \ {v;}), mert B fiiggetlen.
Ez mutatja, hogy B valddi részhalmazai nem generatorrendszerek, tehat B a ge-
neratorrendszerek kozott valéban minimalis halmaz.

(2) = (3): B fiiggetlen, mert TFH valamilyen nem csupa-nulla Ay, ... \,-re:
)\1’Ul+"'—|—)\m'l}m:0.

Legyen j olyan, hogy A; # 0. Ekkor:

1
b= Y A = 0 € Span(B\ (1)),
T it

ezért B nem lenne minimalis generatorrendszer (hisz B\ {v;} generdlnd B-t, ami
generalnd az egész vektorteret).
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Kell még, hogy B a fliggetlen vektorhalmazok kozott maximalis.
Ha lenne olyan v € V, hogy B U {v} fiiggetlen, akkor v ¢ Span(B), ezért, (2)-vel
ellentétben, B nem lenne generatorrendszer.

(3) = (4):

(3) miatt B maximalis fliggetlen, ezért Yo € V: v € Span(B). Ez (4)-bdl a
megfelel6 \-k 1étezését mutatja. Kell még a A-k egyértelmiisége. Legyen \q,..., A\,
s 1, ..., fm UGy, hogy v = > Nv; = > piv;. Ekkor > (N, — py)v; = 0, és mivel B
fiiggetlen, A\; = p; minden i-re, vagyis (4)-ben a A-k valéban egyértelmiien léteznek.

(4) = (1): B generéatorrendszer, mert Vv € V-re (4) miatt van Aj,..., Ay

V= Z )\ﬂ)l

B fuggetlen is, mert TFH: v; el64ll a tobbi linedris kombindcidjaként, azaz van
Ky ooy Hg—15 Hg+15 - - -5 Hm:

Vj = v+ A o101 + 00 U5 F Vi A U

Dev;=0-v1+---+0-vj_1+1-0;4+0-vj41 +---+0-v, av; egy masik eloallitdsa
(hiszen az €l6z6 sorban v; egyiitthatéja nem nulla); ez ellentmond annak, hogy (4)
szerint a koordinédtédk egyértelmiiek. Ezért (1) valéban teljesiil B-re. O

Bazisok és dimenzio

7.24. Tétel (Bazisok elemszama). Legyen K test, n € N, V altere K™-nek.
1. Ha By, By CV bazisok V-ben, akkor elemszdmuk ugyanannyi: |By| = |Bs|;
2. V-ben van (véges elemszami) bazis.

Bizonyitds. Eloszor egy onmagaban is érdekes lemmat igazolunk.

Kicserélési lemma: Ha F' = {fi,..., fi} C V fiiggetlen, G = {g1,...,9m} ge-
nerdtorrendszer, akkor minden i-hez van j, hogy F-ben f;-t g;-re cserélve tovdbbra
is fliggetlen rendszert kapunk (azaz (F'\ {f;}) U {g;} fiiggetlen).

A Kicserélési Lemma bizonyitdsa. Tegyiik fel indirekt, hogy adott i-re f;-hez nincs
j6 g;, azaz Vj: {f1,..., fi-1,9;, fi+1,- .., fr} nem fiiggetlen. Ekkor, a 7.20 Tétel
miatt az el6z6 vektorrendszernek van nem csupa-nulla silyokkal képzett linearis
kombindcidja, mely a nullvektort adja. Egy ilyen linedris kombinacidoban g; egytitt-
hat6ja nem lehet nulla (mert F fiiggetlen volt). Ezért g; kifejezhetd a tobbi linearis
kombindacidjaval: g; € Span{ fi,..., fi-1, fi+1,---, fu}. Mivel ez minden j-re igaz,
ezért Span{gi,...,gm} C Span{fi,..., fi—1, fix1,. -, fx} generdtorrendszer, ezért
fi € Spand{fi,..., fi-1, fizx1,---, fx} ad6dna, vagyis F' nem lenne fiiggetlen. Ezzel
az ellentmondéssal a kicserélési lemma be van bizonyitva. O]
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A 7.24 Tétel bizonyitasat a Kicserélési Lemma egy kovetkezményével folytat-
juk. Az aldbbiak szerint, a Kicserélési Lemmabol azonnal adédik, hogy ha F
tetszoleges fiiggetlen vektorrendszer, G pedig tetszéleges véges generatorrendszer,
akkor |F| < |G|. Ez azért van igy, mert a Kicserélési Lemma szerint F' eleme-
it sorban, egymds utdn (egészen addig, amig el nem fogynak), ki tudjuk cserélni
G elemeire. A Kicserélési Lemma garantalja, hogy menet kozben F (illetve az
a vektorrendszer, melyet az atalakitasok sordan F-bél kaptunk) mindig fiiggetlen,
ezért a Kicserélési Lemma végig alkalmazhatéo marad, és szintén az ,aktudlis F”
fiiggetlensége garantélja, hogy az egyes 1épésekben G-nek mindig més és mas elemét
tessziik a4t F-be (ha nem igy lenne, akkor az aktudlis F' nem maradna fliggetlen).
Mivel F' elemeit ki tudjuk cserélni G' paronként kiilonbozé elemeire, ezért valéban

[Fl <Gl

Kovetkez6 1épésben (2)-t 1atjuk be. Minden ¢ < n-re legyen
0

e, = |1 1-edik helyen.

{e1,...,en} generdtor K"-ben. Emiatt, ha {by,...,b;} fliggetlen V-ben, akkor per-
sze figgetlen K"-ben is, és ezért az el6z0 bekezdés szerint k < n. Azt kaptuk, hogy
V-ben minden fiiggetlen vektorrendszer legfeljebb n elemii. Emiatt VV-ben van ma-
ximalis fliggetlen rendszer (ami tehat béazis), és ez véges (legfeljebb n-elemi).

Ezek utédn (1) bizonyitdsa a kovetkezd. Legyenek Bj, By bézisok V-ben. A
korabbiak szerint |By|, |Ba| < n. Mivel B; fiiggetlen, és By generdtorrendszer, ezért
|B1| < |Bs|. De Bs is fiiggetlen, és By is generatorrendszer, ezért |By| < |B;|. Tehat
| B1| = [ Bal. 0

7.25. Definicio. Az elézd jelolések megtartdsdval, ha V altere K"-ek, akkor V
bazisainak kézos méretét V- dimenzidjanak nevezzik, és dim(V')-vel jeldljik.

7.26. Megjegyzés. A korabbi jeloléseket megtartva megjegyezziik, hogy a Ki-
cserélési Lemmabdl, illetve a 7.24 Tételbol konnyen adodik, hogy minden véges
dimenzidés vektortérben:

1. Minden generatorrendszer tartalmaz bazist;

Minden linedrisan fiiggetlen rendszer kiegészitheté bazissa,
dim(R") = n;

dim(C") = n (komplex vektortérként);

{e1,...,e,} bazis K™-ben (ezt nevezziik sztenderd bézisnak);

6. dim P, = n+1 (itt P, a K feletti, legfeljebb n-edfokt polinomok vektortere).
Megjegyezziik még, hogy minden (nem feltétleniil véges dimenziés) vektortérnek
van bdazisa, ezt idén nem bizonyitjuk (mert a bizonyitds tovabbi halmazelméleti
el6késziileteket igényelne).

Ol WD
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7.27. Definicié (Affin altér). W C K™ affin altér, ha van uw € K™ ésV C K™ altér,

igy, hogy
W=u+V={ut+a:aecV}.

Itt v az eltolasvektor.

7.28. Definicié (Hipersik). W = u + V' hipersik, ha olyan affin altér, amiben V
bazisai (n — 1) elemdiek.

7.29. Példa.
1. R%-ben: az egyenesek affin alterek (s6t hipersikok);

2. R3-ban: a sikok hipersikok (dim = 2);
3. R3-ban: az egyenesek (1-dimenzids) affin alterck.

Affin alterek és linearis egyenletrendszerek

7.30. Definicié (Homogén és inhomogén egyenletrendszer). Az Az = b linedris
egyenletrendszer:

e homogén, ha b= 0;

e 1nhomogén, kilonben.
Jelolés:

My ={ue K": Au=0} homogén rész megolddshalmaza;

My ={ue K": Au=10b} inhomogén rész megolddshalmaza.
7.31. Megjegyzés. Tetszileges A € K"™*", u,v € K", A € K esetén:

A(u +v) = Au + Av;
A(Au) = MAu).

7.32. Tétel (Megoldashalmazok szerkezete). Ha A € K™*™, akkor:
1. My altere K™*™-nek;
2. M; affin altere K™ ™-nek, sot tetszoleges u € My-re:

M[IU+MH.

Bizonyitds. (1) My altér: a 7.15 Definicié utdni megjegyzés szerint azt fogjuk
ellendrizni, hogy My zart a vektorok oOsszeadasara és skalarral szorzasara. Ha
u,v € My, A € K, akkor:

Alu+v)=Au+Av=0+0=0=u+v € My;
Au) = AMAu) =X-0=0= \u € My.

Ez mutatja My zartsagat a megfelel6 miiveletekre.
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(2) Legyen u € M; (azaz Au =b). Ekkor egyrészt
Vw e Myg: Alu+w) =Au+Aw=b+0=0b= u+w € Mjezért u+ My C Mj.
Masrészt forditva:

Yo e Mp: v=u+ (v—u), ahol v —u € My,
mert:
Alv—u)=Av—Au=b—-0b=0.
Tehat M; = u + My. O

7.33. Példa.

()

MHI{)\<—2,1>)\ER}, M[:(1,1)+MH
11 1 .
e A= (1 1), b= (2) : Mp =0 (ellentmonddsos).

7.4. Matrixok és matrixmuveletek

Legyen K test, n,m € NT. Az olyan téglalap alaki tdbldzatokat, melyeknek
n sora, m oszlopa van, és a tablazatban K elemei szerepelnek, K feletti n x m-
es matrixoknak nevezziik; az Osszes ilyen matrix hamlazat K"™*"-el jeloljik. Picit
precizebben (de a mi céljaink szempontjabdl taldn tilzott, a lényeget enyhén el-
fed6 preizitdassal) K™*™ elemei azonosithatok azokkal a kétvéltozos, K-ba képezd
fiiggvényekkel, melyek értelmezési tartomanya [n] x [m]: hiszen egy métrixban pon-
tosan az lesz fontos, hogy az i. sora j. poziciéjaban K melyik eleme van - ezt meg-
adjatjuk egy fiiggvénnyel (és végsésoron ezeket a fliggvényeket akdr azonosithatjuk
is a megfelel6 méretli matrixokkal).

Az el6z6 bekezdéssel osszhangban, ha A € K™™ egy matrix, akkor A i-edik
soranak j-edik elemét (A);;-vel jeloljitkk (ami utalhat a megfelel6 fiiggvény helyet-
tesitési értékére is). Emellett hasznaljuk még a kovetkezo jeloléseket is:

o Ai-edik sora: A = [Aj ... Ay] € K™;

Alj
o A j-edik oszlopa: A,; = : e K™
A,

Matrixokkal talalkoztunk mar a linedris egyenletrendszerek vizsgalata soran.
Most szisztematikusan bezevetjiik, és megvizsgéljuk az alapveté matrix-miiveleteket.
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7.34. Definicié (Transzpondlt). Ha A € K™™, akkor AT € K™ ™ az a mdtriz,
melyet A sorainak €s oszlopainak felcserélésével kapunk, azaz

(AT)y = (A)ji.
Az AT mdtrizot A transzpondltjanak nevezziik.

7.35. Definicié (Matrixszorzéas). Ha A € K™™, B € K™% akkor AB € K™% a
kovetkezo:

(AB);; = > AuBy
=1

7.36. Megjegyzés. A matrixszorzas nem kommutativ, mert a matrixok mérete
akar olyan is lehet, hogy egyik sorrendben 6sszeszorozhatéak, de a masikban nem,
ilyen esetekben fel sem mertil, hogy a kiilonb6z6 sorrendekben vett szorzatok egyenlek-
e.

7.37. Definicié. A négyzetes mdtriz, ha sorai szama = oszlopai szama. Ekkor a
szorzds elvégezhetd (mindig).

K™™ a matrixok Osszeaddsaval, szorzasaval egy egységelemes, nem kommu-
tativ gytrit alkot. A gylriiaxiémak minden nehézség nélkiil, de hosszadalmasan
ellenorizhetok. A szorzas asszociativitasat késobb, a 7.51 Tételben bebizonyitjuk.
A multiplikativ egységelemrdl és az inverzrol most csak réviden tesziink néhany
megjegyzést, késobb vissza fogunk térni ezekre.

7.38. Definicié (Egységmatrix). I, € K™*" az eqységmdtriz:

1 hai=y;
(L)i = 0 = -
0 har#7.

7.39. Definicié (Inverz matrix). A € K"*"-nek B inverze, ha AB = BA = I,.
Jelolés: B = A~1L.

Latjuk majd, hogy nem minden matrixnak van inverze. Tovabba - mivel a
matrix-szorzas még négyzetes matrixok esetében sem kommutativ - kétféle inverzzel
(balinverzzel és jobbinverzzel) is foglalkoznunk kéne. A balinverzek és jobbinverzek
kozott szerencsére van kapesolat. A részleteket késobb a 7.52 Definiciéban, és az azt
koveto tételekben dolgozzuk ki. Az inverzzel vald ismerkedéstinket most azzal zarjuk,
hogy a B inverzet megprobalhatjuk meghatarozni az AX = I, matrixegyenlet meg-
oldasaval, bar ez nem is olyan rossz moédszer, lesznek mas modszerek is.

7.40. Definicié (Métrix oszlop- és sortere). Legyen A € K™ ™.
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7.41. Definicié (Oszloptér, sortér, nulltér).

O(A) = Span{A,1, Ao, ..., Aun} A oszloptere;
S(A) = Span{Ai., As., ..., Ans} A sortere;
NA) ={ue K™ : Au=0} = My A nulltere.

O(A) N(A)
A*Q A*l
nulltér Km

Matrixokhoz tarsitott alterek bazisai

Hogyan talalunk bazist ezekben a tereken?
I. Bazis N(A)-ban (nulltér.)

Megoldjuk az Az = 0 homogén egyenletrendszert.

Bazist ugy kapunk, hogy a szabad valtozok helyébe paramétereket irunk, a meg-
oldast a paraméterek szerint rendezziik; ekkor a paraméterek vektor-egyiitthatéi
adnak egy bazist.

I1. Bazis S(A)-ban (sortér.)
Hozzuk redukalt 1épcsos alakra:
A=Ay~ A - Ay —---— A, =1L.
A bézist L-nek a nem csupa-nulla sorai adjak, ezt a kovetkezo tételben igazoljuk.
7.42. Tétel. S(A) egy bdzisa L nem csupa 0 sorai.

Bizonyitds. Az elemi soratalakitasok olyanok, hogy A, sorai = A; sorainak linedris
kombinécidja. Ezért S(A;11) C S(A;). Mivel azonban az A; — A;1 1épés meg-
fordithatd, ezért S(A4;) C S(Ai41), 1gy végiilis S(A;) = S(Ai41). Tehat

S(A) = S(L) = Span(L nem csupa 0 sorai).

Ezért L nem csupa-nulla sorai generaljak S(A)-t.
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Tovabba, L nem csupa 0 sorai linearisan fiiggetlenek a kovetkezok miatt. Legyen
A1, . .oy A € K olyan, hogy

)\lLl* + >\2L2* + -+ ArLr* =0.

Ekkor \; = 0, kilonben Ly, vezéreleme nem nullazédik le.
Hasonldéan, Ay =0, A3 =0, ... stb. Tehat L nem csupa 0 sorai linearisan fiiggetle-
nek. O]

III. Bazis O(A)-ban (oszloptér.)

Egy rovid védlasz az lehet, hogy O(A) nyilvanvaléan izomorf S(A”)-vel, ezért O(A)-
ban tgy taldlhatunk bézist, ha a fenti médon S(A”)-ben keresiink egyet. Az aldbbi
tétel ennél tobb informaciét ad.

7.43. Tétel. Legyen A (eqy) redukdlt lépcsds alakra hozdsa L. Ha L-ben a jy, ja, - . ., jr
oszlopokban van vezérelem, akkor

A*jl ) A*j27 SRR A*jr

bazis O(A)-ban.

Bizonyitdas. Az {Aj,,..., A} vektorrendszer generdlja O(A)-t, mert ha az A,
oszlop nincs ezek kozott, akkor az

Ay - A | Ak

egyenletrendszer megoldhaté (1épcsds alakra hozas mutatja).
Tovabbé, {A,j,, ..., A } linearisan fiiggetlen a kovetkezék miatt. Tegyiik fel,

hogy
(*) )\IA*j1 —+ )\QA*j2 —+ 4 /\TA*]'T = 0.

Ekkor azonban A; = 0, kiilonben A,;, vezéreleme (x)-ban nem nulldzédna ki. Ha-

sonléan Ay =0, ..., A\, =0. O
1 2 3 4
7.44. Példa. Legyen A= |2 4 6 8
11 2 3
Redukdlt lépcsos alak:
1 01 2
L=10 111
0000
o S(A) egy bazisa: {(1,0,1,2),(0,1,1,1)};

1 2
o O(A) egy bdzisa: Ay = | 2|, A =

—_
=~

e N(A) egy bdzisa: {(—1,-1,1,0),(—2,—1,0,1)}.
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Matrix rangja és oszlopmodell

7.45. Definicié (Oszloprang és sorrang). Legyen A € K"*™.
e A oszloprangja: r,(A) = dim(O(A)) (= hdny linedrisan figgetlen oszlopa
van A-nak);
e A sorrangja: rs(A) = dim(S(A)).

7.46. Tétel (Oszloprang = sorrang). 7,(A) = r5(A) (ezértrs felesleges, nem haszndljuk).

Bizonyitds. rs(A) = dim(S(A)) = L nem csupa 0 sorainak szdma.

ro(A) = dim(O(A)) = L-ben ennyi oszlopban van vezérelem.

L egy nem csupa 0 sordhoz rendeljiik hozza azt az oszlopot, melyben a sor
vezéreleme van. Ez kolcsonosen egyértelmii megfeleltetés L nem csupa 0 sorai és
azon oszlopai kozott, melyekben van vezérelem. Ez a megfeleltetés mutatja, hogy
valéban:

dim(S§(A)) = dim(O(A)).

7.47. Definicié (Rang).
rang(A) = ro(A) = rs(A).
7.48. Tétel (Oszlopmodell értelmezése). Az = ¢ megoldhato < ¢ € O(A).

Bizonyitds. Ar = ¢ megoldhaté < dr € K™ : Az =c¢
& ¢ eléall A oszlopainak linedris kombinaciéjaként

& ce O(A). O

) (12, (5
7.49. Példa. Legyen A = (3 4), b= (6>

o () +o(0) = (5)+ (1) - (i)

A, O(A)

> & O(A)
Oszlopmodell: Ab = by Ay + by A, @ §
szlopmode 1451 1 0o A Ax = ¢ megoldhaté & c € O(A)

7.50. Tétel (Lineéris egyenletrendszerek egoldhatésdganak métrixrangos jellemzése).
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Az = ¢ megoldhaté < rang(A) = rang(Alc);

2. Ha rang(A) = rang(Alc) < wvdltozdk szdma, akkor sok megoldds van (vannak
szabad vdltozok);

3. Ha rang(A) = rang(A|c) = wvdltozdk szdma, akkor pontosan 1 megoldds van
(nincsenek szabad vdltozdk);

4. Nem fordulhat eld, hogy rang(A) = rang(Al|c) > vdltozok szama, mert rang(A) =

dim(O(A)) < oszlopok szdma = vdltozdk szama.

7.5. Bovebben a matrixok invertalhatésagarol

Ebben a részben a matrixok inverzének létezésével, egyértelmiiségével, kiszami-
tasanak modjaival foglalkozunk. Egy négyzetes A € K™*™ matrix féatléjan az

a11,0A22, ..., anp

elemeit értjilk. Specidlisan: az [, egységmatrix foatléjaban 1-esek vannak. A
matrix-szorzas asszociativitasanak ellenorzésével kezdiink.

7.51. Tétel (Asszociativitds). A, B,C € K™ esetén:
(AB)C = A(BC).

Bizonyitds. TetszoOleges 7,7 < n-re

[(AB)C];; = Zn:(AB)z‘lClj = 2": (i AikBkl) Cij = zn:Aik (i Blelj) = [A(BCO)];.

=1 =1 k=1
O]

Mint emlitettiik, a matrix-szorzas még a négyzetes matrixok korében sem kom-
mutativ, ezért e nem-kommutativ szorzasnak kétféle inverze lehet. Részletesebben:

7.52. Definicié (métrix balinverze, jobbinverze). A € K™ "-nek:
o Y jobbinverze, ha AY = 1,,;
o Y balinverze, ha YA =1,.

A 7.39 Definiciéban megadtuk mér az A métrix inverzének definiciéjat: Y inverze
A-nak, ha AY =Y A = [, vagyis ha Y egyszerre balinverze és jobbinverze is A-nak.
E kiilonbozo inverzek kozott teremt kapcsolatot a kovetkezo tétel.

7.53. Tétel (Jobbinverz, inverz létezésének feltétele). Legyen A € K™*".
1. A-nak van jobbinverze < rang(A) = n;
2. A-nak legfeljebb 1 db jobbinverze van;
3. Ha'Y jobbinverz, akkor inverz is.
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Bizonyitds. (1) =: Tegyiik fel: Y jobbinverze A-nak: AY = I,. Ekkor tetszoleges
j-re AY,; = j-edik oszlop I,-ben. Ezért ey, eq,...,e, € O(A). De {e1,eq,...,€,}
béazis K™-ben. ezért dim(O(A)) = n, vagyis rang(A) = n (nagyobb nem lehet).

«: Forditva: ha rang(A) = n, akkor tetszéleges e; € K"-re Ax = e; megoldhatd
(hiszen ekkor O(A) = az egész K" tér). Tehat Vj: Ax = e; megoldhatd, e megoldés,
mint oszlopvektor lesz a jobbinverz j-edik oszlopa.

(2): Ha rang(A) < n, akkor (1) szerint nulla darab jobbinverz van, ha rang(A) = n,
akkor az inverzre (1)-ben adott konstrukcié egyértelmii (a métrixrangos jellemzés

(7.50 Tétel) miatt Vj: Az = ej-nek pontosan 1 megolddsa van, és ennek a meg-
olddsnak kell lennie a jobbinverz j-edik oszlopanak).

(3) Tegytik fel: Y jobbinverz: AY =1, = AY A = A azaz Y A megoldésa az
(x) AX=A

méatrixegyenletnek. Egyrészt rang(A) = n (és a 7.50 Tétel) miatt e métrixegyenletnek
1 megoldasa van: tetszéleges j-re X,; csak az Ay = A,; linearis egyenletrendszer
egyetlen megoldasa lehet. Masrészt, AL, = A miatt (x)-nak X = I, megoldasa,
ezért YA =1,. O

7.54. Definicié (Linedris leképezés). Legyenek V, W wvektorterek K felett.
o : V. — W wektortér homomorfizmus (= linedris leképezés), ha Yu,v € V, c € K:

p(u+v) = p(u) + p(v);
p(cu) = cp(u).

Linedris leképezés: p(u + v) = p(u) + ¢(v).

Linearis leképezésekre konnyt példat adni: legyen A € K™*" rogzitett matrix.
Konnyen ellenérizhets, hogy ekkor a ¢ : K" — K™, p(x) = Ax fliggvény linedris
leképezés lesz (valéjdban ezt az ellendrzést elvégeztiik méar a 7.31 Megjegyzésben
is). A kovetkezo tétel szerint véges dimenzids esetben nincs is masfajta linearis
leképezés: mindegyik matrixszorzasbol szarmaztathato!

7.55. Tétel (Linedris leképezések matrixreprezenticidja).

1. Ha f: K™ — K™ linedris, akkor 3A € K™ ": Vx € K": f(x) = Ax.
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2. (Eléirhatosagi-tétel) Tetszdleges wy, ..., w, € K™-re 3 linedris f: f(e1) = wy,

., flen) = wy.
3. Ha V wvéges dimenzios vektortér K felett, akkor van olyan n € N, hogy V
izomorf K"-el.

(1)-ben valéjaban pontosan 1 ilyen A matrix van, (2)-ben valdjaban pontosan 1 ilyen
f figgvény van. Az egyértelmiiség - egyébként rovid - bizonyitdsait a vizsgara nem
kell tudni.

Bizonyitds. (1) Az A matrix oszlopvektorai legyenek az f(eq),. .., f(e,) oszlopvek-
torok:

A=[fler) | flea) [---| flen)] € K™
T
Ekkor Vx = | : | € K™

Tn

flx)=f (Z xi€i> = lef(el) = Ax.

(2) Legyen A = [wy | wa | --- | wy,] € K™ ™ (oszlopok). Definidljuk az f fiiggvényt
igy: f(z) = Az, ez j6.

(3) Mivel V' véges dimenzids, van benne egy {bi,...,b,} véges bazis. Vv € V-hez
1, ..., A\ € K, hogy
i=1

[A1,..., Ay koordinatavektora v-nek {by, ..., b, }-re. Definidljuk -t igy:
©:V = K" ¢)=[A,...,\] (v koordindtéi {by,...,b,}-ben).

Konnyen ellenorizhetd, hogy ¢ linedris leképezés. Végil ¢ bijekcié mert V' min-

den elemének pontosan 1 koordindta-vektora van és K™ tetszéleges [A1, ..., \,] ele-
me koordindta-vektora valamelyik V-beli vektornak (konkrétan a y_,_, Apby vektor-
nak). O

7.56. Megjegyzés.

1. (1), (3) végtelen dimenziéban nem marad érvényben, de (2) igen.
2. (1)-ben a konstrukcié bazisfiiggé (ha a sztenderd béazis helyett mdas bézist
valasztunk, akkor més matrixot kapunk, erre még vissza fogunk térni a 9.6

Tételben).
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7.57. Példa (Forgatds R?-ben).
Legyen V=W =R?, f:V — W « sz0gi (pozitiv irdnyi) forgatds.
f mdtriza a sztenderd bazisban:

A (Cosa — sin «v
- \sina  cosa
(Az oszlopok a sztenderd bazisvektorok elfogatottjainak koordindtdi a sztenderd bdzisban.)

7.58. Példa (Polinomok terében).
Legyen V = R[X] feletti legfeljebb 2-edfoki polinomok vektortere.

f:V =V ami a polinomokat (x — 1) hatvdnyai szerint rendezi dt: ha ax® +
br+c=d(x—1)2+V(x—1)+, akkor f az [a,b,c] vektort [a', V', c]-re képezi. Ez
az [ linedris.

f mdtriza a sztenderd {x* x,1} bdzisban:

f@)=2>=1-(z—-1>*+2 - (x — 1)+ 1;
fx)=2=0-(x—1*+1-(z—1)+1;
f)=1=0-(z—=12+0-(z—1)+ 1.

Tehdt:

— = O
—_ o O
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8. Determinansok

Permutéciok inverzidit bevezettilk mar a 7.3 Definicioban. Ebben a részben
intenziven hasznalni fogjuk az inverzidok tovabbi tulajdonsagait, az egyik ilyen fontos
tulajdonsaggal kezdiink.

8.1. Tétel. Ha m € Sym([n]) az [n] egy permutdcidja, i < j < n, akkor w-ben az i.
és j. tagot felcserélve az inverzioszam paritisa mequdltozik.

Bizonyitds. Legyen:

Eloszor tegyiik fel, hogy j = ¢ + 1. Ekkor
inv(7') — inv(7) = £1,

mert (i) és w(i+ 1) felcserélésekor (i) és w(i+ 1) egymadssal val inverzids viszonya
megvéltozik, de sem 7 (i), sem 7(i+ 1) inverzids viszonya a permutacié semelyik maés
tagjaval nem valtozik meg.

Ha i,j tetsz6leges (nem feltétleniil egyméds uténi) szamok, akkor (a szomszédos
elemek felcserélésével)

e Mozgassuk 7(i)-t 7(j)-ig: ez j —i — 1 1épés;

e Cseréljik fel 7(i)-t w(j)-vel; ez 1 1épés;

e Mozgassuk vissza 7(j)-t m(¢) helyére: ez j —i — 1 1épés.
Osszesen 2(j — 1 — 1) + 1-szer véltozik a paritds, ez paratlan szdm. O

8.2. Megjegyzés. Ha i # j, akkor [i, j| € Sym([n]|) az a permutdcid, amely i-t és
j-t felcseréli, a tobbi elemet véltozatlanul hagyja:

12 ... i—1 i i+1 ...j—1 35 j+1 ...n
12 ... i—1 4 i+1 ...j—1 4 j+1 ..n)

A 2 elemet felcserélo, tobbi elemet fixen hagyd permutaciokat transzpozicioknak
is nevezik. A 8.1 Tételben azt lattuk be, hogy ha m € Sym([n]), akkor inv(w) és
inv(moli, j]) eltéré paritdsy, itt woli, j| az a permutacié, amit a fiiggvénykompozicié
ad: m-ben 7(i)-t és w(j)-t felcseréljiik.

8.1. A determinans geometriai jelentése, 1étezése, egyértelmiisége

Vektortereinkben szeretnénk bizonyos halmazok térfogatat értelmezni, vagyis
szeretnénk olyan fliggvényeket megadni, melyek vektortereink (bizonyos) részhal-
mazaihoz az alaptest elemeit rendeli — amennyire csak lehet — hasonléan ahhoz,
ahogy pl. R? illetve R? (egyes) részhalmazainak teriiletét, térfogatdt értelmeztiik.
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A térfogat-fogalom ilyen altalanositasanak szandéka a kovetkezo kihivasokat ve-
ti fel: tetszoleges test felett szeretnénk dolgozni, eredményeink olyan testekben is
érvényesek lesznek, amiket jelenleg el sem birunk képzelni. Emiatt mégkevésbé lehet
intuiciénk arrél, hogy (jelenlegi tuddsunk alapjén) ismeretlen testek feletti vektor-
terekben hogyan lenne érdemes definialni a térfogatot. De hasonlé nehézségekbe
itkoziink akkor, ha egy jol ismert test (pl. R) felett egy — mondjuk — 17-dimenzids
vektortérben prébaljuk a térfogatot értelmezni. Ha a vektortér dimenzidja elég
nagy, még jol ismert test feletti, véges dimenzios vektorterek esetében sincs jol mo-
tivalhato elképzelésiink a sokdimenziés halmazok térfogatairdl, mely kizardlag a
vektorterek algebrai szerkezetére alapoz. Tovabbi probléma, hogy azok a halma-
zok, melyeknek térfogatot szeretnénk tulajdonitani, meglehetésen bonyolult szer-
kezetliek lehetnek (sokdimenzids gorbe felilletek hatarolhatjak 6ket, de akar még
ennél is szabdlytalanabbak lehetnek). Ezért a kovetkez6 szempontok szerint egy
picit kevésbé ambiciozus célt tliziink ki:

e ebben a kurzusban végig véges dimenzids (de tetszoleges, (0 karakterisztikdji)
test feletti) vektorterekben fogunk dolgozni;

e csak szogletes testek térfogatat akarjuk értelmezni, ezek koziil is csak a para-
lelepipedonokét (ezek definiciéja alabb lesz);

e ugyanakkor térfogat-fogalmunk el6jeles lesz, ez késébb hasznosnak fog bizo-
nyulni (pl. egyes alkalmazdsokban, ha az a kérdés, hogy adott feliileten
idoegység alatt mennyi folyadék aramlik at, akkor a térfogat elgjelébe kodoltan
meg fogjuk tudni kiilonboztetni, hogy a kakao felénk aramlik-e, vagy a mésik
irdnyban);

e intuicié hianyaban a térfogatot axiomatikusan prébaljuk definidlni, valahogy
igy: azt ugyan (jelenleg még) nem tudjuk, mi a 17-dimenzids paralelepipedo-
nok eldjeles térfogata, de barmi is legyen ez, azt azért térfogat-fogalmunknak
tudnia kell, hogy ... és itt felsorolunk néhany plauzibilis tulajdonsagot, amit
minden ,,valamireval6” térfogat-fogalomnak tudnia kellene. Ezek mind konnyen
motivalhatd, szemléletiink szdmadra természetes tulajdonsidgok lesznek.

e Végiil a 8.5 Tételben igazoljuk majd, hogy pontosan 1 darab olyan fiiggvény
van, mely sokdimenzids paralelepipedonokhoz az alaptest elemeit rendeli gy,
hogy az el6z6 pontban emlitett elirasaink teljestilnek. Ezek utan azt mond-
hatjuk majd, hogy a sokdimenziés (eléjeles) térfogat az az egyetlen fiiggvény,
amely eleget tesz a térfogat-fogalommal kapcsolatos természetes elirasainknak.
Ezt kovetéen modszereket adunk majd térfogat-fliggvénytink kiszamitasahoz.

A sokdimenziés (de véges-dimenziés) paralelepipedonok definicidjaval folytatjuk.

8.3. Definicié (Paralelepipedonok). Legyen K tetszdleges test, n € N, Azay,...,a, €
K" wvektorok dltal kifeszitett n-dimenzios paralelepipedon csiucsai:

£1a1 + Ega9 + - - - + Enlnp,

ahol eq, ..., e, € {0,1}.
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8.4. Definicié (Determindns fiiggvény). D : (K™)" — K determindns fiigguény, ha
Vay,...,a, € K" (sorvektorok), Yc € K, ¥b e K":

1. D(ay,...,cai,...,a,) =cD(ay,...,a;...,a,);

2. D(ay,...,a; +0b,...,a,) = D(ay,...,a;,...,a,) + D(ay,...,b,... a,);

3. Hai# j, akkor D(ay,...,a;...a4,...a,) = —D(a1,...,a;j...a4;...ay);

4. D(I,) =1 ahol I, az n X n-es egységmdatrix.

A determinans fliggvény adja majd a sokdimenzids eljeles térfogat fogalmat.
Mielott folytatnank, végigmegytink az el6z6 definicioban szereplé pontokon, és 0ssze-
vetjiik a térfogat-fogalommal kapcsolatos intuiciénkkal.

e Az (1) pont szerint, ha egy paralelepipedon egyetlen élét c-szeresére nyujtjuk,
de a tobbi élét valtozatlanul hagyjuk, akkor a térfogat c-szeresre valtozik. Fz
elég plauzibilis: ha pl. két egybevagd kockat egymasra tesziink tugy, hogy egy-
egy lapjuk pontosan fedje egymast, akkor egyrészt olyan téglatestet kapunk,
melynek egyik éle a kockak élhosszanak duplaja lesz, tobbi éle valtozatlan ma-
rad; masrészt a 2 kockabdl allé téglatest térfogata valoban duplaja az eredeti
kockak térfogatanak.

e A (2) pont is hasonléan intuitiv, javaslom, hogy rajzold le 2-dimenziéban.

e (3) a térfogat elgjelével van kapcsolatban. A paralelepipedonok irdnyitasat
azzal lehet kodolni, hogy milyen sorrendben adjuk meg az oldaléleit.

e Végiil (4)-nek csak skdlazasi, ,,mértékegység-valasztasi” szerepe van: azt rogziti,
hogy az egységnyi élhosszusagu kocka térfogata egységnyi.

8.5. Tétel (Determindns létezése és egyértelmiisége). Véges n-re pontosan 1 db
determindns fligguény van.

Bizonyitds. (1) Unicitas: Tegyiik fel, hogy D determindns fliiggvény.
Legyenek a; ...a, € K", vegyiik fel ezeket a vektorokat koordinatasan is: a; =

Z?:l aije;.
Ekkor:
D(ay,...,ay) =D (Z A1y Ciys - v o Z aninein> 4 e
i1=1 in=1
Z N Z alil .o -amnD(eil, e 7€in> = (*)
11=1 in=1
Vizsgaljuk meg az utolsé Gsszegben eléforduld D(e;,, .. ., e;, ) mennyiségeket.

1. eset: van j # k: i; = i,. Ekkor D(e;,,...,e;,)-ben a j-edik és k-adik sort
felcserélve egyrészt nem torténik valtozds (mert e;; = e;, ), masrészt cserekor 8.4 (3)
miatt kifejezésiink el6jelet valt. Ez csak ugy lehet, hogy D(e;,,...,e;,) = 0. Ezért
(*)-ban minden olyan Osszeadandé nulla (tehat elhagyhatd), melyek az 1. esethez
tartoznak.

2. eset: az iy, io,. .., 1, értékek paronként kiilonbozok, azaz (i1, . . . , i,) permutaciéja
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[n]-nek; jeloljiikk ezt a permutdciét m-vel. Ez azt jelenti, hogy az az F matrix,
melynek sorai e;,,e;,,...,e;, az egységmatrix sorainak permutdlasaval &ll el6. Az
egységmatrixbol F' megkaphatd 1gy, hogy az egységmatrixban pontosan annyi sort
cseréliink fel, mint amennyi 7 inverzidszama®. Ezért ebben a 2. esetben (8.4 (3)-at
és a 8.1 Tételt is figyelembe véve)

8.4 (4)

D(eiyy...,6;,) = (_1)inv(ﬂ)D(el, cey€n) (_1)1'%1)(77).

Az el6z6 2 eset szerint

)= D (=1D)"™Mar)a2e0) - Gurin)-

reSym([n])

Azt kaptuk, hogy ha létezik egyéltalan D deremindns fiiggvény, akkor az csak

D(ay,...,a,) = Z (=)™ a1 1y A2n(2) * * * A

meSym([n])

lehet.
(2) Egzisztencia: Legyen

J(ah e an) = Z (_1)inv(ﬂ)a1w(1)a2w(2) *o o Opg(n)-
meSym([n])

Megmutatjuk, hogy ez determinéns fiiggvény (azaz teljesiilnek ré a 8.4 Definiciéban
megadott tulajdonsigok).
e 8.4 (1) teljesiil, mert:

Tt ctiyeosan) = 3 (<D™t Clingy - anriry =
n€Sym([n])

C- Z (—].)inv(ﬂ—)alﬂ'(l)a%r(?) ©App(n) = CJ(ala sy Uy e 7an>‘
meSym([n])

e 8.4 (2) teljesiil, mert:

J(alj'__’ai+b’_..7an) = Z (—1)inv(ﬂ)a1ﬂ—(1)"'(aiw(i)+bw(i))"'anﬂ(n) =
neSym([n])

Z (_1)mv(7r)a17r(l) Qi) anﬂ'(n)+ Z (—1)1nv(7r)a7r(1) R bﬂ(z) © Opp(n) =

reSym([n)]) meSym([n])

J(ay, ... a5 ... a,) + J(ag, ..., b,... a,).

4Nyilvdn megkaphatjuk F-t mésképp is: pl. elészor feleslegesen oda-vissza cserélgetjiik a so-
rokat, és miutan visszakaptuk az egységmatrixot, eléallitjuk F-t... De az, hogy paros sok, vagy
paratlan sok csere kellett-e F' el6allitasahoz, az minden esetben ugyantgy lesz.
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e 8.4 (3) teljesiil a kdvetkezék miatt. Ha m € Sym([n]) tetsz6leges permutacio,
akkor legyen 7’ az a permutécid, melyet w-b6l 7(i) és m(j) felcserélésével ka-
punk (azaz " = mwo[i, j]). Figyeljitk meg, hogy ekkor a;r(;)tir(j) = Qir' (i) Wi (5)-
A 8.1 Tétel szerint 7w és 7’ inverzidszama eltér6 paritasi. Ezeket fejben tartva
(a legutolsé elétti 1épést a szdmolds utan magyardzva):

J(al,...,aj,...,ai,...,an) = Z (—1)i"”(”)a17r(1) '--ajﬂ(i)~~am(j) "'anﬂ(n) =
meSym([n])

meSymi([n))
— Z (_1)inv(ﬂ' )a/lﬂ'/(l) [P aiﬂ/(i) e a’jﬂ'/(j) e anﬂ_,(n) =
meSym([n])
= D (D" arey iy Gy Gy = = (a1, an).
weSym(n)

Az utolsé el6tti 1épésben annyi tortént, hogy 7w helyett n'-re Osszegeztiink.
Mivel a 7 — 7’ fiiggvény bijekcié Sym([n])-rél sajatmagéba, ezért a két sorban
a szummak belsejében pontosan ugyanazok az Osszeadanddk jelennek meg,
csak méas sorrendben. Ezért az osszegiik tényleg egyenlo; az utolso elotti 1épés
is helyes.

o 8.4 (4) teljesiil, mert:

J(eh R en) = Z (_1)inv(7r)elﬂ_(1) “ Cnn(n)-

weSym([n])

De tetszbleges i-re az e; egységvektornak csak egyetlen koordinataja (éppen
az i-edik koordinataja) kiilonbozik nullatél. Ha tehat w(1) # 1 vagy w(2) # 2
vagy ... vagy m(n) # n, akkor ei(1)- - €nx(n) mindig nulla lesz. Egyetlen
permutécioé esetén nem lesz nulla ez a szorzat: akkor, ha 7(1) = 1,7(2) =
2,...,m(n) = n, és ekkor a kérdéses szorzat minden tényezéje 1 lesz. Ezért
J(er,...,e,) =1

O

8.6. Definicié (Determinans). Adott n € N-re a 8.5 Tétel szerint egyértelmien
létezo determindns fligguényt det-tel jeloljuk:

det(A) = Z (—1)™ ™ a1y asm@)  * * Gnn(n)-

m€Sym([n])
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8.2. A determinans kiszamitasa

8.7. Tétel. VA € K™ ": det(A) = det(AT).
Bizonyitds. Vegyiik észre: ha m € Sym([n]) egy permutécié, akkor
inv(r) = inv(7 ')

mert tetszoleges i, j < n-re

1, 7 inverzidoban van 7-ben, <
i<j,den(i) >7(j) &

m(j) < m(i), de mH(m(i)) < 7~} (7 (7)), &
7(j), (i) inverziéban van 7~ !-ben.

aip - Qip
Legyen A= | : .. 1 |. Figyeljik meg, hogy tetszileges m € Sym([n])-re

Ap1 - Qpn
A1x(1)A27(2) ** * Qnp(n) = Ar—1(1)107—1(2)2 " * " Ax—1(n)n

(hiszen ugyanazokat a tényezoket szorozzuk, csak més sorrendben). Ekkor

det(A) = Z (—1)inv(ﬂ)a1n(1)a2n(2) “ o App(n) =

weSym([n]

> (D)™ a1 2) et (g =
weSym([n]

Z (—l)mv(ﬂil)an(l)lan@)z Ce Uy = det(AT).

m—leSym([n]

]

Ha n értéke kicsi, akkor [n] Osszes permutaci6it konnyen at tudjuk tekinte-
ni. Ennek segitségével n kicsi értékeire képleteket fogunk megadni a determinédns
kiszamitaséra.

e n = 1: det(a) = a, hiszen [1]-nek egyetlen permutaciéja van, melyben nincs
inverzio. Ennek megfeleléen, a 8.6 Definiciéban szereplé szumma 1-tagi. A
det(a) = a képlet Osszhangban van a geometriai szemléletiinkkel is: az 1-
dimenziés paralelepipedonok szakaszok; oldalélitk hossza (vagyis a) egyuttal

az 1-dimenzios térfogatuk is.
a b

e n =2: det . 4] = ad — be, hiszen [2]-nek két permutéciéja van: (0,1) és

(1,0). Az els6ben nincs inverzié, a méasodik inverzidészama pedig 1. Ezért, az
n = 2 esetben a 8.6 Definicioban szereplo szumma két 6sszeadandobdl all, és
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értéke ad — be. A 2025 nov. 21.-1 el6éadason mutattam geometriai bizonyitast
arra, hogy a sikon az (orig6bdl induld) (a, b) és (¢, d) pontokba mutaté vektorok
altal kifeszitett parallelogramma teriilete (azaz 2-dimenziés térfogata) valéban
ad — be (errél a hallgatéktdl elektronikus anyagot nem kaptam; nem nagy baj,
a vizsgara e teriiletképlet geometriai biznyitasat igysem kell tudni).

A Sarrus-szabdly egy moddszer 3 x 3-as matrixok determinansanak kiszamitasara.
Ez is azon milik, hogy a [3] halmaz 6 darab permutaciéjat még mindig viszonylag
konnyt attekinteni. A Sarrus-szabaly 3 x 3-asndl nagyobb matrixokra nem
marad érvényben, illetve hasonld, konnyen megjegyezheto, egyszerii modszerek
nincsenek. Tehét a Sarrus-szabaly:

1. frjuk le a matrixot, majd az els6 két oszlopot ismételjiik meg jobb oldalon;
2. A pozitiv tagok a féatléval parhuzamosan balrél jobbra haladé nyilak mentén;

3. A negativ tagok a mellékatloval parhuzamosan jobbrél balra haladé nyilak
mentén.

det(A) = (a1a22a33 + a12a93a31 + a13a21a32) — (A13092a31 + 1102339 + A12a21033).

8.8. Példa. Szdmitsuk ki a kovetkezd mdtriz determindnsdt:

213
A=1{4 0 5
1 21

det(A)=(2-0-14+1-5-143-4-2)—(3-0-1+2-5-24+1-4-1)
— (04+5+24) — (04+20+4) =29 — 24 = 5.
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Soratalakitasok és determinans

3 x 3-asnal nagyobb matrixok determinansait ugy is meghatarozhatjuk, hogy
specidlis alakira hozzuk &ket. Az dtalakitdsok (pl. elemi sor- és oszlopéatalakitdsok)
soran kontrollaljuk, hogyan valtozik a determinans, és bizonyos specidlis alaku (pl.
az alabb definialt als6- vagy fels6-haromszog) matrixok determindnsait konnyen meg
fogjuk tudni hatarozni.

8.9. Tétel (Elemi soratalakitdsok hatdsa).

1. Ha az i-edik sort c-vel szorozzuk: a determindns c-szeresére vdltozik;

2. Ha az i-edik és j-edik sort felcseréljiik: a determindns —1-szeresére vdltozik;
3. Ha van 2 eqyenld sor, akkor a determindns értéke 0;

4. Ha eqyik sor c-szeresét a masikhoz adjuk: a determindns értéke nem vdltozik.

Bizonyitds. (1) és (2) azonnal kovetkezik a 8.4 Definiciobdl, azért illesztettiik ezeket
is allitasaink kozé, hogy minden elemi soratalakitdas hatasat megadjuk.

(3)-at (picit kevésbé éltaldnos formdban) megfigyeltiik mér a 8.5 Tétel unicitdsra
vonatkozé részének 1. esetében. A teljesség (és a teljes dltdnossag) kedvéért meg-
ismételjiik ugyanazt a gondolatot: tegyiik fel, hogy valamilyen i # j-re matrixunk
1-edik és j-edik sora egyenlé. Ekkor egyrészt, az i-edik és j-edik sort felcserélve nem
torténik valtozds, mésrészt 8.4 (3) miatt a determindns értéke —1-szeresére véltozik.
Matrixunk determinédnsa tehdt egyenld sajatmaga (—1)-szeresével; ez csak tgy lehet,
ha a determindns érétke 0.

a; + ca; a; a; a;
(4): det : 4 W) et t | +edet | ®) Qet c | +0. m

8.10. Megjegyzés. Az elemi oszlopmiveletekre ugyanigy valtozik a determinans,
mint a megfeleld sormiiveletekre, mert a 8.7 Tétel szerint tetszbleges (négyzetes)
matrixnak és transzponaltjanak ugyanannyi a determinédnsa.

8.11. Definicié (Haromszogmétrix).
A e K™ fels6 haromszogmadtrix, ha a fédatlo alatti elemek 0-k.
Hasonloan, A alsé hdromszogmadtrix, ha a fodtlo feletti elemek 0-k.

8.12. Tétel (Haromszogmatrix determindnsa). Ha A € K™*" felsé (vagy alsé)
hdaromszogmadtriz, akkor a determindansa a fodtlo elemeinek szorzata:

det(A) = A11G922 * * " App-

Bizonyitds. Jeldljiik id-el az (1,2,3,...,n) permutéiciét (id az ,identitas”-t roviditi
arra utalva, hogy ez a permutécié minden elemet fixen hagy (nem csindl semmit)).
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Felsé haromszogre: ha m € Sym([n]), m # id, akkor van i, melyre 7(i) < . Egy
ilyen i-re a;r; = 0, mert A fels6 haromszog. Egyrészt

det(A) = > (=1)"™Ma11)a252) - Gunr);
reSymi(in])

masrészt a bizonyitds eleje szerint, ha 7 # id, akkor az air(1)2x(2) - * - Unr(n) SZOT-
zatban valamelyik tényezé nulla, ezért a szorzat is nulla. Tehat det(A) szummés
alakjaban mindegyik, 7 # id-hez tartozé osszeadandé nulla, igy csak 7 = id marad:
det(A) = aj1ags - - - Apy. O

8.13. Példa.

det =2-4-6=48.

S O N

1
4
0

S Ot W

8.3. A determinans kiszamitasa kifejtéssel

8.14. Definicié (Aldeterminans). Ho A € K™™ és 1 < i,5 < n, akkor A;; €
K@=0x(=1)" qr o mdtriz, melyet A-bol dgy kapunk, hogy A-bdl kitéréljik az i-edik
sort és j-edik oszlopot.
8.15. Definicié (Kifejtések).

o A i-edik sor szerinti kifejtése:

SKAA) = Z(—l)”jaij det(A”),
j=1
o A j-edik oszlop szerinti kifejtése:
OK](A> = Z(—l)”jazj det(Aw)
i=1

Az elébbi dsszegekben megjelend (—1)"77 elGjeleket a sakktébla-szabaly segit
memorizalni: a matrix elso soranak elsé elemét pozitiv eldjellel latjuk el, a tobbi
elemet pedig ugy, hogy eldjele kiilonbozzon a toéle balra, illetve a felette elhelyezkedd
elemhez tarsitott elojeltol.

8.16. Tétel (Kifejtési tétel). Vi, j: det(A) = SK;(A) = OK;(A).

Bizonyitds. SK;(A) = det(A) a kovetkezok miatt: A d-edik sordt felirhatjuk D7 aje;
alakban, ahol a;;e; = [0,...,0,a,,0,...,0], tehat a jobboldali 6sszeadandé vektorok
mind olyanok, hogy legfeljebb 1 koordinatdjuk nem nulla. Ezt figyelembe véve

11 s Q1n 11 s Q1n
@11 - Qin : " : : - :

det(A) "2V det [ : .. ¢ | =det|ay 00 0 [+ adet| 0 0--0 ap
(07 Ann : ) : : ) :

anl e Qpp anl e Qpn
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ezért elég belatni, hogy tetszoleges j-re

a1 aij A1n
det 0 e CLZ']‘ s 0 = (—1)i+jaij det(AU)
anl PRI an] PEEEY a/nn

Az i-edik sort mozgassuk az 1. sorba: ez (i — 1) db sorcsere, ezzel a determindns
értéke (—1)"l-szeresére valtozik. Ezutdn a j-edik oszlopot mozgassuk az 1. oszlop-
ba: ez tjabb (j — 1) db oszlopcsere, ezzel a determindns eléjele tovabb valtozik az
elézd (—1)7~L-szeresére, az el6jel osszesen (—1)"7~2 = (—1)"_szeresére valtozott.
A sor- és oszlopceserékkel azt kaptuk, hogy

all DY alj DT aln al] 0 .. O
: oo aij Qi Qin
det | O -+ ay -+ O | =(-D""det| : . ,
a’nl DY a‘nj DT ann an] DY DT ann

az el6z6 sor jobboldaldn all6 matrixot jeloljik B-vel. B jobb alsé (n—1) x (n—1)-es
része épp A;;. Ekkor

det(B) = Z (_1)inv(7r)bl7r(l) e bnﬂ(n)

meSym([n])

De B els6 sordban az elso elem kivételével minden elem 0, ezért az el6bbi 6sszegben
minden olyan Gsszeadandé 0 lesz, melyben 7(1) # 1. Ezért elég az (n — 1)-elemt
{2,...,n} halmaz permutécidira Gsszegezni:

det(B) =a;; Y (1) Dby -+ ba(ny = ai; det(Ay),
ne€Sym([n]—{1})

és emiatt valdoban
n

det(A) =Y (=1)"a;; det(Aj).

j=1

Az OK;(A) = det(A) allitast hasonldan, vagy akar a transzpondlt determinanséara
vonatkozé 8.7 Tétellel lehet elintézni. ]
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9. Tovabbi tudnivalék, alkalmazasok

9.1. Rang, inverz, determinans néhany tulajdonsaga

9.1. Tétel (Rang és matrixmiiveletek). Legyenek A, B € K™*™.

1. rang(A+ B) < rang(A) + rang(B);
2. rang(AB) < min{rang(A), rang(B)}.

Bizonyitds. (1): Legyen {u1,. .., Uang(a)} bazis O(A)-ban és {v1, ..., Vrangm)} bazis
O(B)-ben. Ekkor {uq, ..., Grang(A): V1, - -, Vrang(B)} generatorrendszere O(A + B)-
nek, igy:

rang(A + B) = dim O(A + B) < rang(A) + rang(B).

(2): AB j-edik oszlopa:
(AB).j =Y bjAu.
k=1

Tehat AB oszlopai A oszlopainak linedris kombinécidi, ezért O(AB) C O(A) emiatt
rang(AB) = dim O(AB) < dim O(A) = rang(A).
Hasonléan: AB sorai B sorainak linedris kombindcidi, ezért S(AB) C S(B) és

rang(AB) = dimS(AB) < dim S(B) = rang(B).

Inverz matrix tulajdonsagai

9.2. Tétel. Legyenek A, B,C, D € K"™*", és tegyik fel, hogy A és B invertdlhato
matrizok. Ekkor:

1. (A=t = A, tovdbbd (CT)T = C;

2. (AB)™' = B~'A~!, tovdbbd (CD)T = DTCT;

3. Minden k € N esetén (A*)~1 = (A~Hk, tovdbbd (C*)T = (CT)*.

Bizonyitas.
1. Mivel
A- A=A A=1,

ezért A™! inverze éppen A, azaz (A™1)"! = A. A transzponalds definici6jabol
kozvetleniil kovetkezik, hogy (CT)T = C.
2. Vizsgéljuk:
(AB)(B'A™) = A(BB YA = AA™ =11,

Hasonléan:

(B'AYAB)=B YA 'AB=B"'B=1,.
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Tehat B~'A™! valéban az AB inverze, azaz (AB)™' = B~ 1A~L.
Most legyen i, j < n tetszoleges. Ekkor

((CD)T)ij = (CD)ji = Z Cjkai-

Maésrészt:
n

(DTCT)Z']‘ = (DT m CT ZDkz jk-
k=1
A két 6sszeg megegyezik, tehat (CD)T = DTCT,
3. Indukciéval bizonyitjuk (A*)=t = (A71)k-t
Alaplépés: k = 1 esetén trivialis.
Indukcids lépés: Tegyiik fel, hogy (A*)~! = (A~1)*. Ekkor:

(Ak+1)fl — (AkA)fl — Afl(Ak)fl — A71<A71)k — (Afl)kJrl'

A transzponadlasra vonatkozo allitas hasonlé médon igazolhaté.
O

Négyzetes matrixok invertalhatésaganak ekvivalens
feltételei

9.3. Tétel. A € K™ " esetén ekvivalensek:
rang(A) = n (mazximdlis rang);

dim(O(A)) = n (oszloptér teljes dimenzids);
dim(S(A)) = n (sortér teljes dimenzids);

A invertdalhatd;

det(A) # 0.

Bizonyitds. (1) < (2) < (3): A 7.47 Definici6 szerint rang(A) = dim(O(A4)) és a
7.46 Tétel szerint dim(O(A)) = dim(S(A)).

(1) < (4): Ez a 7.53 Tétel (egy részének) atfogalmazésa.

Crds Lo~

(4) = (5): Ha A invertdlhaté, akkor A™'A = I, {gy a Determindnsok szorzdstétele
(aldabbi 9.4 Tétel) szerint:

1 = det(I,) = det(A ™1 A) = det(A ') det(A) = det(A) # 0.

(5) = (1): Hozzuk A-t redukalt 1épcsés alakra elemi soratalakitdasokkal. A 8.9
Tétel szerint mindegyik elemi soratalakitds nemnulla determindnsi matrixbo6l nem-
nulla determinansti matrixot csindl. Ezért, a redukdlt 1épcsés alakot L-el jelolve,
ha det(A) # 0, akkor det(L) # 0, tehat L f84tléjdban nincs 0 elem. Igy L minden
oszlopaban van vezérelem, ezért (a 7.43 Tétel alapjan) rang(A) = n. O
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Determinansok szorzastétele

9.4. Tétel (Determinansok szorzastétele). A, B € K™*" esetén det(AB) = det(A) det(B).

Bizonyitds. 1. eset: det(A) = 0. Ekkor rang(A) < n, ezért a 9.1 Tétel miatt
rang(AB) < rang(A) < n, tehat pl. a 9.3 Tétel miatt det(AB) = 0.
2. eset: det(A) # 0. Tekintsiik a kovetkezd fliggvényt:

_ det(AB)
1(B) = det(A)

Ellenérizhet6, hogy f determindns fiiggvény (azaz teljesiilnek rda a 8.4 Definicié

kitételei). Pl. f(1,) = gzzgg‘% = 1, sth. Mivel a 8.5 Tétel szerint csak egy determinans

fiiggvény van K™ "-en, ezért f(B) = det(B). Tehat:

det(AB)

ot " det(B) = det(AB) = det(A) det(B).

9.2. Bazistranszformacio

Ebben az alfejezetben azt vizsgaljuk, hogy ha egy (véges dimenzids) vektortérben
adott két bazis, és ismerjiik egy vektor koordinatait az egyik bézisban, akkor ho-
gyan hatarozhatjuk meg ugyanannak a vektornak a koordinatait a masik bazisban,
vagyis hogyan térhetiink at egyik bézisb6l a mésikba. Kénnyii meggondolni (de az
alabbi, 9.5 Tételben mindjart be is latjuk), hogy az a fiiggvény, amely a vektorok
egyik bazisban adott koordindtaihoz a masik bazisbeli koordinatait rendeli, linearis.
Ezért a koordinatak bazisok kozti atszamoldsa matrixszorzassal megoldhato; a meg-
felel6 matrixot meg is adjuk a 9.5 tételben.

9.5. Tétel. Mint eddig is, legyen V wvektortér a K test felett. Tegytk fel, hogy
B={b,....bn} CV és D={dy,...,d,} CV bazisok V-ben.

1. A B-rél D-re vald dttérés mdtriza

Tpep = (bilp --- [balp),

azaz az oszlopvektorok a b; vektorok D-beli koordindtdi. Ez azt jelenti, hogy
Minden v € V' esetén:

["U]D =Tpen [U}B-

2. Tyt 5 = Trep.

Bizonyitas.

113



1. Legyen

t11 ... tln
v="1[v1 ... VB, Thep =
tol o tom
Ekkor a matrix j-edik oszlopa:
tlj
(Toep)sj=| | =bjlp-
tnj
Mivel . .
v = Z’Ujbj és bj = Ztkjdka
j=1 k=1
ezért
T SIVES o] 0 SN 1Y
j=1 k=1 k=1 \j=1
lgy
t11 tln (%1
[v]p = : =Tp. p[v|B
tnl tnn Un,

2. Elég belatni, hogy
TBeD TD%B = [n-

Legyen E = {ey,...,e,} a sztenderd bazis, ahol

Ekkor:
(Tpep Tpep)ej = Tpep(Tpepe;) = Tpeplbjlp = [bjls = €.
Mivel ez minden j-re teljesiil, ezért

TpepTpep = 1In,

114



9.6. Tétel (Linedris leképezés matrixdnak megvaltozasa bazisvaltaskor).

Legyen ¢: V' — V linedris leképezés, és A € K™*™ a @ mdtriza a sztenderd bdzisban.
Legyen B = {by,...,b,} C V egy bazis, E = {e1,...,e,} a sztenderd bazis, és
T =Tg.p. Ekkor minden v € V' esetén:

[o(v)]p = (T AT) [v] 5.
Bizonyitds.
[T AT [v]p = T A[Tv]g] = T Allp = T e (v)]e = [2(v)] 5.

]

9.7. Példa. Legyen B = {by, by} egy bdzis R*>-ben, ahol by = [(1)} és by = E}

Adjuk meg a Tg.e mdtrizot, ahol £ a sztenderd bdzis.

1. Megoldés. A bazisvdltas matriz oszlopai a régi bazis (€) vektorainak az ij bazis
(B) szerinti koordindtds.

1
61:1'b1—|—0'b2 = [81]32{1,

e = m —(-1)- H 11 m — (Db +1by = [ess = {‘11} .

Tpee = [lei]s [ea]s] = B _11} :

9.3. Polinom-interpolacio

9.8. Definicié (Interpolaciés feladat). Adottak a paronként kiilénboz6 alappontok:

ag, ay, ..., a, € K és ahozzajuk tartozd értékek: by, by, ...,b, € K. Az interpolacids
feladat: Keressiink olyan f € K[z]| polinomot, amelyre:
f(a()) = bo, f((ll) = bl, ey f(an) = bn

9.9. Definicié (Vandermonde-matrix). Legyenek ag,aq,...,a, € K skaldrok. A
hozzdjuk tartozo Vandermonde-mdtrix:

1 a a@ ... ap
1 a a? a®
1 - 1 n+1)x(n+1
V(ao,al,...,an): . : . . . GK( )X )
1 a, a2 ... ao

9.10. Tétel (Vandermonde-métrix determindnsa).
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1. AV(ag,ay,...,a,) Vandermonde-mdtrixz determindnsa akkor és csak akkor 0,
ha generdlo-elemei kézitt vannak egyenldk (azaz van i # j : a; = a;).

2. Sot, a Vandermonde-madtriz determindnsdra érvényes:

det (V(ao, ap, ... ,an)) = H (a; — a;).

0<i<j<n

Ebbél is adodik: det(V(ao,ay,...,a,)) = 0 pontosan akkor, ha létezik i # j
indexpdr igy, hogy a; = a;.

El6adéson én 1.-et bizonyitottam be (aminek van egy viszonylag rovid és csinos
bizonyitésa), 2.-t a 12. heti gyakorlat 1. feladataként tliztem ki. A hallgaték altal
kiildott anyagban ki volt mondva 2. is, ezért benne hagytam. Vizsgan elég 1.-et
tudni...

Bizonyitds. (1) révid bizonyitdsa a kovetkez6. <«=: ha valamely i # j-re a; = a;,
akkor V'(ag,aq,...,a,)-nak van két egyenld sora, ezért det (V(ao, ap, ... ,an)) =0
(pl. a 8.9 Tétel 3. pontja miatt).

=: Tegyiik fel: det (V(ao, ap, ... ,an)) = 0. Ekkor a 9.3 Tétel miatt V' (ag, a1, ..., a,)
oszlopai linearisan 6sszefiiggdk: van nem csupa-nulla Ag, ...\, € K:

0 1 n
0 Qg Qg
0 1 n
aj aj aq
(x)  0=2Xo A
0 1 n

Legyen f(x) = Ao+ Aoz + ... \,2", ez nem a konstans-0 polinom, mert valamelyik
Ax # 0. Tovabba, (x) els6 sora szerint ag gyoke az f polinomnak, (%) mésodik sora
szerint a is gyoke f-nek, ... (x) utolso sora szerint a,, is gyoke f-nek. Ez Gsszesen
osszesen n—+ 1 db gyok, de f legfeljebb n-edfoki. Mivel a 6.21 Kovetkezmény szerint
egy legfeljebb n-edfokd polinomnak legfeljebb n kiilonboz6é gyoke lehet, ezért az
ag, Ay, - . . a, gyokok kozott vannak egyenlok. [

Lagrange-interpolaci6

9.11. Tétel (Lagrange Interpolacios Tétele). Ha az (aq, . .., ay,) alappontok paronként
kiilonbézok, akkor pontosan 1 darab n-edfoki f € K|x] van, amely megoldja az in-
terpoldcios feladatot.

Bizonyitds. Legyen adott még by, by, ...,b, € K, olyan f polinomot kell talalnunk,
melyre f(ag) = by, ... f(an) = b,. Vegylk fel f-et hatdrozatlan (egyel6re ismeretlen)
egyutthatokkal:

flz)=co+crx+ -+ cpa™.
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Mivel

f(ao):bo = CO"'_ClaO‘f‘"'-i—Cnag:bO,
f(al):bl <~ CO—FClal_}_..._{_cnagL:bl’
f((ln):bn = CO+Clan+“‘+Cn(lZ:bn,

ezért f akkor és csak akkor megoldasa az interpolacios feladatnak, ha egyiitthatoi ki-
elégitik az el6zo linearis egyenletrendszert. Ezt az egyenletrendszert matrix-alakban
irva:

1 ag ag ag Co bo
1 a a? ... a} 1 by
(+) S S S B N e
2
1 a, a; ... a Cn b,
Az egyenletrendszer matrixa a V(ao,ay,...,a,) Vandermonde-matrix. Tovabba,

mivel feltettiik, hogy az (ao, . .., a,) alappontok paronként kiilonbozok, ezért a 9.10
Tétel miatt det (V(ag, ap, ... ,an)) # 0. Ezért pl. a 9.3 Tétel miatt V(ag, as, ... ,a,)
invertalhaté és emiatt (%) egyetlen megoldasa

(V(ao,al,...,an)) :
bn
Azt kaptuk, hogy egy legfeljebb n-edfoki polinom egytitthatéit pontosan egyféleképpen

valaszthatjuk meg, ha a polinom megoldasa az interpolaciés feladatunknak. O

9.12. Példa. Keressink mdsodfoki g € R[z] polinomot, amelyre g(0) =2, g(1) =4
és g(2) = 8.

2. Megoldas. Legyen g(z) = po + p1x + pex?. Felirjuk az egyenletrendszert:

g<0> = Mo = 27
g(1) = po + p1 + p2 = 4,
9(2) = po + 2p1 + 4ps = 8.

Madatriz alakban:

11 1] || =4

Ennek megoldasa: pog =2, pp =1, us = 1. Tehdt a keresett polinom:

g(r) =2+ x +2°
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Alkalmazas: Titokmegosztas

Tekintsiik a kovetkezd feladatot: adott egy s titok (pl. egy szam, vagy egy
rogzitett K test egy eleme). Van n titokgazda. A rendszer ugy miikédjon, hogy leg-
alabb k darab titokgazddnak (k < n) egytitt kell mitkodnie a titok visszanyeréséhez,
de kevesebb, mint k titokgazda ne tudjon semmit a titokrél, akkor sem, ha Ossze-
jatszanak.

3. Megoldas (Shamir k-kiiszobos titokmegosztasi mddszere). Legyen s € K a titok.

1. Vilasszunk véletlenszertien egy f € K|x] polinomot, melyre deg(f) < k—1 és
f(0) = s. (Ezt megtehetjiik, ha véletleniil vélasztjuk a by, ..., by értékeket,
majd megoldjuk a (0,s), (1,b1),(2,bs),...,(k — 1,bx_1) interpolaciés felada-
tot).

2. (i =1,...,n)-re az i-edik titokgazdaval kozoljik az (i, f(i)) part (vagyis egy
x = i pontbeli fiiggvényértéket).

3. Titok visszanyerése: Mivel Lagrange interpolacids tétele (9.11 Tétel) miatt
k pont egyértelmiien meghataroz egy legfeljebb (k—1)-edfoki polinomot, ezért
ha legalabb k titokgazda &sszejon, az 6 (i, f(i)) pontjaik alapjan interpoldcidval
rekonstrudlhatjak f-et, majd kiolvashatjék a titkot: s = f(0).

4. Biztonsag: Kevesebb, mint k titokgazda birtokdban az f polinomra sok le-
hetéség marad mert barmelyik s'-re megoldhaté a (0, s"), (i1, b;,), (42, biy), - -,
(ik—1, bi,_, ) interpolécids feladat is, ezek a megoldasok a k—1 darab konspirald
titokgazda szdmara megkiilonboztethetetlenek. Ezért szdmukra a titok (vagyis
£(0)) teljesen bizonytalan.

Masik konstrukcié az interpolaciés polinomra

Az interpolécids feladat megoldasara adunk egy mésik modszert it.

9.13. Definicié (Lagrange-féle alappolinomok). Legyenek aq, ..., a, € K pdronként
kiilonbozo alappontok. Ha i < n, akkor az i-edik Lagrange-féle alappolinom az a
legfeljebb n — 1-edfoki ¢; € K[x], melyre
Ei((lo) = 0, . K,(az) = ]_, .. .Ei(an) =0
(Ci(a;) =1, és ha i # j, akkor {;(a;) =0). Ilyen €; van:
_ @—a)-(@—a)@—am) - (@ —an)
li(z) =

(a; —a1) - (a; — ai-1)(a; — aiy1) -+ (@ — an)
9.14. Tétel (Interpoldciés polinom Lagrange-alakja). A g(a;) =b; (1 =1,...,n)
interpolacids feltételeket kielégild, legfeljebb (n — 1)-edfoki polinom egyértelmiien
megadhato a Lagrange-alappolinomok linedris kombindciojaként:

g(z) = Zb ().

€ Klz].
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Bizonyitds. Ez valéban megoldas, mert g(a;) = > bil;(a;) = b;. O

Mivel n adott alappont esetén az interpolacios feladatot pontosan 1 legfeljebb
n— 1l-edfoku f polinom oldja meg, ezért a 9.11 Tételben megadott polinom ugyanaz,
mint amit a 9.14 Tételben konstrudltunk. Valéjaban— megeldlegezve a 9.15 Tételt —
arrdél van szo, hogy f egyiitthatéit a legfeljebb n —1-edfokt polinomok vektorterében
mas és mas bazisban irtuk fel. A 9.11 Tétel bizonyitasdban a hatvanyfliggvények
alkotta szokésos

{1,2,2%,..., 2" 1}

béazist hasznaltuk és f egyiitthatéit egy egyenletrendszer megoldasanak aran tudtuk
meghatarozni. A 9.14 Tételben az {¢;,.../¢,} bazist haszndltuk. Ebben a bdzisban
f koordinatai villamgyorsan leolvashatdk; ha f egylitthatéit (vagyis koordinatait
a hatvanyfiiggvények alkotta béazisban) is meg akarjuk hatérozni, akkor az f-re
kapott kifejezést x hatvényai szerint rendezniink kell (illetve at kell térniink az egyik
bazisbél a masikba). Azzal folytatjuk, hogy az imént emlitett polinomhalmazok
valéban bazisok a megfeleld vektortérben.

A Lagrange-alappolinomok bazist alkotnak

9.15. Tétel. Legyen V = {f € K|[z| | deg(f) < n}. Ekkor V n-dimenzids vektortér
K felett, és a kovetkezd halmazok mind bdzisai V -nek:

1. By ={l1,0s,..., L.} (Lagrange-alappolinomok),
2. By ={1,x,2%, ... 2" '} (sztenderd bdzis).

Bizonyitas.
1. Linearitas fiiggetlenség: Tegyiik fel, hogy > | ¢;{;(x) = 0. Helyettesitsiink
r = a;-t:
0= Z cili(a;) =c¢; minden j=1,... n-re.
i=1
Tehat ¢; = -+ = ¢, = 0, a Lagrange-alappolinomok linearisan fiiggetlenek.
Mivel dim V' = n, ezért bazist alkotnak.

2. Sztenderd bazis: A {1,z,...,2" "'} halmaz nyilvan generdlja V-t. Linedris
fliggetlenségiiket igy lathatjuk be: legyen cg,....,c,_1 € K tetszOleges, és
vegyik {1,z,...,2" '}-nek a ¢y, . .. ., ¢, stlyokkal képzett linedris kombiné-
ciéjat. Ha erre

n—1
Z ezt =0,
k=0

de a ¢ egyiitthaték nem lennének mind nulldk, akkor a baloldalon egy nem
azonosan nulla polinom lenne, a jobboldalon viszont a 0 polinom; ez ellentmon-
dast adna. Azt kaptuk, hogy {1,z,...,2" '}-nek csak a csupa-nulla lineéris
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kombindcidja lehet 0 (= konstans-0 polinom), ezért {1,z,..., 2" 1} linedrisan
fiiggetlen.
O]

Newton-interpolacié (rekurziv megkozelités)

9.16. Tétel (Newton-interpolacid). Legyenek ay,...,a, € K pdronként kilonbozd
alappontok, by, ..., b, € K tetszbleges értékek. Ekkor van olyan f € K[z], deg(f) <
n, amelyre f(a;) = b; minden i =1,...,n esetén.

Bizonyitds. Teljes indukciot alkalmazunk n-re.

Alaplépés (n =1): Az f(z) = b; konstans polinom nyilvan megfelel (és nyilvan ez
az egyetlen j6 nulladfoki polinom).

Indukcidés lépés: Tegyiik fel, hogy n — 1 ponthoz mar tudunk konstrudlni in-
terpolacidés polinomot. Legyen g € K[z] olyan polinom, hogy deg(g) < n — 1 és
g(a;) = b; minden ¢ = 1,...,n — 1 esetén (ez az indukcids feltevés szerint 1étezik).
Legyen f(z) = g(z) + (b, — g(ay,))y, ahol £, a 9.13 Definici6 szerinti n-edik alap-
polinom. Ekkor deg(¢,) =n —1, és {,(a;) = 0 minden ¢ = 1,...,n — l-re. Ezért,
ha i < n, akkor

flai) = g(a;) + (bn — g(an))ln(a;) = gea;) = bi.
Végiil
flan) = glan) + (bn — g(an))ln(an) = g(an) + (bn = g(an)) = by.
Tgy f(x) kielégiti az dsszes feltételiinket (beleértve a fokszémra vonatkozot is). [

9.17. Megjegyzés (Lagrange vs. Newton interpoldcid).

e A Lagrange-forma akkor elényds, ha sok killonbézd (by, ..., by) értékkészlethez
szeretnénk interpoldlni ugyanazon (aq, . . . , a,) alappontok mellett, mert az (;(x)
alappolinomokat (illetve az alappontok dltal generdlt Vandermonde-mdtriz in-
verzét) csak eqyszer kell kiszdmitani.

e A Newton-forma (és a fenti rekurziv konstrukcid) akkor hatékony, ha az
alappontok szama (n) folyamatosan novekszik (pl. sorban kapjuk az (a;,b;)
pdrokat), mivel az 1ij pont hozzdaddsa csak egy ij tag hozzdaddsdt igényli a
mar meglévd polinomhoz.

Taylor-polinom
Sok esetben szembesiiliink a kovetkezo feladattal: adott egy bonyolult f fliggvény,

szeretnénk egy egyszer(ibb (ezért konnyebben kezelhet$) masik, g fiiggvényre, mond-
juk egy g polinomfiiggvényre attérni gy, hogy g azért ,,hasonlitson” az eredeti f-re.
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Azt, hogy mit éretiink fliggvények hasonlésagan, tovabbi céljaink szerint sok médon
precizzé lehet tenni. Egy lehetéség az, hogy f és g helyettesitési értékei egyezze-
nek meg elére adott véges sok pontban. Ezt a valtozatot polinom-interpolaciéval
konnyen meg tudjuk mar oldani; és valoban, sok esetben hasznos, ha egy bonyo-
lult (fizikai, kozgazdasdgtani, stb. jelenséghez térsithatd) fliggvényt néhény he-
lyen megmériink, a mérési eredményeken polinom-interpolaciét végziink, majd az
eredménytil kapott polinommal kozelitjiik (,jésoljuk meg”) a bonyolult fiiggvény
helyettesitési értékeit olyan pontokban, ahol nem mértitk még meg (pl. fizikai, vagy
gazdaségi kérdések esetén akér a joviben).

Azt, hogy az f fliggvény , hasonlit” g-re, mas modon is értelmezhetjiik: megkove-
telhetjiik pl. azt, hogy egyetlen elore rogzitett a pontban f és ¢ elsé néhany
derivéltjdnak egyezzen meg a helyettesitési értéke (a nulladik dferivadlt maga a
fiiggvény). A feladat, amit meg akarunk oldani, tehéat az, hogy adott f-hez, a-hoz
és n € N-hez talaljunk g polinomot, melyre

fla) = g(a), f'(a) =4¢'(a),.... [ (a) = " (a).
A Taylor-polinomok erre a feladattipusra adjak meg a valaszt.

9.18. Definicié (Taylor-polinom). Legyen I C R nyilt intervallum, a € I, és f :
I — R n-szer differencidlhato az a pontban. Az f fiigguény a pont korili n-edfokd
Taylor-polinomja az a legfeljebb n-edfoki T, , r € R[z]| polinom, amelyre:

T (a) = f®(a) minden k =0,1,...,n esetén,

n7a7f

ahol fO = £, és Tffg’f a polinom k-adik deriwvdltjat jeloli. Az f-re vonatkozo de-
rivdlhatosagi feltételek csak arra szolgalnak, hogy értelmes legyen a kovetelményrend-
szerink (tudjunk a nem feltétlendl polinomfiigguény f sokadik derivdltjairdl beszélni).

9.19. Tétel (Taylor-polinom egyiitthat6i). Minden n € N-re: az n-edfoki Taylor-
polinom létezik, eqyértelmii, és a kovetkezo alakban irhato fel:

nFR) (g
Toag(z) = f—()@ —a)k.

k!
k=0

Bizonyitds. Rogzitsiik n-t és keressiik Ty, , j-et az {1, (z —a), (x —a)?, ..., (x —a)"}
béazisban hatdrozatlan (egyelére ismeretlen) py, ..., i, egytitthatékkal:

Thaf(x) = po + p(x — a) + po(r — a)? + -+ pp(z—a)™

Ugyanugy, mint az interpolécids feladat megolddsa sordn, a T, , s-re eléirt tulaj-
donsagokbdl el fogunk allitani egy linearis egyenletrendszert az ismeretlen pg, ..., i,
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egylitthatékra. Ehhez el6szor szamitsuk ki 7}, , ¢ (formalis) derivéltjait:

g (@) = 0L+ i + (= a) + pia(x — @)’ + - + pu(w — )",
pap(@) =10y 4 2z —a)' + -+ gz — @)™
é/,a,f<x) =2l g+ -+ +n(n — Dy, (z —a)" 2,
T/L/’/m (x) =3. f3 + -+ n(n _ 1)(71 _ 2)Mn(=73 . a)"‘3

Tékif(l“) B4 4+nn—10)n-2)(n—k+ 1D (z—a)"*
n,a, f 2 .

Ezek segitségével szamitsuk ki T,, , s derivéltjait az x = a helyen:

Thar(a) =0 o,
T/L,a, (a) =1l M1,
é/,a,f(a) =2!- M2,
nas(@) =3l s,

Tio (@) = k- pu,

T (a) =n! -
n7a’f . l/[/n-

A definici6 szerint Téka) ila)=Ff *)(a), tehat:
(k)
i = / k'(a) minden £ =0,1,...,n esetén.

Ezzel az egyiitthatok egyértelmiien meghatarozottak, és a polinom a fenti Gsszeg
alakot Olti. H

Felmeriil a kérdés, hogy egy (elegendéen sokszor derivalhatd) f és a hozza
tartozé n-edik T, , y Taylor-polinom helyettesitési értékei mennyire maradnak kozel
egymashoz. Az a pontban persze megegyeznek a helyettesitési értékeik, de mi van,
ha a-bdl arrébb megyiink? Vajon kozel marad-e, milyen h-ra marad kozel T, , r(a +
h) és f(a+ h)? Bevezetve az R,, = f(a+ h) — T, q,5(a + h) jelolést, a kérdés az,
hogy mit mondhatunk az R, eltérésrol, ,maradéktagrél”. Ezt a kérdést tisztazzak
a Taylor-formulak, melyeknek sok véltozata van.
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9.20. Tétel (Taylor-formula Lagrange-féle maradéktaggal). Legyen f : [a,a+ h] —
R (h > 0) (n+1)-szer folytonosan differencidlhatd. Ekkor létezik olyan & € (a,a+h),

hogy
f(a+h) =Tous(a+h)+ R,

ahol a Lagrange-féle maradéktag

_ f(n+1) (5) hn+1.

" (n+1)!
Azaz pontosan:
— [P(a) ,  SVE) 0
h) = h Rt
flath) I P

k=0

Bizonyitds. Kalkulusbdl volt (pl. a Cauchy-féle kozépérték Tétel ismételt alkal-
mazésaval). O

Ez a tétel tehat azt mondja ki, hogy ha a-t6l h tavolsagra elmozdulunk, akkor
van olyan & € (a,a+ h), hogy az f(a+ h) — T, s(a+ h) eltérés éppen

f(n+1) (g) hn+l
(n+1)! '

Ez utébbi kifejezés hasonlit a Taylor-polinomok egyiitthatéira: olyan, mint az (n +
1)-edik Taylor-polinom f6tagja, de az egyiitthatéban az f fiiggvény (n + 1)-edik
derivaltjat nem az a helyen, hanem a & helyen vessziik (amir6l csak annyit tudunk,
hogy az (a, a+h) intervallumban van), és nem (z —a)""!-el szorzunk, hanem h"*1-el.
Osszefoglalva:

9.21. Megjegyzés.

1. Az interpolacios feladatban sok alappont van, és csak a helyettesitési értékekre
(nulladik derivaltakra) van el6irds. Ezzel szemben a Taylor-polinomok esetében
egyetlen alappont van, viszont nemcsak a helyettesitési értékre, hanem az elso
néhany derivéltra van eléiras. Késobbi félévekben megvizsgaljuk e két feladat
kozos altalanositasat (tobb alappont van, mindegyik alappontban a helyet-
tesitési értékek mellett el6 van még irva az els6 néhany derivalt értéke is).

2. Tudatositsuk, hogy a Taylor-polinom, Taylor-formula és Taylor-sor harom
kiilénb6z6 dolog!

(a) A Taylor-polinom a 9.18 Definicié szerint olyan polinom, melynek els6
néhany derivaltja egyetlen elore adott a pontban megegyezik egy adott f
fiiggvény els6é néhany derivaltjaval az a pontban;

(b) A Taylor-formula azt tisztdzza, hogy f értékei és az a pontban vett
Taylor-polinomjai értékei mennyire maradnak egyméshoz kozel, ha a-bél
arrébb megyiink;
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(c¢) A Taylor-sor pedig azt a kérdést vizsgalja, hogy ha adott f-re adott a-ban
minden n-re elkészitjik a 7, , y Taylor-polinomokat, akkor e végtelen sok
polinom egyiitt mutat-e valamiféle rendezettséget, pl. ha n végtelenbe
tart, akkor ez a polinomsorozat (valamilyen értelemben) visszakonvergal-
e az eredeti f-hez. Ezt a kérdést mas kurzusokon még sokat fogjatok
vizsgalni; a vélasz az lesz, hogy altalaban persze nem konvergédlnak vissza
a Taylor-polinomok az eredeti f-hez, de ha f ,szép” fiiggvény, akkor
mégis visszakonvergalnak.

3. Tehat a 9.20 Tétel azt mondja ki, hogy a fiiggvény értéke mindegyik (a +
h) pontban felirhaté a Taylor-polinom (kozelités) és egy maradéktag (hiba)
Osszegeként.

4. A maradéktag pontos formaja (itt Lagrange-féle) lehet6vé teszi a kozelités
hibajanak becslését, ha tudjuk korldtozni az (n+1)-edik derivéltat az interval-
lumon. Ennek egy alkalmazasa az, ahogy a zsebszamologépek kiszamitjak pl. a
sin fiiggvényt: valdjaban nem a sin fliggvényt szamoljék ki, hanem valamilyen
elére rogzitett j6 nagy n-re a T, 0qn Taylor-polinomot (ez az alapmiiveletek
ismételgetésével elvi nehézségek nélkiil barmelyik pontban kiszdmolhat6). A
zsebszamologépek tervezésekor n-et eldre rogzitik gy, hogy a kapott kozelités
elére adott (mondjuk 8 tizedesjegy) pontossaggal megegyezzen a sin fiiggvény
értékeivel. FEz megtehetd, mert a sin fliggvény oOsszes derivaltja az Osszes
pontban kozos korlat alatt marad, ezért a maradéktag abszolutértéke elore
feliilbecsiilhetd.

5. Ha f maga is polinom, és n > deg(f), akkor R, = 0, hiszen f™+Y) = 0. Ez
persze abbdl is latszik, hogy ha n > deg(f), akkor a 9.18 Definicié értelmében
f sajatmaganak n-edik Taylor-polinomja (minden a-ra), ezért a 9.19 Tétel
egyértelmiiségre vonatkozo része miatt f =T, , ;.

9.22. Példa (Az e” fiiggvény Taylor-polinomja a = 0 koriil). Legyen f(x) = e”.
Ekkor f®)(z) = e*, igy f®(0) = 1 minden k > 0 esetén. Az n-edfoki Taylor-
polinom a = 0 korul:
1, r? 28 "
Tn’07ex($): HZL' :1+$+§+§++F
k=0

A Taylor-formula szerint tetszoleges x-re:

2 n I3
e"=1+x+ % +---+ % + ﬁx"“, valamely & € (0, x)-re.

9.4. LU-felbontas

Ebben az alfejezetben elégséges feltételt adunk arra, hogy egy (négyzetes)
matrix eléalljon egy alsé haromszogmatrix és egy felsé haromszogmatrix szorza-
taként. Ehhez megvizsgaljuk, hogy az elemi soratalakitasok hogyan végezhetdk el
matrix-szorzasokkal. Emlékeztetiil, az elemi soratalakitasok a kovetkezok voltak.
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() Az i-edik sort szorozzuk egy nem nulla ¢ € K skaldrral.

(B) Az i-edik és j-edik sort felcseréljik.

(7) Az i-edik sor c-szeresét hozzdadjuk a j-edik sorhoz (i # 7).

9.23. Tétel. Minden elemi sordtalakitds elédll gy, hogy az A € K™ mdtrizot
balrol megszorozzuk azzal a mdtrizszal, amelyet az I, eqységmatrizbol az adott sor-
dtalakitassal kapunk. Az « tipusi és i < j esetén a vy tipusi sordtalakitasokhoz

tartozo mdtrizok also hdromszégmadtrizok.

Bizonyitds. Szisztematikusan megvizsgaljuk az elemi soratalakitasok tipusait.

e (o) tipus: Az i-edik sor megszorzasa nemnulla skalarral. Ez megfelel az alabbi
diagonalis, igy alsé haromszogmatrixszal valo szorzasnak.

1 0

0 1

0 c
[0 0 0

0]
0

1

e () tipus: Az i-edik és j-edik sor felcserélése. Kénnyti ellendrizni, hogy ez is
eloall egy invertalhato elemi matrixszal valé balrél szorzéassal:

1 - 0 --- 0
0 0 e 1
0 1 0

.0

1

o (7;;) tipus: Az i-edik sor c-szeresét hozzdadjuk a j-edik sorhoz. Kénnyen
ellendrizheto, hogy ez az atalakitas végrehajthato az alabbi méatrixal valé balrdl
szorzassal (az i-edik és a j-edik sort irjuk ki, és az i < j esetet szemléltettiik):

1 -~ 0 --- 0
0 1 0
0 e 1

Ez szintén alsé haromszogmatrix, ha ¢ < j.
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9.24. Tétel (LU-felbontéas 1étezése). Ha B € K™ ™ olyan, hogy Gauss-elimindcioval
sorcsere nélkil lépcsds alakra hozhato, akkor léteznek

L alsé hdaromszogmdtrix, U felsé haromszogmdtrix,

melyekre

B=1LU.

9.25. Megjegyzés. A 9.24 Tétel elégséges feltételt ad arra, hogy eqy B € K™
matriz eloallithato legyen B = LU alakban, ahol:

e L alsé hdromszégmdtrix (lower triangular)
e U felsé hdromszégmdtrix (upper triangular).

Bizonyitds. A tétel feltételei miatt B 1épcsOs alakra hozasanal a Gauss-eliminacid
soran elég o tipusu és olyan v tipusu soratalakitdsokat végezni, melyekre i < j.
A 9.23 Tétel miatt ezek az &atalakitasok alsé haromszogmatrixokkal valé balrol
szorzasnak felelnek meg. Ezért léteznek Lq,..., L, alsé haromszogmatrixok ugy,

hogy
Ly---1L1B=1U,

ahol U fels6 hdromszogmatrix (hiszen 1épcsds alaki).

Mivel minden elemi soratalakitas visszacsinalhato elemi soratalakitasokkal, ezért
mindegyik L; invertdlhaté és L !is alsé haromszogmétrix (mert L; Uis «, vagy
megfeleld alakd v tipusu sordtalakitasnak felel meg). Ezért

B= (L. Ly)'U= (L L7HU.

De als6 haromszogmatrixok szorzata ismét alsé haromszogmatrix = készen vagyunk.

]

9.5. Ferde kifejtés, determinans és inverz, Cramer-szabaly

Emlékeztetiink ré, hogy a 8.14 Definicié szerint ha A € K™ és 1 < 4,5 <
n, akkor A; € K =DX(=D a7 a métrix, melyet A-bdl tigy kapunk, hogy A-bdl
elhagyjuk az i-edik sort és j-edik oszlopot. Az A;; jelolés 6sszekeverhetd azzal, ahogy
az A matrix i-edik soranak j-edik elemét is jeloltiik, ezért ebben az alfejezetben
A(i, j)-vel fogjuk jeldlni az A-bdl i-edik sora és j-edik oszlopa kitorlésével eléalld
(n — 1) x (n — 1)-es méatrixot.

9.26. Tétel (Ferde kifejtés és Cramer-szabdly).
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1. Ferde kifejtés®: ha j # i, akkor

n

S (— 1 ag det(A(), k) = 0.

k=1

2. Legyen A* az a mdtriz, melyet A-bol gy kapunk, hogy A-ban minden ele-
met kicserélink a hozza tartozo elojelezett aldeterminansra, majd az igy kapott
matrixot transzpondljuk:

(A)yj = (=1)" det(A(5, 1)).

Ekkor
det(A) 0
AAY = . = det(A) I,.
0 det(A)

3. Cramer-szabdaly: Ha A invertdlhato, akkor az
Ax =1

egyenlet egyetlen megolddsa
r=A""b
S6t, minden i-re

. det(A*l, . 7A*i717 b, A*H»ly Ce 7A*n)
B det(A) ’

X

ahol a szamldloban A i-edik oszlopdt b-re cseréljik.

Bizonyitds. (1) igazolasaval kezdiink. Legyen A’ az a matrix, amelyet A-bdl gy
kapunk, hogy a j-edik sort az i-edik sorra cseréljiik (de minden masik sort, az i-
ediket is, véaltozatlan formdban megtartunk; ezdltal A’-ben az i-edik és j-edik sor
egyenld lesz). Egyrészt,

det(A") =0,

mivel van neki két egyenlé sora. Mésrészt fejtsiik ki det(A’)-t a j-edik sor szerint:

n n

0=det(A) =) (1) al, det(A'(j, k) = Y _(—1)Fay det(A(j, k)),

k=1 k=1

és itt a sor elején 0, a sor végén pedig a ferde kifejtés szerepel.

5Az alabbi dsszeg hasonlit arra, mintha A-t az i-edik sora szerint kifejtenénk, azonban az i-edik
sor a;, elemeit nem a sajat el6jelezett aldetermindansaval szorozzuk, hanem a j-edik sor megfelel6
a;i, eleméhez tartozé eljelezett aldeterminanssal. Erre utal a ,ferde” kifejezés.
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(2) igazoldsa a kovetkezs. TetszOleges i, j-re:

n n

(AA)y =Y an(A7)g =Y aw(—1)" det(A(j, k).

k=1 k=1

Ha i # j, akkor ez 0 a ferde kifejtés (el6bb igazolt (1) ) miatt. Ha i = j, akkor

(AA"); = (=1)ay det(A(i, k) = det(A),

k=1

az 1-edik sor szerinti kifejtés miatt.
Tehat
AA* = det(A)1,,

vagyis
1

() A7 = det(A)

Végiil (3) bizonyitdsa a kovetkezd. Az nyilvanvald, hogy ha A invertélhato, akkor

Ax = b egyetlen megoldasa
x=A"'b,

ezt kombindlva a (2)-ben (néhany sorral feljebb) igazolt (x)-al, tetszOleges i-re:

n n

1

= (A7), =y (A Db, = —1)"* det(A(k,4))b
Zz ( ) Z( )k k det(A) Z( ) € ( ( 7Z)) k>
k=1 k=1
és a sor végén allé 6sszeg det(Aq, ..., Awio1,0, Asit1, - .., Aun) Kkifejtése az az i-edik
oszlopa szerint. O

A Cramer-szabdly egy elméleti jelentoségti megolddképlet. Megoldéképlet abban
az értelemben, hogy (egy meglehet&sen specidlis esetben) a lineéris egyenletrendszer
megoldasat egy attekintheto képlet formajaban adja meg; ez hasznos lesz késobbi
félévekben, amikor erre alapozva fogunk tételeket igazolni. Ugyanakkor a jelentosége
inkabb elméleti, semmint gyakorlati a kovetkezok miatt.

1. Ha az egyenletrendszer matrixa nem négyzetes, akkor fel sem meriil, hogy
a Cramer-szabalyt alkalmazzuk, mert csak négyzetes matrixnak van deter-
minansa;

2. Ha az egyenletrendszer matrixa négyzetes ugyan, de a determinéns nulla (azaz
nem pontosan 1 megoldds van), a Cramer-szabdly akkor sem alkalmazhaté
(mert 0-val kéne osztani);

3. Ha az egyenletrendszer matrixa négyzetes, és determinansa nem 0, akkor
a Cramer-szabaly alkalmazhaté ugyan, de nagyon miivelet-igényes: n isme-
retlen esetében n + 1 darab n X n-es determinanst kellene kiszamolni, mig
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a Gauss-eliminacié miveletigénye nagyjabdél 1 darab n X n-es determinans
kiszamitasaval ardanyos (hiszen a gyakorlatban a determinansokat sem kifejtéssel,
hanem pl. elemi soratalakitasokat hasznalva haromszog-alakra hozéssal érdemes
kiszdmolni).

9.6. Skalaris szorzas K"-ben

A 7.55 Tételben lattuk, hogy a K test feletti minden véges dimenzids vek-
tortérhez van n € N, hogy V izomorf K"-el. Tovdbbda, K" szerkezete elég konkrét
ahhoz, hogy egyszertien be lehessen vezetni rajta a skalaris szorzas miiveletét,
melyet az R?-ben és R3-ban kozépiskoldban megismert skaldris szorzds motival.
Nem véges dimenzids terekben a skalaris szorzas bevezetése tovabbi elokésziileteket
igényelne, ezt késobbi félévekre halasztjuk. Ebben a kurzusban a véges dimenzids
esettel ismerkediink meg, és egy alkalmazast is be fogunk mutatni: meg fogunk ol-
dani megoldhatatlan egyenletrendszereket (pontos megoldas helyett nyilvéan csak —
valamilyen egészen vilagosan definialt értelemben — optimalis kozelité megoldasokat
fogunk tudni talalni).

9.27. Definicié. Ha a,b € K™, akkor

<CL7 b> = Z akbk
k=1

az a és b skaldris szorzata.

Hangsuilyozzuk, hogy K"-ben az elobbi médon definidltuk a skalaris szorzast.
R2-ben és R3-ban masképp, geometriai megfontoldsokkal szokds definidlni a skaldris
szorzast, abban a felépitésben az tétel, hogy két vektor skalaris szorzata a koor-
dinataikbdl ugy szamolhaté ki, ahogy azt az el6z6 definicié koriilirja.

9.28. Definicié. Az a,b € K" vektorok merélegesek (=ortogondlisak) egymdsra
(jelolés a 1. b), ha skaldris szorzatuk 0:

alb < (ab)=0.

9.29. Tétel (A skalaris szorzds tulajdonsagai). Minden a,b,c € K" és A\ € K
esetén:

1. {a,by = (b,a),
2. {(a,\b) = Xa,b),

(

3. {a,b+c) = {(a,b) + (a,c).
Bizonyitas.
1.

<6L, b> = Zakbk = Z bkak = <b, CL>.
k=1 k=1
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(a, \b) Zak)\bk_)\Zakbk_ (a,b).

(a,b+c) = Zak (b, + k) = Zakbk—i-Zakck.
k=1 k=1

Direkt és ortogonalis kiegészités

9.30. Definicid. Legyen V' wvektortér, Wi, Wy C V' alterek. Azt mondjuk, hogy W,
és Wy egymas direkt kiegészito, ha teljesiulnek az aldbbi 1. és 2. pontok:

1. Wi NnWy = {0},
2.Nrx eV Jw, € Wy, wy € Wy i x=1w + ws.

3. Azt mondjuk, hogy Wy és W, merélegesek (=ortogonadlisak) eqgymadsra (jelolés:
W1 1 WQ}, ha
Yw, € Wl, Ywy, € Wy 1wy L ws.

4. Azt mondjuk, hogy W1 és Wy eqymds ortogondlis kiegészitoi V -ben, ha az elézd
1., 2. és 3. pontok mindegyike teljesil rajuk (tehdt 1. és 2. miatt direkt
kiegészitdk is).

9.31. Megjegyzés. R-ben (1) kovetkezik (3)-bdl, mert ha z € Wi N Wy, akkor (3)
miatt x L z, vagyis
S
k=1

amib6l z = 0 koévetkezik. A komplex test (és még sok mads test) felett ez a kovet-
keztetés nem marad érvényben: tekintsiik pl. az [1,i] € C? vektort. Erre

(1,4, [1,4) =1+ =0,
tehat [1,4] L [1,4], noha nyilvdnvaléan 0 # [1,1].
9.32. Példa. R?-ben:
Wy = {ke; | k € R}, Wy ={k(1,1) | k € R}.

Ezek nem ortogondlis kiegészitok, viszont direkt kiegészitok.

Wi-nek végtelen sok direkt kiegészitje van (Wa-ben az (1,1) vektor haszndlata
esetleges, barmilyen nemnulla a-val az origén dtmend, (1,«) irdnyvektori egyenes
direkt kiegészitdje lenne Wi-nek). De Wi-nek csak eqy ortogondlis kiegészitdje van:
az eo dltal kifeszitett egyenes.
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9.7. Linearis leképezések magtere és képtere

9.33. Definicié (Magtér és képter). Legyen V és W wvektorterek, ¢ : V. — W
linearis leképezés.

o ker(p) ={veV|plw) =0} CV ayp magtere.
e im(p) ={p)|veV}CW ay képtere.

Ha ¢ : V — V linedris leképezés, akkor [¢] jeloli ¢ matrixat a sztenderd bazisban.

9.34. Tétel. Legyen V wvéges dimenzids (mondjuk n-dimenzids) vektortér a K test
felett, p, 'V — V linedris leképezések. Ekkor

1. [p o] = [¢]|[Y] (itt a jobboldalon mdtrizszorzds van);

2. ha ¢ bijekcid, akkor [o™'] = [p]};

3. ker(p) ésim(p) alterei V-nek;
4. Dimenzictétel: dim(ker(p)) + dim(im(p)) = n;
5. Tetszbleges R € K™ ™-re S(A) és N'(A) ortogondlis kiegészitok.

Ebbél vizsgara elég tudni az elsé 4 pont allitdsat (bizonyitas nélkiil), és az 5.

pontot bizonyitassal.

Bizonyitds. (1): Legyen b € V tetszéleges vektor, [b] a koordinata-vektora (a szten-
derd bézisban). Ekkor

[ o ][b] = [o(4(0))] = [ ([1BD)] = []([¥[6]) = ([][¥])[b]-

Ez minden b vektorra igaz, specidlisan igaz a b = ey, ..., e, sztenderd bazis vekto-
raira is. A b = e; vektorra alkalmazva azt kapjuk, hogy a baloldali [¢ o ¢] matrix
j-edik oszlopa egyenlé a jobboldali [¢][¢)] szorzatmatrix j-edik oszlopaval, és ez min-
den j-re igaz. Ezért val6ban, [ o ¢] = [¢][¢].

(2):
o7 Yle] = o7 o] = I,
ezért [p71] = [p] 7.
(3): Ha vy, v9 € ker(yp) és X € K, akkor
p(v1 + v2) = p(v1) + p(v2) =0
p(Avr) = Ap(v1) =0,

tehat vy + vy € ker(p) és Avy € ker(p). Ez mutatja, hogy ker(yp) zart a vektortér-
miiveletekre, ezért altér.

Hasonldan, ha vy, v € im(p) és A € K, akkor van wy,wy € V : p(wy) = vy és
o(ws) = ve. De ekkor

v + v = p(wr) + p(ws) = (wy + ws)
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és

Avy = dp(wy) = p(Awy),

ezért v + ve € im(p) és Avy € im(p), azaz im(yp) is zart a vektortér miiveletekre,
tehat altér.

(4):

Emlékeztetiink ra, hogy tételiink kimondasakor rogzitettiikk vektortertink di-

menzi6jat: dim(V') = n. Valasszunk egy {b1,...,br} C ker(p) bézist a magtérben.
Egészitsiik ki ezt V egy B bézisava: B = {b1,..., bk, brs1,...,b,}. Megmutatjuk,
hogy {p(bgs1), .- ., p(b,)} bazisa im(p)-nek.

o Generalds: Legyen w € im(p). Ekkor van olyan v € V, hogy ¢(v) = w.
Allitsuk el6 v-t a B bazisban: v = Z?Zl Aib;. Ekkor

w =) = <,0(Z /\ibi) = Z Aip(bi) = Z Aigp(bi)),

mert (b)) = -+ = p(by) = 0, hiszen by, ... by mindegyike ¢ magterében van.
Tehét {©(brs1), .., 0(bn)} generdtorrendszer im(p)-ben.

e Linedris fiiggetlenség: Tegyiik fel, hogy > 1" .| pip(b;) = 0. Ekkor

i=k+1 i=k+1 i=k+1
Mivel {by, ..., by} bézis a magtérben, léteznek ay, ..., ay skaldrok, hogy
n k
Z /Lzbl = Z()éjbj.
i=k+1 j=1
Atrendezve: .
Z(—Oéj)bj + Z uzbl = 0.
j=1 i=k+1
Mivel B = {by,...,b,} linedrisan fliggetlen, ezért ay = -+ = ;. = 0 és
frr1 = -+ =, = 0. Tehdt {©(bk+1), ..., 9(bs)} linedrisan fliggetlen.

Ezek szerint dim(im(p)) = n — k = n — dim(ker(y)), ami épp a dimenzidk (4)
szerinti (bizonyitandd) Gsszefiiggését adja.

(5)

A 9.30 Definicié pontjait kell ellenérizniink. Eldszor azt mutatjuk meg, hogy

S(A) L N(A). Ehhez legyen b € N(A) és d € S(A) tetszbleges, azt kell beldtnunk,
hogy b L d. De

(x) beN(A) & Ab=0 & Vi: (Ab); =0 < Vi: (Au,b) =0.
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Mivel d € S(A), ezért eléall A sorainak linearis kombindcidjaként: vannak olyan
ai, . ..o, € R szdmok, hogy d = Y7 | ;A;.. Viszont ekkor

(d,b) = <Z @A, b) = Z a; (A, b) (¥) jobboldala 0,
=1

i=1
vagyis valoban b L d.

Az vildgos, hogy S(A) N N(A) = {0}: tegyiik fel, hogy a b = [by,...,b,] vektor
S(A) NN (A)-ban van. Ekkor az el6bb igazolt rész szerint b L b, azaz

0= (b,b) :zn:bf,
=1

amib6l by = by =--- =b, = 0.

Legyenek B = {b1,..., by} C S(A) és D = {di,...,d,,} C N(A) bazisok A sor-
terében és nullterében. Allitjuk, hogy BU D linearisan fiiggetlen. Legyenek ugyanis
Ayeooy Mgy 1y - -+ i € R tetszolegesek. Ha

k m
i=1 j=1

akkor .
=1 j=1

adddik, de a baloldal S(A)-ban, a jobboldal N (A)-ban van, vagyis — egyenléségiik
miatt — midkét oldal benne van S(A) NN (A)-ban. Ezért az el6z6 bekezdés szerint
mindkét oldal 0. Viszont B és D bazisok, emiatt

ez mutatja, hogy B U D tényleg linearisan fiiggetlen.
Az el6z6 bekezdés miatt a bizonyitds befejezéséhez elég azt meggondolni, hogy

dim(N(A)) + dim(S(A)) = n.

Ehhez legyen ¢ : R" — R™ ¢(x) = Az. Ekkor, mivel N'(A) = ker(p) és O(A) =
im(p), ezért

dim(N(A)) + dim(S(A)) "2 dim(NV(A)) + dim(O(A)) =

(4) (Dimenziététel)

dim(ker(y¢)) + dim(im(y)) n,

és ezzel készen vagyunk. O
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9.8. Ellentmondasos (tilhatarozott) linedaris egyenletrendsze-
rek optimalis kozelité megoldasa

Tegytik fel, hogy meg kell oldanunk egy olyan Ax = b lineéris egyenletrendszert,
melyek egyenletei ellentmondanak egymésnak (pl. az egyenletrendszer jobboldala
mérési eredményekbol szarmazik, de a mérések pontatlanok). A linedris egyenlet-
rendszerek megoldhatdsdganak méatrixrangos jellemzésébdl (7.50 Tételbél) tudjuk,
hogy az Az = b egyenletrendszer pontosan akkor ellentmondésos (azaz pontosan ak-
kor nincs neki megoldésa), ha b nincs benne A oszlopterében. Mit tehetiink ilyenkor?
Megprébalhatjuk megkeresni O(A)-ban a b-hez legkdzelebbi O vektort, és az eredeti
egyenletrendszer helyett Az = V-t oldjuk meg. Mivel ¥'-t O(A)-bdl valasztottuk,
ennek az egyenletrendszernek biztosan lesz megoldasa. Tovabba O’ véalasztasa miatt
igaz lesz, hogy az Ay alakd vektorok koziil (vagyis O(A) elemei koziil) épp a mi
x megoldasunk lesz az, melyre Az (vagyis b') a lehet6 legkozelebb lesz b-hez (spe-
cialisan, ha b mégis benne van O(A)-ban, akkor b és V' tavolsiga 0 lesz, ezért a fenti
kozelité megoldas igazi, pontos megoldés lesz).

A fenti 6tlet keresztiilviteléhez mar csak a megfelel6 tavolsagfogalom bevezetése
van hatra, illetve az, hogy adott b-hez megtalaljuk az O(A) altér legkozelebbi elemét.
Geometriai ismereteink alapjan tudjuk, hogy R? illetve R3 adott altereiben b-nek -
a szobanforgd altérre vett - meroleges vetiilete van a legkozelebb b-hez. Ez adja az
oOtletet, hogy sokdimenzids esetben is a merdleges vetiilettel probalkozzunk. Ebben
az alfejezetben tehat

e bevezetjiik sokdimenzids vektorok hosszét (és ezzel pontpéarok tavolsagat),

e kidolgozzuk a merdleges vetiilet megfeleld altaldanositasat,

e cllendrizziik, hogy intuicionk helyes: adott altérben adott b-hez tényleg b
meroleges vetiilete van legkozelebb,

e példat adunk egy ellentmondasos linearis egyenletrendszer kozelito optimaélis
megoldasara.

A kovetkezo félévben folytatjuk majd ilyen irdanyu vizsgalatainkat, lesznek tovabbi
(hatékonyabb, szebb mddszerek).

9.35. Definicié. Ha b € K™, akkor b hossza: |b| = 1/ (b, b).

Az el6z6 definicié jeloléseinek megtartasaval vegytik fel b-t koordinatas alakban:

b=[by,...,b,]. Ekkor
(b,0) = 07,
i=1

ez — a Pitagorasz-tétel miatt — R2-ben illetve R3-ben a sikvektorok, illetve térvektorok
szokasos hossz-négyzetét adja. Ennek a természetes altalanositasa szerepel az el6z6
definiciéban.

9.36. Definicié. Legyen W a K™ vektortér altere, és legyen v € K™. Azt mondjuk,
hogy a v' € W wvektor merdSleges vetiilete v-nek W-re, ha

v—1v 1L W.
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9.37. Tétel. Legyen n € N és legyen V C R"™ egy altér. Ekkor

1. Pitagorasz-tétel: Ha u,v € R" ésu L v, akkor |u+ v|* = Jul]® + |v|*;

2. Yu € R"3u' € V : u' merdleges vetiilete u-nak V -re;

3. V-ben u merdleges vetiilete van legkozelebb u-hoz.
Bizonyitds. (1) igazoldsa a kovetkez6:
lutol* = (utv, utv) = (u,utv)+ (v, utv) = (u, u)+(u,0) +(v,u) +(v,0) = ().
Mivel azonban u L v, ezért (u,v) =0 és (v,u) = 0. Ezért

(%) = (u,u) + (v, 0) = |u” + o],

ahogy allitottuk.

(2) Igazolasdhoz vegyiink fel egy B = {by,...,bx} € V bézist V-ben. Legyen
A az a matrix, melynek a {by,..., by} vektorok a sorai. Vegyiink fel egy D =
{brs1,...,bn} S N(A) bazist N(A)-ban. A 9.34 Tétel 5. pontja miatt B U D bézis
R™-ben. Ezért vannak a4, ..., a, € R szamok, melyekkel

n
i=1
k

Legyen u' = > ., a;b; (tehat v’ eléllitasdhoz u koordinatdaibdl csak a V-be esé
vektorok koordindit hasznaljuk). Azt allitjuk, hogy ez az u meréleges vetiilete u-
nak. Az vildgos, hogy v’ € V. Tovabbd, mivel

u—u = Z a;b;,
i=k+1
ezért u —u' € N(A). Mivel N(A) merSleges S(A) = V-re ezért u — v L V is
teljestil, tehat v’ a 9.36 Definicid szerint u’ valéban merdleges vetiilete u-nak.

A merodleges vetiilet egyértelmiiségét és 3.-at egyszerre latjuk be. Legyen v € V
tetszoleges és legyen v’ tetszéleges merdleges vetiilete u-nak V-re. Ekkor u—u" LV
ésnyilvan ' —v € V. Ezért u—v’ L v'—v. Ezt az (1)-ben igazolt Pitagorasz-tétellel
kombinalva azt kapjuk, hogy

1) PiTétel |u . u/|2 + |u/ . ’U|2‘

() Ju=ol = (=) + @ =)
Ezek szerint |u —v| akkor és csak akkor minimalis, ha |u’' —v|? = 0, vagyis ha v = u/.
Ez egyrészt mutatja, hogy V-ben u merdleges vetiiletei vannak legkozelebb u-hoz.
Masrészt, u'-n kiviil, u-nak nem lehet masik u” meréleges vetiilete V-re, mert akkor
ezt a mésik u”-t adva értékiil (x)-ban v-nek, nem a minimélis tavolsdg adédna. [
9.38. Példa. Legyen W az x-tengely R*-ben: W = {(z,0) | x € R}, és b = (3,4).
Ekkor b ortogondlis vetiilete W-re: (3,0). Tdvolsdg: |b — (3,0)| = 4. Valdban,
barmely mds (x,0) pontra:

1(3,4) — (2,0)]* = (3 — z)* + 16 > 16,

és eqyenloség csak v = 3 esetén teljestil.
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Példa: egy ellentmondasos egyenletrendszer meg-
oldasa

Ebben az alfejezetben a a kovetkezo egyenletrendszert vizsgaljuk.

3T =3y =5
() Qy="7
r=-—1
Ez nyilvanvaléan ellentmondésos: a két utolsé egyenletbdl x — y = —8 kovetkezik,

ami ellentmond az els6 egyenletnek. Mielott megoldjuk, leirom, milyen geometriai
megfontolasok alapjan taldltam ki ezt az egyenletrendszert. Ez a megoldashoz nem
lenne sziikséges, de talan segithet megérteni a sok szamolas mogott rejlé gondolato-
kat.

Taldlomra vélasztottam egy sikot:

S: 2x+y—z=0.

Egyetlen szempontom az volt, hogy x,y és z egylitthatoi paronként kiilonbozzenek,
és kicsi egész szamok legyenek. Adjuk meg ezt a sikot paraméteresen: S egyenletében
y és z szabad valtozok, ezért S egy paraméteres eloallitasa:

1 1 1 1
—35+ 3t —3 3
S =s- |1 |(+¢t-|0

t 0 1

Valasszunk egy b’ pontot az S sikon, mondjuk az s = 4,t = 2 paraméter-értékekhez
tartozé pont legyen b'. Itt megint csak arra figyeltem, hogy s, t értékei kiillonbozze-
nek, parosak legyenek, hogy a menet kozben adédo tortek egészekké valjanak, és ne
legyenek til nagyok. Tehét v/ = [—1,4,2].

Legyen e a b’ ponton atmend, S-re merdleges egyenes. Ennek egy irdnyvektora
megegyezik S egy normélvektoraval: [2,1,—1]. Ebbdl az e egyenes paraméteres
egyenletrendszere:

-1 2
4 { +u-| 1
2 -1

Legyen b az e egyenes (mondjuk) az u = 3 paraméter-értékhez tartozé pontja:
b= [5,7,—1]. Ez nincs benne S-ben, de S-re val6 merdleges vetiilete &'. Az egyen-
letrendszeriink fejezze ki azt, hogy ezt a b-t akarjuk az S paraméterezésében szereplo
két vektor linearis kombindciéjaként eloallitani. Vagyis keresstink olyan x, y-nt, me-
lyekre

_1 1
2 2
1| 4+x-|10=1|7
0 1
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Ez nyilvanvaléan lehetetlen, mert b nincs az S sikban. Feltételeinket egyenletrend-
szerré alakitva kapjuk az alfejezet elején megadott (x) egyenletrendszert.

Ezek utan oldjuk meg (x)-ot a kordbbi fejezetek ismeretei alapjan (még egyszer
hangsilyozom, hogy késébbi félévekben lesz hatékonyabb médszer).

9.39. Példa (Megoldas vetitési mddszerrel). Az vildgos, hogy (*) ellentmondésos.
1. 1épés: Matrix alakba iras

A 5
2 2
x
A=10 1|, b=|T7], Ax:b,x:[].

1 0 -1
Meg kéne keresniink az egyenletrendszer jobboldaldanak (b-nek) merdleges vetiiletét
A oszlopterére.
2. 1épés: Oszloptér (O(A)) bézisdnak megvalasztdsa Az A matrix oszlopvektorai:
=1

a; =

— ON=

2
, Qag = 1
0

Ellendrizve: as nem skaldrszorosa a;-nek, tehat linedrisan fiiggetlenek. fgy
B ={a;,as} bazis O(A)-ban.

3. 1épés: Ortogondlis kiegészité bazisdnak megvalasztasa vagyis bazist kell
keresniink N (AT)-ban: Keressiik azokat a d € R? vektorokat, amelyekre ATd = 0:

10 1}
AT = | 2 .
5 10
Gauss-eliminaciéval
% 0 1 | 0] . % 01 1] 0
S5 10 |0 01 1| 0]
ez 1épcsos alaki. Megoldésa:
—2s —2
—s| =s-|—-1
S 1

Ezek szerint N(AT) egy bézisa: [—2,—1,1] (vegyiik észre, hogy ez parhuzamos a
feladat elkészitésénél hasznélt e egyenes iranyvektoraval!) Tehat a megfeleld teljes
bézis R3-ban: {a;,as, d}.

4. 1épés: b felirasa az el6bbi bazisban Keressiik A\, Ao, it skaldrokat gy, hogy:

b = )\1&1 + /\2&2 + ,Ud
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azaz

5 : 5 -2
-1 1 0 1

Ez linearis egyenletrendszer, eléadason Gauss-elmindciéval megoldottuk, a hall-
gatoktol kapott anyag errdl az eldadasrél nagyon eltért attél, ami elhangzott, ezért
ujragépeltem. A Gauss-eliminacié nem tul érdekes lépéseit nem gépelem be, csak a
megoldast from ide: A\; = 2, Ay =4, p = —3. ( visszahelyettesitéssel ellenérizhetd,
hogy ez tényleg megoldas, és mivel {a;,as,d} bazis, ezért tébb megoldas nincs is).
Tehat:

b = 2a1 + 432 + —3d.

5. lépés: Vetiilet meghatdrozasa. A vetiilet az O(A)-ba es6 rész, azaz a d
irdnyi komponens elhagyasaval:

b, = )\1&1 + )\Qag

aAZaZ 1
= ~1
+4|1] =14

0 2

b’ =2

— Ol

Vegyiik észre, hogy ez a b’ pontosan az, amit a feladat kitalaldsa soran az S sikon
valasztottunk!
6. 1épés: Az Ax = b’ egyenlet megoldasa. Az

x—%y:—l
4
2

8 L v
I

egyenletrendszert kell megoldani. Ez menne pl. Gauss-eliminaciéval, de most sze-
rencsére rogton latszik a megoldas: a két utolsod egyenlethdl x = 2, y = 4, és ez
kielégiti az els6 egyenletet is. Azt kaptuk, hogy az optimalis kozelité megoldds
r = 2, y = 4, ami azt is jelenti, hogy az egyenletrendszeriink A maéatrixdanak osz-
lopterében az A - [2,4]7 vektor van az eredeti jobboldalhoz ([5,7, —1]-hez) a lehetd
legkozelebb.

Mellesleg, vegyiik észre, hogy A - [2,4]7 = [~1,4,2] éppen az a V' vektor, amit
a feladat kitaldlasakor valasztottunk az S sikon, és az optimalis kozelité megoldast
adé [2,4]T sem véletleniil esik egybe a feladat kitalaldsa sordn a & megvélasztdsahoz
hasznalt s = 4, t = 2 paraméter-értékekkel.
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