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Előszó

Mi ez az anyag? Ez az iromány egy elektronikus segédlet, mely a BME-n, 2025
őszén, elsőéves matematikus hallgatók számára tartott

”
Bevezetés az algebrába - 1”

kurzushoz készült. Első, nyers változatát néhány lelkes hallgatóm késźıtette; ezzel
kapcsolatban az alábbi,

”
Hogy jött létre ez az anyag?” kezdetű bekezdésre utalok.

Az iromány egyetlen célja, hogy - a lehetőségekhez képest - minél pontosabban le-
hessen rekonstruálni, hogy mi hangzott el az egyes előadásokon. Azt gondolom, ezt a
célt nagymértékben (nyilván nem tökéletesen) sikerült is megvalóśıtani. A későbbi,
jav́ıtott változatokon folyamatosan dolgozunk, amint elkészül egy újabb változat,
elérhetővé teszem azt is.

Ez az iromány nem könyv. Rengeteg kiváló, magyar nyelven elérhető bevezető
algebra és bevezető számelmélet könyv kapható jelenleg is; ezekkel értelmetlen lenne
konkurálni, már csak azért is, mert számos esetben egykor én is ezekből tanultam,
ezekből inspirálódtam...

Ez az iromány nem egyetemi jegyzet abban az értelemben sem, hogy az
áttekinthetőség, tömörség érdekében a szövegbe rövid́ıtések, sőt akár képletek é-
kelődnek úgy, ahogy egy klasszikus, nyomtatott anyagban megengedhetetlen lenne.

Ahogy azt alább, a
”
Hogy jött létre ez az anyag?” kezdetű bekezdésben is ki fo-

gom fejteni, ennek a szövegnek a nyers változatát több hallgató önkéntes munkával
álĺıtotta elő. Emiatt az egyes fejezetek kidolgozottsága eltérő, néhányan rövid́ıtéseket
használtak, képleteket ı́rtak, mı́g mások kíırták a megfelelő szófordulatokat. Nem
egységes a szöveg nyelvi szempontból sem (kisbetű-nagybetű használata egyes el-
nevezésekben, egybéırás-külöńırás egyes kifejezésekben sajnos nem következetes és
emiatt nyilvánvaló, hogy a szöveg egyes részletei nyelvtanilag hibásak (hiszen, pl.
egyes elnevezésekben a kisbetűk-nagybetűk eltérő használata esetén legalább az
egyik változat hibás)). Mivel a vizsgaidőszak előtt el kellett készülnie ennek az
irománynak, az ilyen jellegű szöveggondozást (nyelvtani hibák, következetlenségek
jav́ıtását) későbbre halasztjuk, és mégegyszer hangsúlyozzuk, hogy egy valamirevaló
egyetemi jegyzetben ez a

”
hanyagság” elfogadhatatlan lenne! Tisztában vagyok vele,

hogy az erre vonatkozó kritikák teljesen jogosak.

Ez az iromány a Jegyzőkönyv ćımet kapta, ami arra utal, hogy egyetlen célunk an-
nak rögźıtése volt, hogy - a táblaképen túl - mi hangzott el előadáson; természetesen
az apróbb hibákat (index-eĺırásokat, előjel-tévesztéseket, stb.) igyekeztem korrigálni.
Kritikusan olvassátok, mert minden igyekezetem ellenére bizonyára maradtak ilyen
jellegű pontatlanságok ebben a szövegben is. Az ezzel kapcsolatos felelősség en-
gem terhel. Ha valaki hibát talál, megköszönöm, ha visszajelzi nekem. Az egyetlen
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lényeges változtatás az, hogy az egyes előadások legelején szereplő emlékeztetőket
elhagytuk, hiszen ebben a Jegyzőkönyvben az elhagyott emlékeztetők néhány oldal-
lal korábban teljes terjedelmükben megtalálhatók.

Ebben az irományban tehát (az előadások legelején szereplő rövid emlékeztetők
elhagyásán ḱıvül) mindent pontosan abban a sorrendben, abban a formában igye-
keztünk rekonstruálni, ahogy azt az előadáson feldolgoztuk. Ez sok esetben - kisebb-
nagyobb mértékben - eltér attól a feléṕıtéstől, ami a témakörök belső logikája szem-
pontjából ideális lenne, hiszen - mint minden egyetemi kurzus esetében - tekintettel
kellett lennem az óraelmaradásokra, a gyakorlatokra mindig biztośıtani kellett annyi
új ismeretet, ami nem sok, de nem is kevés a heti haladás szempontjából, koor-
dinálnom kellett, hogy - a néhány, nem is egyforma mértékben elmaradó gyakorlat
ellenére - a két gyakorlati csoport nagyjából ugyanott tartson, stb. Az előadásokon
elhangzottakhoz képest ebbe az anyagba további ismereteket szándékosan nem illesz-
tettem, de a szóban elhangzott, intuit́ıv magyarázatokat, történeti megjegyzéseket,

”
meséket” jobbára beléırtam, mert azt gondolom, hogy egyrészt ezek a kitérők - az

önmagukban is megőrzendő értéket képviselő - matematikai folklór részét képezik,
másrészt ezek nemcsak hasznos, nemcsak szórakoztató kitérők, hanem az anyag
lényegéhez tartoznak abból a szempontból is, hogy seǵıtik a mélyebb megértést, ori-
entálnak, hogy mit miért vizsglunk, az egyes részeket miért úgy vizsgáljuk, továbbá
az informális megjegyzéseknek önmagukban is komoly magyarázóereje lehet.

Hogyan használd ezt az anyagot?

”
Most elmagyarázzuk, hogyan kell olvasnod ezt a könyvet. A helyes mód

az, hogy nappal az ı́róasztalodra, este a párnád alá teszed, és teljesen az ol-
vasásnak szenteled magad... egészen addig, amı́g sźıvből, ḱıvülről nem tudod
az egészet.”

Saharon Shelah: Classification Theory.

A fenti idézettel ellentétben nem vagyok biztos benne, hogy a vizsgára készülés
idejében ezt az anyagot a legelső oldalától a legutolsóig teljes terjedelmében végig
kell olvasni. Ezt talán a vizsga után (pl. a következő regisztrációs héten) tedd meg,
hogy az őszi kurzus hangulatát felidézd, az előadásokon közösen eltöltött idő szép
emlékké nemesedjen és a sikeres vizsga, majd az azt követő megérdemelt pihenés
után ráhangolódj a tavaszi kurzusra. Egyes részletek szépsége akkor lesz szembetűnő,
ha az anyagot nagyjából ismered már.

A vizsgaidőszakban ezt az Előszót :-) és a tartalomjegyzéket, jelölésekről szóló nul-
ladik fejezetet érdemes alaposabban átböngészni, hogy később tudd, mit hol találsz.
A vizsgára készüléskor újabb források használata kifejezetten zavaró lehet az eltérő
jelölések, eltérő feléṕıtés, sőt az óhatatlanul eltérő matematikai tartalom miatt. Ez
az oka annak is, hogy ebbe a Jegyzőkönyvbe nem ı́rtam bele olyan új ismereteket,
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melyek az előadásokon nem hangzottak el. A vizsgára készüléshez a legjobb forrás
az előadásokon késźıtett jegyzeted. Ha valamelyik előadásról hiányoztál, vagy jelen
voltál ugyan, de a jegyzeteidből nem tudsz mindent rekonstruálni, akkor érdemes
megnézni ennek az irománynak a megfelelő részletét. Hangsúlyozom továbbá, hogy
a vizsgán számonkért anyag valamivel kisebb annál, mint ami előadáson elhangzott
(tehát a vizsgaanyag valamivel kisebb annál, mint ami ebben a Jegyzőkönyvben is
szerepel). Ugyanakkor azonban, a szokásoknak megfelelően, a vizsgán számonkért
anyag szerkezete kismértékben eltér attól, ahogy az anyag előadáson elhangzott. Ez
az eltérés szándékos: azt a célt szolgálja, hogy a vizsgára készülés során Te magad
azonośıtsd, hogy az egyes vizsgatételek mikor és hogyan hangzottak el előadáson;
ez a munka nagymértékben seǵıti a mélyebb megértést, ezért nem is célszerű meg-
próbálni elkerülni.

Ha ennek a Jegyzőkönyvnek a seǵıtségével sem sikerül rekonstruálni
egyes részleteket, kérlek keress, és konzultálunk!

Hogy jött létre ez az anyag? Ez az anyag úgy jött létre, hogy spontán, önszer-
veződő módon néhány hallgatóm szerkeszthető LaTex file-á alaḱıtotta az előadásokon
késźıtett kézzel ı́rt jegyzeteit. Ezt véletlenül tudtam meg. Elkötelezettségük le-
nyűgözött, tiszteletet ébresztett bennem, és lelkesedésük annyira meghatott, hogy
felajánlottam: az általuk késźıtett LaTex file-okat átnézem, szükség esetén kor-
rigálom, kiegésźıtem, egybeszerkesztem, és minden hallgatóm számára elérhetővé
teszem. Ennek a munkának az eredménye ez a Jegyzőkönyv.

Ezt az előszót azzal zárom, hogy köszönetet mondok azoknak a hallgatóimnak,
akik ezt a rendḱıvül nagy munkát elvégezték. Tehát HATALMAS KÖSZÖNET
(névsor szerinti sorrendben)

Balog Benjáminnak, Domokos Norbertnek, Gegő Leventének,
Kárpáti Noéminek, Sándor Ákosnak és Sándor Zéténynek.

Hathatós seǵıtségükért, prećız munkájukért, lelkesedésükért nagyon hálás vagyok!
Az általuk átadott nyers szöveget nagy örömmel, szeretettel csinośıtottam tovább;
azt ḱıvánom, Ti is ilyen örömmel olvassátok.

Budapest, 2025 December.
Sági Gábor
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5.7. Binomiális együtthatók és a Binomiális Tétel . . . . . . . . . . . . . . 45

6. Polinomok 48
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0. Alapfogalmak és jelölések

Gyorśırásos jelölések, rövid́ıtések

� TFH: Tegyük fel, hogy;
� ACSA: Akkor és csak akkor;
� ∃: Létezik;
� ∀: Minden;
� ∃!: Pontosan egy van;
� ...⇒ ...: Ha... akkor... .

Halmazelméleti alapfogalmak

� ∈: eleme;
� ⊂ illetve ⊆: valódi részhalmaz, illetve részhalmaz;
� ∩: metszet;
� ∪: unió;
� A \B vagy A−B: az A és B halmazok különbsége;
� N: természetes számok halmaza (N = {0, 1, 2, 3, . . . });
� N+: pozit́ıv egész számok halmaza (N+ = {1, 2, 3, . . . });
� Z: egész számok halmaza;
� Q: racionális számok halmaza;
� R: valós számok halmaza.
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1. Relációk, ekvivalenciarelációk és rendezési relációk

Ebben a részben bevezetünk néhány olyan fogalmat, melyekre később lépten-
nyomon szükségünk lesz (ráadásul nem csak algebrából).

1.1. Defińıció (Descartes-szorzat). Az A és B halmazok Descartes-szorzata:

A×B = {(a, b) | a ∈ A, b ∈ B}.

1.2. Példa. {0, 1} × {1, 2, 3} = {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3)}.

1.3. Defińıció (Reláció). Legyen A egy halmaz. Az A × A Descartes-szorzat egy
tetszőleges R részhalmazáról azt mondjuk, hogy kétváltozós reláció A-n.

1.4. Defińıció (Ekvivalenciareláció). Egy R ⊆ A×A reláció ekvivalenciareláció,
ha teljesül, hogy:

1. ∀x ∈ A : (x, x) ∈ R (reflexivitás);
2. ∀x, y ∈ A : (x, y) ∈ R ⇒ (y, x) ∈ R (szimmetria);
3. ∀x, y, z ∈ A : (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R (tranzitivitás).

1.5. Példa. Az alábbi első 3 példa ekvivalenciareláció, az utolsó nem az.
1. R = {(x, y) | x, y ∈ N} ekvivalenciareláció N-en;
2. R = {(x, y) | x, y ∈ N, x− y páros} ekvivalenciareláció N-en;
3. A = {egyenesek}, R = {(e, f) | e, f ∈ A, e ∥ f} ekvivalenciareláció a śık

egyeneseinek halmazán;
4. R = {(a, b) | a, b ∈ N, b = a+ 1} NEM ekvivalenciareláció N-en.

1.6. Defińıció (Ekvivalencia-osztály). Legyen R ekvivalenciareláció A-n és a ∈ A.
Ekkor az a ekvivalencia-osztálya:

a/R = {b ∈ A | (a, b) ∈ R}.

1.7. Tétel (Osztályfelbontás). Ha R ekvivalenciareláció A-n, akkor {a/R | a ∈ A}
part́ıciót alkot A-n:⋃

a∈A

a/R = A és a/R ̸= b/R ⇒ a/R ∩ b/R = ∅.

Bizonýıtás. Az előző sorban szereplő két álĺıtást az alábbi pontokban ellenőrizzük.
� Ha a ∈ A, akkor a ∈ a/R (reflexivitás miatt), tehát

A ⊆
⋃
a∈A

a/R ⊆ A,

ezért
⋃
a∈A

a/R = A.
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� Tegyük fel, hogy a/R ∩ b/R ̸= ∅, azaz ∃c ∈ a/R ∩ b/R. Ekkor (a, c) ∈
R és (b, c) ∈ R, tehát (a, b) ∈ R (szimmetria és tranzitivitás miatt), ezért
a/R = b/R. Azt kaptuk, hogy ha R két ekvivalencia-osztályának nem üres
a metszete, akkor a két ekvivalencia-osztály azonos egymással. Emiatt R
különböző ekvivalencia-osztályai páronként diszjunktak egymástól.

Az előző álĺıtás megford́ıtható: az A halmaz egy tetszőleges osztályfelbontásához
(part́ıciójához) tekintsük azt az R relációt A-n, melyre (a, b) ∈ R pontosan akkor
teljesül, ha a és b ugyanabban a part́ıció-blokkban van. Ekkor R ekvivalenciareláció
lesz, és a kiindulásul vett part́ıciót határozza meg.

1.8. Defińıció (Rendezési reláció).

• Egy R ⊆ A× A reláció rendezési reláció A-n, ha teljesül, hogy:
1. ∀a ∈ A : (a, a) ∈ R (reflexivitás);
2. ∀a, b ∈ A : (a, b) ∈ R ∧ (b, a) ∈ R ⇒ a = b (antiszimmetria);
3. ∀a, b, c ∈ A : (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R (tranzitivitás).

Az A halmazt a rendezés alaphalmazának nevezzük.

• Egy rendezési reláció teljes rendezés, ha:

∀a, b ∈ A : (a, b) ∈ R ∨ a = b ∨ (b, a) ∈ R (trichotómia).

• Egy rendezési reláció jólrendezés, ha az alaphalmaz minden nemüres részhalmazának
van legkisebb eleme.

1.9. Példa. N a szokásos rendezésével jólrendezett; Z a szokásos rendezésével tel-
jesen rendezett, de nem jólrendezett.

1.1. Archimédészi axióma, egészrészek, sűrűségi és approxi-
mációs tételek

1.10. Defińıció (Archimédészi axióma).

∀a ∈ R ∃n ∈ N : a < n.

1.11. Defińıció (Felső egészrész). Legyen x ∈ R. Ekkor ⌈x⌉ a legkisebb n ∈ Z,
melyre x ≤ n.

1.12. Defińıció (Alsó egészrész). Legyen x ∈ R. Ekkor ⌊x⌋ a legnagyobb n ∈ Z,
melyre n ≤ x.

1.13. Tétel. Minden valós számnak létezik felső egészrésze.
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Bizonýıtás. Legyen x ∈ R és A = {n ∈ N | x ≤ n}. Az Archimédészi axióma miatt
A ̸= ∅. Mivel N jólrendezett, A-nak van legkisebb eleme.

1.14. Megjegyzés. Ebből következik, hogy minden valós szám feĺırható

x = ⌊x⌋ + {x}

alakban, ahol {x} = x − ⌊x⌋ az x törtrésze (0 ≤ {x} < 1). Emiatt minden valós
számnak van alsó egészrésze is.

1.15. Tétel (Racionális számok sűrűsége).(
∀a, b ∈ R, a < b

)
∃c ∈ Q : a < c < b.

Bizonýıtás. Az Archimédészi axióma miatt ∃n ∈ N : 1
n
< b − a. Osszuk fel az

[⌊a⌋, ⌊a⌋+ 1] intervallumot n darab, egyenként 1
n

hosszú, (balról zárt, jobbról nýılt)
részintervallumra: [

⌊a⌋, ⌊a⌋ +
1

n

)
,
[
⌊a⌋ +

1

n
, ⌊a⌋ +

2

n

)
...

Ezek közül pontosan az egyik (mondjuk a k-adik) kis intervallum fogja a-t tartal-
mazni. Az n választása miatt a és b távolsága 1

n
-nél nagyobb, ezért az a-t tartalmazó

(k-adik) kis intervallum nem tartalmazza b-t. Tehát ⌊a⌋ + k
n

racionális szám a és b
között.

1.16. Tétel (Dirichlet approximációs tétele). Legyen α ∈ R és n ∈ N, n > 0. Ekkor
∃p, q ∈ Z: ∣∣∣∣α− p

q

∣∣∣∣ < 1

nq
és 1 ≤ q ≤ n.

Bizonýıtás. Osszuk fel a [0, 1) intervallumot n darab, egyenként 1
n

hosszú, balról
zárt, jobbról nýılt kis részintervallumra:[

0,
1

n

)
,
[ 1

n
,

2

n

)
, ...

Tekintsük a 0, {α}, {2α}, . . . , {nα} számokat, ahol {x} = x − ⌊x⌋. Ez n + 1
darab szám a [0, 1) intervallumban. Ezért a skatulyaelv miatt lesz köztük két szám
(mondjuk {iα} és {jα}, ahol 0 ≤ i < j ≤ n), melyek ugyanabba a kis, 1

n
hosszú

intervallumba esnek. Ekkor

|{jα} − {iα}| < 1

n
.
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De

{jα} − {iα} = (jα− ⌊jα⌋) − (iα− ⌊iα⌋) = (j − i)α− (⌊jα⌋ − ⌊iα⌋).

Legyen q = j − i és p = ⌊jα⌋ − ⌊iα⌋. Ezekkel az előző sor szerint

|qα− p| < 1

n
ezért

∣∣∣∣α− p

q

∣∣∣∣ < 1

nq
,

ahogy álĺıtottuk.

1.17. Megjegyzés. Dirichlet előző (1.16) tételében, ha n értékét rögźıtjük, akkor
csak véges sok olyan pozit́ıv q van, ami nevezőként felléphet, ezért csak véges sok
(p, q) párra teljesülhet a Dirichlet-tétel következménye. Az alábbi, 1.18 Tételben azt
mutatjuk meg, hogy minden irracionális α számhoz végtelen sok olyan racionális p

q

szám van, melyek 1
q2

-nél közelebb vannak α-hoz.

1.18. Tétel (Irracionális számok approximációja). Ha α ∈ R \ Q, akkor végtelen
sok különböző (p, q) számpár van, amelyre:

(∗)

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

Bizonýıtás. Indirekt tegyük fel, hogy csak véges sok ilyen (p, q) pár van. Legyen

ε = min

{∣∣∣∣α− p

q

∣∣∣∣ : (p, q) − ra (∗) teljesül

}
.

Mivel α /∈ Q, ezért ε > 0. Az Archimédészi axióma miatt ∃n ∈ N : 1
n
< ε. A

Dirichlet-tétel szerint ehhez az n-hez is van p′, q′ ∈ Z:∣∣∣∣α− p′

q′

∣∣∣∣ < 1

nq′
≤ 1

n
< ε.

Ez ellentmondás, hiszen ε defińıciója szerint a (p′, q′) számpár különbözik minden
olyan (p, q) számpártól, melyre (∗) teljesül (mert p′

q′
ε-nál szigorúan közelebb van

α-hoz).
Végül, a teljesség kedvéért megjegyezzük, hogy ha α ∈ Q, mondjuk α = p0

q0
, akkor

nagyon könnyű végtelen sok olyan számpárt találni, melyre a tétel következménye
fennáll. Ugyanis ekkor tetszőleges pozit́ıv n ∈ N-re

α− np0
nq0

= α− q0
q0

= 0,

ezért a végtelen sok (np0, nq0) számpár mindegyike kieléǵıt́ı (∗)-ot.
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1.2. Jólrendezések, rekurziók és a teljes indukció

1.19. Tétel. Legyen (A,≤) rendezett halmaz. A következő két álĺıtás ekvivalens:
1. (A,≤) jólrendezett;
2. A-ban nincs végtelen leszálló lánc, azaz A elemeiből nem képezhető egy szi-

gorúan monoton csökkenő a1 > a2 > a3 > · · · végtelen sorozat.

Bizonýıtás. (1) ⇒ (2): Ellentmondást keresve tegyük fel, hogy - (2)-vel ellentétben
- van végtelen leszálló lánc a1 > a2 > a3 > · · · . Mivel nincs legnagyobb természetes
szám, ezért az {a1, a2, a3, . . . } halmaznak nincs legkisebb eleme, ellentmondás.

(2) ⇒ (1): Legyen ∅ ≠ B ⊆ A tetszőleges. (1)-hez azt kell megmutatnunk, hogy
B-nek van legkisebb eleme. Mivel B nem üres, ezért van egy b0 ∈ B elem.

• Ha b0 nem a legkisebb B-beli, akkor ∃b1 ∈ B : b1 < b0.
• Ha b1 nem a legkisebb B-beli, akkor ∃b2 ∈ B : b2 < b1, ... stb.

A (2) feltétel miatt ezt az eljárást csak véges sok lépésen át lehet folytatni, ezért
B-ben van legkisebb elem.

Teljes indukció

1.20. Tétel (Teljes indukció elve). Legyen P a természetes számok egy tulajdonsága
és legyen n0 ∈ N. Ha

1. P (n0) igaz, és
2. ∀n ≥ n0 : P (n) ⇒ P (n+ 1),

akkor ∀n ≥ n0 : P (n) igaz.

Az álĺıtás szerint, ha meg akarjuk mutatni, hogy minden n0-nál nagyobb, vagy
egyenlő természetes szám rendelkezik a P tulajdonsággal, akkor ehhez elég megmu-
tatni, hogy

• P (n0) fennáll (ezt nevezzük Alaplépésnek) és
• ha P fennáll valamely n ≥ n0 természetes számra, akkor P fennáll n + 1-re is

(ezt nevezzük Indukciós lépésnek).

Bizonýıtás. Legyen

A = {n ∈ N | n ≥ n0 és P (n) nem igaz}.

Ellentmondást keresve tegyük fel, hogy A ̸= ∅. Mivel N jólrendezett, A-nak van
legkisebb eleme, legyen ez n. Ekkor P (n) hamis (mert n ∈ A) és n > n0, mert
P (n0) igaz. Ezért n− 1 ≥ n0 és P (n− 1) igaz (mert n volt a legkisebb természetes
szám, melyre P nem igaz). De az indukciós lépés miatt P (n− 1) igazságából P (n)
igazsága is következik; ez ellentmondás.

Tehát A = ∅, azaz ∀n ≥ n0 : P (n) igaz.

1.21. Defińıció (Rekurzió). Egy sorozatot rekurźıvan definiálunk, ha a sorozat
tagjait saját, kisebb indexű tagjai felhasználásával álĺıtjuk elő.
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Rekurźıv sorozatokra klasszikus példa a Fibonacci-számok sorozata. Részlete-
sebben, a nulladik és első Fibonacci-számok az f0 = 0 és f1 = 1; a sorozat további
tagjait az előző (kisebb indexű) tagjai seǵıtségével az fn+1 = fn + fn−1 rekurzióval
definiáljuk. A XIII. században ezt a sorozatot Fibonacci a nyulak szaporodásának
modellezése érdekében tanulmányozta, de nem Ő vezette be (korábban is ismert volt
már).

Egy második példa bemutatása érdekében emlékeztetünk rá, hogy adott n termé-
szetes számra n! jelöli az első n darab pozit́ıv egész szám szorzatát: n! = 1 · 2 · ... · n
továbbá az n! kifejezést

”
n-faktoriálisának” nevezzük. A faktoriális függvény is

kényelmesen definiálható rekurzióval: legyen 1! = 1, ekkor nagyobb számok fakto-
riálisai megadhatók az

(n+ 1)! = (n+ 1) · n!

alakban; tehát a fenti módon ebben a sorozatban is, a korábbi n. tagja seǵıtségével
adtuk meg a sorozat későbbi (n+ 1)-edik tagját.
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2. Algebrai struktúrák általában

Nyugtalańıtó, és nehezen megválaszolható az a kérdés, hogy
”
a számok mi-

csodák?” Pl. a természetes számok kavicskupacok? Vagy pénzkötegek? Vagy...?
Az ilyen irányú vizsgálódásokból az derült ki, hogy az esetek többségében MIND-
EGY IS, hogy konkrétan a természetes számok micsodák, a fontos az, hogy - bármik
is legyenek pl. a természetes számok - milyen összefüggések teljesülnek a rajtuk
végzett műveletekre (vagy még sarkosabban: milyen számolási szabályok vonatkoz-
nak rájuk). A kavicskupacokkal és pénzkötegekkel kapcsolatos érvelésekben az pl.
közös, hogy

”
x kupac + y kupac kavics összesen ugyanannyi, mint y kupac + x kupac kavics”,

és ugyańıgy,

”
x köteg + y köteg bankjegy összesen ugyanannyi, mint y köteg + x köteg bankjegy”.

Tehát nem az a fontos, hogy kavicskupacokat, vagy pénzkötegeket adunk össze,
hanem az, hogy a rájuk vonatkozó számolási szabályok azonosak. Ennek megfe-
lelően, az algebra a

”
műveletek tulajdonságait” vizsgálja. Ehhez tisztázni kell, mit

tekintünk műveleteknek. Erre egy meglehetősen általános válasz a következő.

2.1. Defińıció (Általános algebra).
Legyen A nemüres halmaz, legyen I indexhalmaz, és minden i ∈ I-re legyen fi egy
(esetleg sokváltozós) függvény A-n. Ekkor az

A = ⟨A, fi⟩i∈I

rendszert algebrai struktúrának (vagy általános algebrának) nevezzük. Itt A az alap-
halmaz, az fi-k pedig az A algebra műveletei.

Az előző defińıció jelöléseit megtartva tehát egy A általános algebrát úgy adunk
meg, hogy tisztázzuk, mi az alaphalmaza, hány művelet van rajta (azaz mi az I in-
dexhalmaz), és hogy az egyes műveletek külön-kölön hány változósak. Semmilyen
megkötés nincs I méretére: I lehet üres (ekkor nincs művelet az algebránkban),
I lehet véges halmaz, de I lehet akár végtelen nagy is (lehet megszámlálhatóan
végtelennél is nagyobb). Mindegyik fi művelet lehet 1-változós, vagy 2-változós,
vagy akár mégtöbb változós; általános algebrákban a műveletek változói számára
mindössze azt a korlátot szabjuk, hogy minden műveletnek csak véges sok változója
van. Azt azonban fontos hangsúlyozni, hogy minden művelet az alaphalmaz minden
olyan sorozatán értelmezve van, melynek hossza megegyezik a művelet változóinak
számával (azaz minden 2-változós művelet értelmezve van A2 minden elemén, min-
den 3-változós értelmezve van A3 minden elemén, stb.) Megengedünk 0-változós
műveleteket is, ezeket az A alaphalmaz kitüntetett elemeivel azonośıthatjuk. (Ez
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az azonośıtás csak egy nem túl fontos technikai részlet, kezelhetnénk a kitüntetett
elemeket külön, de akkor sok érvelés hosszabb lenne). Egy általános algebrában
lehet pl. 10 darab 5-változós + megszámlálhatóan végtelen 17-változós, + 45 darab
70-változós művelet. A klasszikus esetekben I-nek 1, 2, 3, vagy 4 eleme van; a fenti
értelemben pl. minden félcsoport, csoport, gyűrű, stb. egyúttal általános algebra is.

Az általános algebrák absztrakciós szintjén is sok érdekes és távolról sem triviális
tétel igazolható. Mi azonban ebben a félévben a klasszikus algebrai vizsgálatokban
felmerülő algebrai struktúrákkal foglalkozunk, melyeket elsősorban a számelmélet, az
egyenletek megoldása, vagy a közönséges śık, illetve tér geometriai vizsgálódásai ins-
piráltak. Algebrai kalandozásainkat a gyűrűkkel kezdjük, és számelméleti ind́ıttatású
kérdésekkel motiváljuk.

2.2. Defińıció (Gyűrű). Egy (A,+, ·, 0, 1) struktúra gyűrű, ha + és · 2-változós, 0
és 1 pedig 0-válzozós műveletek, és teljesül, hogy

1. ∀x, y, z ∈ A : (x+ y) + z = x+ (y + z) (azaz a + művelet asszociat́ıv);
2. ∀x, y ∈ A : x+ y = y + x (azaz a + művelet kommutat́ıv);
3. ∀x ∈ A : 0 + x = x (azaz létezik addit́ıv neutrális elem);
4. ∀x ∈ A ∃y ∈ A : x+ y = 0 (azaz létezik addit́ıv inverz);
5. ∀x, y, z ∈ A : (x · y) · z = x · (y · z) (azaz a · művelet asszociat́ıv);
6. A · művelet disztribut́ıv a + műveletre:

∀x, y, z ∈ A : x(y + z) = xy + xz és (x+ y)z = xz + yz.

A gyűrű kommutat́ıv, ha még ∀x, y ∈ A : xy = yx is teljesül.

2.3. Példa.
• (N,+, ·, 0, 1) nem gyűrű (nincs addit́ıv inverz);
• (Z,+, ·, 0, 1) kommutat́ıv gyűrű;
• (R,+, ·, 0, 1) kommutat́ıv gyűrű;
• {n ∈ Z | n páratlan} nem gyűrű (nem zárt az összeadásra).

2.4. Tétel (
√

2 irracionalitása).
√

2 /∈ Q.

Erre a jólismert álĺıtásra olyan bizonýıtást adunk, mely nem használja a Számelmélet
Alaptételét (melyet csak később, a 3.34 tételben igazolunk majd). Ehelyett a
természetes számok jólrendezettségére fogunk alapozni.

Bizonýıtás. Tegyük fel indirekt, hogy
√

2 ∈ Q. Ekkor ∃p, q ∈ Z+ relat́ıv pŕımek:√
2 = p

q
. Ezekre p =

√
2q. Tekintsük a következő halmazt:

A = {n ∈ N+ |
√

2n ∈ N}.

A ̸= ∅, mert q ∈ A. Mivel N jólrendezett, A-nak van legkisebb eleme, legyen ez
a. Mivel a ∈ A, ezért

√
2a ∈ N. Továbbá (

√
2 − 1)a < a, mert

√
2 − 1 < 1. Ezért

ellentmondást kapunk, ha megmutatjuk, hogy (
√

2 − 1)a ∈ A (mert A-ban a volt a

15



legkisebb elem).
Az A halmaz defińıciója szerint (

√
2 − 1)a ∈ A-hoz a következő két álĺıtást kell

igazolnunk:

(1) (
√

2 − 1)a ∈ N+ és
(2)

√
2((

√
2 − 1)a) ∈ N.

(1) teljesül, mert

(
√

2 − 1)a =
√

2a− a
a∈A
∈ N+.

(2) is teljesül, mert
√

2(
√

2 − 1)a) = 2a−
√

2a
a∈A
∈ N,

és ezzel készen vagyunk.

2.1. Gyűrűk és oszthatóság

2.5. Defińıció (Oszthatóság). Legyen R gyűrű, a, b ∈ R. Azt mondjuk, hogy a
osztója b-nek (jelölés: a | b), ha ∃c ∈ R : ac = b.

Legyen R gyűrű. Figyeljük meg, hogy 0-nak minden a ∈ R osztója, hiszen
ha a ∈ R tetszőleges, akkor c = 0 mutatja, hogy van olyan c, melyre ac = 0. A
másik végletet az olyan elemek alkotják, melyek minden gyűrűelemnek osztói, ezeket
nevezzük egységeknek:

2.6. Defińıció (Egység). Az e ∈ R gyűrűelem egység, ha ∀x ∈ R : e | x (minden
elemet oszt).

2.7. Tétel. Z-ben a szokásos műveletekkel e ∈ Z egység ⇔ e = 1 vagy e = −1.

Bizonýıtás. Ha e ∈ Z egység, akkor e | 1, tehát |e| ≤ 1. Mivel 0 nem osztója 1-nek,
ezért 0 nem lehet egység. Tehát e = 1 vagy e = −1, ezeken ḱıvül más egység nem
lehet Z-ben. Ford́ıtva: világos, hogy e = 1 és e = −1 valóban egységek.

2.8. Példa. Legyen A = {x ∈ Z | x páros} és R = (A,+, ·) a szokásos műveletekkel.
� R gyűrű (tényleg).
� R-ben 2 ̸ |10 mert - mivel 4 nem osztója 10-nek - 2-t páros számokkal (azaz A
elemeivel) szorozva sosem kaphatunk 10-et. Hasonlóan, −2 ̸ |10.

� R-ben nincs egység, mert ha e ∈ R egység lenne, akkor e | 2 azaz e = 2 vagy
e = −2 következne, de az előbb láttuk, hogy ezek egyike sem osztója 10-nek,
tehát nem lehetnek egységek.

2.9. Defińıció (Egységelemes gyűrű). R gyűrű egységelemes, ha

∃1 ∈ R : ∀x ∈ R : 1 · x = x · 1 = x.
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2.10. Defińıció (Nullosztómentes gyűrű). R gyűrű nullosztómentes, ha

∀x, y ∈ R : xy = 0 ⇒ (x = 0 ∨ y = 0).

2.11. Defińıció (Valódi osztó). a valódi osztója b-nek, ha a | b, a ̸= b és a nem egység.

2.12. Tétel. Az Oszthatóság alaptulajdonságai. Legyen R kommutat́ıv,
egységelemes, nullosztómentes gyűrű. Ekkor az oszthatóság relációja:

1. Reflex́ıv: ∀x ∈ R : x | x;
2.

”
Majdnem antiszimmetrikus”:

∀x, y ∈ R : (x | y ∧ y | x) ⇔
(
∃e, f ∈ R egység: x = ey, y = fx

)
;

3. Tranzit́ıv: ∀x, y, z ∈ R : (x | y ∧ y | z) ⇒ x | z;
4. ∀x, y, a, b ∈ R : (x | y ∧ x | z) ⇒ x | (ay + bz).

Bizonýıtás. x = 1 · x mutatja: x | x, ezért 1. teljesül.

3. igazolásához TFH x | y, y | z. Ekkor ∃u, v : xu = y, yv = z, tehát

x(uv) = (xu)v = yv = z,

azaz uv mutatja, hogy x | z.

2. igazolását két részre bolntjuk.
⇒: Ha x = y = 0, akkor e = f = 1-el x = ey, y = fx nyilván teljesül. Emiatt
feltehetjük, hogy x ̸= 0. TFH x | y és y | x. Ez azt jelenti, hogy vannak olyan
u, v ∈ R elemek, hogy y = ux és x = vy. De ekkor x = vy = vux azaz 0 = (vu−1)x.
Mivel x ̸= 0 és R nullosztómentes, ezért vu − 1 = 0, azaz vu = 1, speciálisan u | 1
és v | 1, és mivel 1 egység, ezért a már igazolt 3. miatt u is, v is egység. Ezért az
e = v, f = u egységekkel x = ey, y = fx teljesül.

⇐: TFH e, f olyan egységek, hogy ex = y, fy = x. Ezekből x | y és y | x azonnal
adódik (az első oszthatóságot e, a másodikat f mutatja).

Végül 4.-hez TFH x | y, x | z. Ekkor ∃u, v : xu = y, xv = z, amiből

ay + bz = axu+ bxv = x(au+ bv),

tehát x | (ay + bz).

2.13. Megjegyzés. N-ben (csak 1 az egység) a P = {(x, y) ∈ N | x | y} reláció
reflex́ıv, antiszimmetrikus, tranzit́ıv, tehát részbenrendezés.
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3. Az egész számok számelméletének alapjai

E fejezet szerepe kettős: egyrészt szeretnénk összefoglalni néhány alapvető
számelméleti fogalmat és eredményt, másrészt szeretnénk előkésźıteni és motiválni
a későbbi algebrai vizsgálódásainkat.

3.1. Maradékos osztás, számrendszerek

3.1. Tétel (Maradékos osztás N-ben). Legyen a, b ∈ N, b > 0. Ekkor ∃!q, r ∈ N:

a = qb+ r és 0 ≤ r < b.

Bizonýıtás. Létezés: Legyen q = max{n ∈ N | nb ≤ a}, r = a − qb. Ekkor
0 ≤ r < b, mert (q + 1)b > a.

Egyértelműség: TFH a = q1b + r1 = q2b + r2, ahol 0 ≤ r1, r2 < b. Ekkor
0 = (q1− q2)b+ (r1− r2), tehát b | (r1− r2). De |r1− r2| < b, ezért r1 = r2 és emiatt
q1 = q2.

3.2. Tétel (Számrendszerbeli alak). Legyen t ∈ N, t ≥ 2, b ∈ N. Ekkor ∃n ∈ N és
a0, . . . , an ∈ N, 0 ≤ ai < t:

b = ant
n + an−1t

n−1 + · · · + a1t+ a0.

Bizonýıtás. Teljes indukció b-re.
Alaplépés: b = 0, ekkor n = 0, a0 = 0 jó.
Indukciós lépés: Legyen a0 a b t-vel való osztási maradéka, b′ = b−a0

t
. Az

indukciós feltevés szerint b′ = ant
n−1 + · · · + a1, tehát b = ant

n + · · · + a1t+ a0.

3.3. Példa (10-esből 3-as számrendszerbe). Átalaḱıtás 525-öt 3-as számrendszerbe:

bm 525 175 58 19 6 2
am 0 1 1 1 0 2

Tehát 525 = 2 · 35 + 0 · 34 + 1 · 33 + 1 · 32 + 1 · 31 + 0 · 30 = 2011103.

3.4. Példa (3-asból 10-es számrendszerbe). Átalaḱıtás 2011103-ból 10-esbe Horner-
módszerrel:

((((2 · 3 + 0) · 3 + 1) · 3 + 1) · 3 + 1) · 3 + 0 = 525.

3.5. Tétel (Horner-módszer). Legyen f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0.
Ekkor:

f(x) = (((anx+ an−1)x+ an−2)x+ · · · + a1)x+ a0

3.6. Példa. Számı́tsuk ki f(5) = 3x3 + 2x2 − 7x+ 1 értékét Horner-módszerrel:

3 2 -7 1
5 ↓ 15 85 390

3 17 78 391

Tehát f(5) = 391.
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3.2. Közös osztók és többszörösök és az euklideszi algoritmus

3.7. Defińıció (Közös osztók). Legyen R gyűrű, a, b ∈ R. Ekkor az a és b közös
osztóinak halmaza:

K(a, b) = {c ∈ R | c | a ∧ c | b}.

3.8. Defińıció (Kitüntetett közös osztó). d ∈ R kitüntetett közös osztója a-nak
és b-nek (jelölés: d = (a, b)), ha:

1. d ∈ K(a, b);
2. ∀c ∈ K(a, b) : c | d.

3.9. Defińıció (Legnagyobb közös osztó Z-ben). Z-ben:

LNKO(a, b) = max(K(a, b) ∩ N).

3.10. Megjegyzés.
• Kitüntetett közös osztó értelmezhető kizárólag a gyűrű-műveletekkel, de a leg-

nagyobb közös osztó fogalmához a gyűrűn külön meg kell adni egy további rendezési
relációt is.

• LNKO(0, 0)-nak nincs legnagyobb eleme, mert K(0, 0) = Z.
• Konvenció: LNKO(0, 0) = 0.
• Ha a ̸= 0 vagy b ̸= 0, akkor Z-ben K(a, b) véges.
• Alább, 3.13-ben lesz: Z-ben minden számpárnak van nemnegat́ıv kitüntetett

közös osztója.

3.11. Defińıció (Közös többszörösök). Legyen R gyűrű, a, b ∈ R. Ekkor a közös
többszörösök halmaza:

KT (a, b) = {c ∈ R | a | c ∧ b | c}.

3.12. Defińıció (Kitüntetett közös többszörös). m ∈ R az a és b kitüntetett
közös többszöröse (jelölés: m = [a, b]), ha:

1. m ∈ KT (a, b) és
2. ∀c ∈ KT (a, b) : m | c.

Legyen a, b ∈ Z, b ̸= 0. Definiáljuk az r0, r1, ... sorozatot az alábbi rekurźıv
módon:

r0 = a;

r1 = b;

rk+1 = rk−1 osztási maradéka rk-val.

Euklideszi algoritmusnak azt az algoritmust nevezzük, melynek bemenete az (a, b)
számpár, és az előző rekurziót követve feléṕıti az r0, r1, ... sorozatot a legkisebb olyan
n-ig, melyre rn = 0; ekkor az algoritmus eredménye (kimenete) az rn−1 érték. Alább
látjuk majd, hogy mind́ıg van olyan n, melyre rn = 0, ezért az euklideszi algoritmus
mindig befejeződik.
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3.13. Tétel (Euklideszi algoritmusra vonatkozó tétel). Akármilyen a, b ∈ Z, b ̸=
0 számokon is ind́ıtjuk el az euklideszi algoritmust, az véges sok lépésben mindig
befejeződik, és rn−1 kimenetére teljesül, hogy rn−1 = LNKO(a, b).

Bizonýıtás. Tetszőleges módon válasszuk és rögźıtsük az a, b ∈ Z, b ̸= 0 bemenetet.
Az euklideszi algoritmus során előálló értékekre |r0| > |r1| > |r2| > · · · . Mivel N
jólrendezett, ezért az 1.19 Tétel miatt nincs benne végtelen leszálló lánc. Emiatt az
euklideszi algoritmus véges sok lépésben befejeződik (mondjuk n a legkisebb szám,
melyre rn = 0). Mivel minden lépésben maradékos osztásokat végeztünk, ezért
vannak olyan q1, q2... számok, hogy minden 1 ≤ k < n-re

rk−1 = qkrk + rk+1 azaz

rk+1 = rk−1 − qkrk.

Ezért

K(r0, r1) = K(r1, r2) = · · · = K(rn−1, rn) = K(rn−1, 0)

és emiatt
LNKO(r0, r1) = LNKO(rn−1, 0) = rn−1.

Tehát a végeredmény valóban az a és b legnagyobb közös osztója.

3.14. Tétel (Kiterjesztett euklideszi algoritmus). Tetszőleges a, b ∈ Z-hez van δ, β ∈
Z, hogy

(a, b) = δa+ βb.

Bizonýıtás. m-re vonatkozó indukcióval belátjuk:

∀m ∃δm, βm ∈ Z : rm = δm · a+ βm · b.

m = 0-ra: r0 = a = 1 · a+ 0 · b ⇒ δ0 = 1, β0 = 0.
m = 1-re: r1 = b = 0 · a+ 1 · b ⇒ δ1 = 0, β1 = 1.

Indukciós lépés: TFH ∀k ≤ m-re tudjuk, hogy ∃δk, βk:

rk = δk · a+ βk · b.

Ezt a 3.13 Tétel bizonýıtásában bevezetett jelölésekkel kombinálva:

rm+1 = rm−1 − qmrm = (δm−1a+ βm−1b) − qm(δma+ βmb)

= (δm−1 − qmδm)a+ (βm−1 − qmβm)b.

Tehát
δm+1 = δm−1 − qmδm, βm+1 = βm−1 − qmβm

mutatják, hogy álĺıtásunk m + 1-re is igaz, és ezzel készen vagyunk az indukcióval.
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3.15. Defińıció (Relat́ıv pŕımek). Legyen R gyűrű, a, b ∈ R. a és b relat́ıv
pŕımek, ha (a, b) = 1.

3.16. Tétel (Relat́ıv pŕımek szabálya). Ha a, b, c ∈ Z, a | bc és (a, b) = 1, akkor
a | c.

Bizonýıtás. Mivel (a, b) = 1, ∃x, y ∈ Z : ax+by = 1. Szorozzuk c-vel: acx+bcy = c.
Nyilván a | acx és feltettük, hogy a | bc, tehát a | bcy; ezekből a | c.

3.3. Lineáris diofantoszi egyenletek

Diofantoszi egyenleteknek olyan (esetleg többváltozós) egyenleteket nevezünk,
melyeknek a megoldásait az egész számok körében keressük. Speciálisan, a lineáris
diofantoszi egyenletek a következők: legyen a, b, c ∈ Z, a ̸= 0, b ̸= 0. Keressük
az összes olyan x, y ∈ Z párt, hogy

ax+ by = c.

3.17. Tétel. Mint előbb, legyen a, b, c ∈ Z, a ̸= 0, b ̸= 0.
1. ax+ by = c-nek van megoldása Z-ben ⇔ (a, b) | c;
2. Ha (x0, y0) megoldás, akkor az összes megoldás:

x = x0 +
b

d
t, y = y0 −

a

d
t, t ∈ Z,

ahol d = (a, b).

Bizonýıtás. 1. Megoldhatóság:
� TFH x0, y0 megoldás. Azt szeretnénk belátni, hogy d | c. Mivel

d | a és d | b ezért d | (ax0 + by0) = c.

� Ford́ıtva, TFH d | c. Azt szeretnénk belátni, hogy van megoldás. A kiterjesz-
tett euklideszi algoritmus miatt van δ, β ∈ Z:

d = δa+ βb.

Továbbá, d | c, ezért ∃t : dt = c. Ezekkel

c = dt = (δa+ βb)t = (δt)a+ (βt)b

Tehát
x0 = δt, y0 = βt megoldás.
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2. TFH (x0, y0) megoldás. Legyen t tetszőleges. Belátjuk, hogy x = x0 + b
d
t,

y = y0 − a
d
t is megoldás. Helyetteśıtsünk be:

a

(
x0 +

b

d
t

)
+ b
(
y0 −

a

d
t
)

= ax0 + a
b

d
t+ by0 − b

a

d
t = ax0 + by0 = c,

az utolsó lépésben azt használtuk, hogy (x0, y0) megoldás.
3. TFH (x0, y0) és (x1, y1) is megoldások. Belátjuk:

∃t : x1 = x0 +
b

d
t, y1 = y0 −

a

d
t.

Mivel (x0, y0) és (x1, y1) megoldások, ezért

I. ax0 + by0 = c, II. ax1 + by1 = c.

Vonjuk ki II-ből I-t:

a(x1 − x0) + b(y1 − y0) = 0, azaz

a(x1 − x0) = b(y0 − y1).

Osszunk le d-vel:

(∗)
a

d
(x1 − x0) =

b

d
(y0 − y1).

Mivel d | a, d | b, ezért a
d

és b
d

egész számok. Továbbá, a
d

osztója a baloldalnak,
ezért osztója a jobboldalnak is. De

(
a
d
, b
d

)
= 1, ezért a relat́ıv pŕımek szabálya (3.16

Tétel) szerint

a

d
| (y0 − y1) ⇒ ∃t : y0 − y1 =

a

d
t azaz y1 = y0 −

a

d
t.

Az előző sorban az is kijött, hogy y0 − y1 = a
d
t. Ezt (∗)-be helyetteśıtve:

x1 − x0 =
b

d
t ⇒ x1 = x0 +

b

d
t.

3.4. Kongruenciák és maradékosztály-gyűrűk

3.18. Defińıció. Legyen m ∈ N+, a, b ∈ Z. Azt mondjuk, hogy a kongruens b-vel
modulo m, ha a és b m-el osztva ugyanannyit ad maradékul, azaz m | (a−b). Jelölés:

a ≡ b (mod m).

Nyilván, az m ≥ 2 eset az érdekes.
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3.19. Tétel. A (mod m) kongruencia reláció ekvivalenciareláció Z-n.

Bizonýıtás. Rögźıtsük m-et és tekintsük azt a ϱ : Z → N függvényt, mely minden
a ∈ Z-hez a-nak az m-el való osztási maradékát rendeli. Világos, hogy

a ≡ b (mod m) ⇔ ϱ(a) = ϱ(b),

az pedig ismert (vagy könnyen ellenőŕızhető), hogy tetszőleges f függvényre az
{(a, b) : f(a) = f(b)} reláció ekvivalenciareláció f értelmezési tartományán.

3.20. Tétel. Legyen m ∈ Z, m ≥ 2, legyenek a, a′, b, b′ ∈ Z és TFH a ≡ a′ (mod m)
és b ≡ b′ (mod m). Ekkor

1. a+ b ≡ a′ + b′ (mod m);
2. ab ≡ a′b′ (mod m).

Bizonýıtás. Mivel a ≡ a′ (mod m) és b ≡ b′ (mod m), ezért m | (a − a′) és m |
(b− b′). Ezért van u, v ∈ Z: um = a− a′, vm = b− b′.

1. bizonýıtásával kezdjük. Az előző két sor szerint:

(a+ b) − (a′ + b′) = (a− a′) + (b− b′) = um+ vm = (u+ v)m,

tehát m | [(a+ b) − (a′ + b′)] ⇒ a+ b ≡ a′ + b′ (mod m), ezért 1. teljesül.
2. igazolására térve (és a bizonýıtás első két sorában rögźıtett jelöléseket továbbra

is használva) a = a′ + um és b = b′ + vm. Ezekből

ab = (a′ +mu)(b′ +mv) = a′b′ + a′mv + b′mu+m2uv,

és ezért ab − a′b′ = m(a′v + b′u + muv). Ez mutatja: m | (ab − a′b′) ⇒ ab ≡ a′b′

(mod m).

Az a ∈ Z szám (mod m) szerinti maradékosztálya:

a = {x ∈ Z | x ≡ a (mod m)}.

Világos, hogy m darab maradékosztály van.

3.21. Defińıció. Legyen m ∈ N, m ≥ 2. Zm a következő struktúra (a 2.1 Defińıció
értelmében):

� Alaphalmaz: mod m maradékosztályok (m db);
� Műveletek: tetszőleges a, b maradékosztályokra

a+ b = a+ b;

a · b = a · b.

3.22. Tétel. Zm kommutat́ıv gyűrű.
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Bizonýıtás. Asszociativitás: ∀a, b, c ∈ Z:

(a+ b) + c = a+ b+ c = (a+ b) + c és

a+ (b+ c) = a+ b+ c = a+ (b+ c).

De (a + b) + c = a + (b + c), tehát az előző két sor baloldalai egyenlők. Hasonlóan
ellenőŕızhető a többi gyűrű-axióma.

3.23. Példa (Z4 művelettáblája).

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Itt 3 · 3 = 1 (mod 4), mert 9 ≡ 1 (mod 4).

3.24. Példa.
• Z6-ban: 2 · 3 = 0 (mod 6), tehát 2 és 3 nullosztók.
• Z34-ben: 5 · 7 = 1 (mod 34), ezért Z34-ben 5 és 7 egymás inverzei.

3.5. Lineáris kongruenciák és a ḱınai maradéktétel

3.25. Defińıció (Lineáris kongruenciák). Legyen a, b ∈ Z, m ∈ N, m ≥ 2.

ax ≡ b (mod m)

összes megoldása? (Az ismeretlen x).

3.26. Tétel (Kongruenciák egyszerűśıtése).

ac ≡ bc (mod m) ⇔ a ≡ b (mod
m

(c,m)
).

Bizonýıtás. TFH: ac ≡ bc (mod m). Ekkor 0 ≡ ac− bc (mod m), azaz

0 ≡ (a− b)c (mod m), azaz

m | (a− b)c, azaz ∃t ∈ Z : m · t = (a− b)c.

Osszuk le (c,m)-mel:
m

(c,m)
· t = (a− b) · c

(c,m)
.

De
(

m
(c,m)

, c
(c,m)

)
= 1, ezért a relat́ıv pŕımek szabálya (3.16 Tétel) miatt

m

(c,m)
| (a− b) azaz a ≡ b (mod

m

(c,m)
).

Megford́ıtva: TFH a ≡ b (mod m
(c,m)

), azaz m
(c,m)

| (a − b) ⇒ ∃t ∈ Z : m
(c,m)

· t =
a− b. Ekkor:

(a− b)c =
m

(c,m)
· t · c = m · t · c

(c,m)
.

mutatja: m | (a− b)c. Tehát (a− b)c ≡ 0 (mod m) ⇒ ac ≡ bc (mod m).
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3.27. Tétel (Lineáris kongruencia megoldása).
1. ax ≡ b (mod m) megoldható ⇔ (a,m) | b;
2. Ha x0 megoldás, akkor az összes megoldás:

x ≡ x0 + t · m

(a,m)
(mod m), t = 0, 1, . . . , (a,m) − 1.

Bizonýıtás. (1) ax ≡ b (mod m) megoldható

⇔ ∃x : ax ≡ b (mod m)

⇔ ∃x : m | (ax− b)

⇔ ∃x, y : m · y = ax− b

⇔ ∃x, y : b = ax−m · y
⇔ ax−m · y = b (x, y megoldása az előbbi lineáris diofantoszi egyenletnek)

⇔ (a,m) | b.
(2) Egyrészt, ha x0 megoldás, akkor ∀t:

a

(
x0 + t · m

(a,m)

)
= ax0 + a · t · m

(a,m)
≡ b (mod m)

mert x0 megoldás ⇒ x0 + t · m
(a,m)

is megoldás.
Másrészt TFH x megoldás. Belátjuk: ∃t ∈ Z : x = x0 + t · m

(a,m)
. Mivel x és x0

megoldás, ezért ax ≡ b (mod m) és ax0 ≡ b (mod m), tehát

ax ≡ ax0 (mod m).

Ebből a kongruenciák egyszerűśıtési szabálya (3.26 Tétel) miatt: x ≡ x0 (mod m
(a,m)

),
azaz ∃t : x− x0 = t · m

(a,m)
vagyis x = x0 + t · m

(a,m)
.

Kı́nai maradéktétel

3.28. Tétel (Kı́nai maradéktétel). Ha m1,m2, . . . ,mr ∈ N páronként relat́ıv pŕımek
és a1, . . . , ar ∈ Z, akkor ∃!x ∈ Z modulo M = m1m2 · · ·mr:

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ ar (mod mr).

Bizonýıtás. Legyen minden k-ra Mk = M
mk

. Tetszőleges k-ra, Mk ≡ 1 (mod mk)

megoldható, mert (Mk,mk) = 1. Legyen xk olyan, hogy Mkxk ≡ 1 (mod mk).
Válasszuk X-t ı́gy:

X = a1M1x1 + a2M2x2 + · · · + arMrxr.

Ekkor tetszőleges k-ra

X ≡ akMkxk ≡ ak · 1 ≡ ak (mod mk)

mert minden j ̸= k-raMj ≡ 0 (mod mk) és xk választása miattMkxk ≡ 1 (mod mk).
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3.29. Megjegyzés. Ha m1, . . . ,mr nem relat́ıv pŕımek, akkor az

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ ar (mod mr)

kongruencia-rendszer akkor és csak akkor oldható meg, ha bármely két tagjának van
közös megoldása.

3.6. Felbonthatatlan elemek, pŕım elemek és a számelmélet
alaptétele

3.30. Defińıció. Legyen R gyűrű, t ∈ R.
� t felbonthatatlan, ha t ̸= 0, t nem egység, és

∀a, b ∈ R : t = ab⇒ (a egység vagy b egység );
� t pŕım, ha t ̸= 0, t nem egység, és ∀a, b ∈ R : t | ab⇒ t | (a vagy t | b).

3.31. Példa. Legyen R páros egészek szokásos gyűrűje. Ebben 6 felbonthatatlan,
de nem pŕım a következők miatt. R-ben 6 felbonthatatlan, mert nem bontható fel 2
páros szám szorzatára. Ugyanakkor R-ben 6 nem pŕım, mert 6 | 2 · 18, de R-ben
6 ∤ 2 és 6 ∤ 18, mert 2

6
és 18

6
nem R-beli elemek.

3.32. Tétel. Z tetszőleges eleme akkor és csak akkor felbonthtatlan, ha pŕım.

Bizonýıtás. ⇒ Először TFH u ∈ Z felbonthatatlan (kell: u pŕım). TFH: u | ab.
Mivel (u, a) | u, ezért ∃q ∈ Z : q(u, a) = u. De u felbonthatatlan, ezért (u, a) = 1
vagy q = ±1 (a 2.7 Tétel miatt Z-ben ezek az egységek).
1. eset: (u, a) = 1. Ekkor u és a relat́ıv pŕımek, ezért a relat́ıv pŕımek szabálya
(3.16 Tétel) miatt u | b.
2. eset: q = ±1. Ekkor (u, a) = ±u, speciálisan u közös osztója u-nak és a-nak,
tehát u | a.

⇐ TFH u pŕım, azt szeretnénk megmutatni, hogy u felbonthatatlan. TFH: u = ab
(kell: a egység, vagy b egység). Mivel u pŕım, ezért u | a vagy u | b; szimmetria
miatt feltehető, hogy u | a. Mivel u = ab, ezért azt kaptuk, hogy ab | a, azaz b = ±1
egység Z-ben. Tehát u valóban felbonthatatlan.

3.33. Megjegyzés. Ha u pŕım és u | a1a2 · · · an, akkor ∃i : u | ai.

3.34. Tétel (Számelmélet alaptétele Z-re). Ha n ∈ Z \ {0,±1}, akkor:
1. Vannak p1, . . . , pm (nem feltétlenül különböző) pŕımek, hogy n = p1 · · · pm;
2. ez a felbontás egységszorzóktól, sorrendtől eltekintve egyértelmű;
3. az előző felbontásban az azonos pŕımtényezők szorzatát hatványalakba ı́rva

n = pα1
1 p

α2
2 · · · pαr

r ,

ezt nevezzük a felbontás kanonikus alakjának.
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Bizonýıtás. Nyilvánvaló, hogy a biznýıtást elég pozit́ıv n-ekre elvégezni (−1-el szo-
rozva ebből az eredmény negat́ıv n-ekre is adódik). Az n ≥ 2 feltétel mellett teljes
indukciót alkalmazunk n-re és (1)-et és (2)-t együtt igazoljuk.
Alaplépés: n = 2. Ekkor m = 1, p1 = n megfelelő felbontás.
Indukciós lépés: TFH: (1),(2) igaz ∀u < n-re. Ha n felbonthatatlan, akkor
mint előbb, m = 1, p1 = n megfelelő felbontás. Ha n nem felbonthatatlan, ak-
kor ∃a, b ∈ Z− {0,±1} : n = a · b. Feltehető, hogy a, b > 0, ekkor nyilván a, b < n,
ezért az indukció miatt a = p1 · · · pm, b = q1 · · · qk, ı́gy tehát n = p1 · · · pm · q1 · · · qk
és (1) teljesül n-re.

(2) is teljesül, mert TFH: n = p1 · · · pm = q1 · · · qk. |n| = 2 mintájára, ha
az u felbonthatatlan, akkor m = k = 1, p1 = q1. Ha n nem felbonthatatlan
(azaz m ≥ 2), akkor p1 | n = q1 · · · qk. Mivel p1 pŕım, ezért ∃j : p1 | qj.
De qj is pŕım, ı́gy a 3.32 Tétel miatt qj felbonthatatlan, ezért p1 = ±qj. Ezért
p2 · · · pm = q1 · · · qj−1(±1)qj+1 · · · qk. Az indukciós feltevésünk szerint viszont ez a
felbontás sorrendtől és egységszorzóktól eltekintve egyértelmű. Ezért ugyanez n fel-
bontásaira is fennáll.

Végül 3. triviális.

3.35. Megjegyzés. Pozit́ıv egészek azonośıthatók a véges multihalmazokkal: pl.
n = pe11 · · · perr , n az a multihalmaz, melynek p1 e1-szeres eleme, p2 e2-szeres eleme,...
stb.

3.36. Következmény.
1. Ha (n, a) = 1, (m, a) = 1, akkor (nm, a) = 1;
2. ha a ≡ b (mod m), akkor K(a,m) = K(b,m) (emiatt: (a,m) = (b,m)).

Bizonýıtás. 1. A számelmélet alaptétele (3.34 Tétel) és a véges multihalmazokra
vonatkozó megjegyzés miatt világos. 2.-höz TFH a ≡ b (mod m). Ekkor m | a− b
azaz ∃q : m · q = a− b. Ebből

(i) a = mq + b és
(ii) b = a−mq.

Ezért, ha c ∈ K(m, b), akkor c | m és c | b ı́gy (i) miatt c | a, tehát c ∈ K(m, a),
ezért K(m, b) ⊆ K(m, a). A ford́ıtott irányú, K(m, a) ⊆ K(m, b) tartalmazás (ii)
seǵıtségével hasonlóan ellenőŕızhető.

3.7. Maradékrendszerek, Euler-féle φ függvény és az Euler-
Fermat tételkör

3.37. Defińıció (Euler-féle φ függvény). Ha n ∈ N \ {0}, akkor

φ(n) = |{k ∈ N | 1 ≤ k ≤ n, (k, n) = 1}|,

vagyis φ(n) a nemnegat́ıv, n-nél nem nagyobb, n-hez relat́ıv pŕımek száma.

27



3.38. Defińıció (Teljes maradékrendszer). T ⊆ N teljes maradékrendszer (rövi-
den TMR) modulo m, ha

� |T | = m és
� ∀t, t′ ∈ T, t ̸= t′ : t ̸≡ t′ (mod m).

3.39. Defińıció (Redukált maradékrendszer). R ⊆ N redukált maradékrendszer
(röviden RMR) modulo m, ha

� ∀x ∈ R : (x,m) = 1;
� |R| = φ(m) és
� ∀t, t′ ∈ R, t ̸= t′ : t ̸≡ t′ (mod m).

Könnyű meggondolni, hogy ha R ⊆ N egy RMR modulo m, akkor minden, m-
hez relat́ıv pŕım y ∈ N-hoz ∃!x ∈ R : x ≡ y (mod m): x unicitása abból adódik,
hogy R elemei páronként nem kongruensek modulo m, x egzisztenciája pedig a 3.36
Következményből látható be.

3.40. Tétel. TFH (a,m) = 1, b tetszőleges.
1. Ha {t1, . . . , tm} TMR, akkor {at1 + b, . . . , atm + b} is TMR;
2. ha {r1, . . . , rφ(m)} RMR, akkor {ar1, . . . , arφ(m)} is RMR.

Bizonýıtás. 1. igazolásához a 3.38 Defińıció két pontját ellenőrizzük. Az világos,
hogy az {at1 + b, . . . , atm + b} halmazban m darab elem van (azaz a felsorolt elemek
páronként különbözők). Továbbá páronként nem-kongruensek egymással, mert THF
ati + b ≡ atj + b (mod m). Ekkor ati ≡ atj (mod m). Mivel (a,m) = 1, ezért
a kongruenciák egyszerűśıtési szabálya (3.26 Tétel) miatt ti ≡ tj (mod m). De
{t1, . . . , tm} TMR, ezért i = j.

Hasonlóan, 2. igazolásához a 3.39 Defińıció pontjait ellenőrizzük. A

{ar1, . . . , arφ(m)}

halmazban valóban φ(m) darab elem van. TFH ari ≡ arj (mod m). Ekkor, mint
az 1. pont bizonýıtásában, ri ≡ rj (mod m). De {r1, . . . , rφ(m)} RMR, ezért i = j.
Kell még: ∀r ∈ R : (ar,m) = 1. De ez teljesül: mivel (a,m) = 1 és (r,m) = 1, ezért
a 3.36 Következmény 1. pontja miatt valóban (ar,m) = 1. Ezzel azt kaptuk, hogy
a 3.39 Defińıció összes pontja valóban teljesül a {ar1, . . . , arφ(m)} halmazra is.

3.41. Tétel. φ multiplikat́ıv, azaz ha (n,m) = 1, akkor

φ(n ·m) = φ(n) · φ(m).

Bizonýıtás. Tekintsük a következő m× n táblázatot:

1 2 3 · · · n
n+ 1 n+ 2 n+ 3 · · · 2n
2n+ 1 2n+ 2 2n+ 3 · · · 3n

...
...

...
. . .

...
(m− 1)n+ 1 (m− 1)n+ 2 (m− 1)n+ 3 · · · m · n
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Első sor: {1, 2, . . . , n}, ez TMR modulo n ezért az első sorban φ(n) db n-hez relat́ıv
pŕım szám van.

Oszlopok: az i-edik oszlop: i, n+ i, 2n+ i, . . . , (m−1)n+ i, ezeket az elemeket úgy
kapjuk, hogy a {0, 1, ...,m − 1} halmaz elemeit n-el szorozzuk, majd hozzáadunk
még i-t. Ezért a 3.40 Tétel miatt minden oszlop TMR modulo m. Ezért minden
oszlopban φ(m) db m-hez relat́ıv pŕım szám van.

Relat́ıv pŕımek: most két módon is leszámoljuk a táblázatban szereplő, m · n-
hez relat́ıv pŕım számokat. Egyrészt, egy szám akkor és csak akkor relat́ıv pŕım
n · m-hez, ha relat́ıv pŕım n-hez és m-hez is. A fentiek szerint az első sor φ(n)
db n-hez relat́ıv pŕım számot tartalmaz. Mivel egyazon oszlopon belül az elemek
kongruensek modulo n, ezért φ(n) db oszlop tartalmaz n-hez relat́ıv pŕım számokat
és a 3.36 Következmény 2. pontja miatt minden ilyen oszlop minden eleme relat́ıv
pŕım n-hez. Továbbá, fentebb átgondoltuk, hogy minden oszlopban φ(m) db m-hez
relat́ıv pŕım szám van. Ezért összesen φ(n) · φ(m) db szám van a táblázatunkban,
melyek relat́ıv pŕımek n ·m-hez.

Másrészt defińıció szerint: a táblázatban φ(n · m) db ilyen szám van. Ezek
alapján valóban φ(n) · φ(m) = φ(n ·m).

3.42. Tétel (Euler-féle φ függvény kiszámolása). Ha n = pe11 p
e2
2 · · · perr , akkor

φ(n) = (p1 − 1)pe1−1 · ... · (pr − 1)per−1 = n

(
1 − 1

p1

)(
1 − 1

p2

)
· · ·
(

1 − 1

pr

)
.

Bizonýıtás. Először az r = 1 esetet vizsgáljuk (vagyis azt az esetet, amikor n = pe11
pŕımhatvány). Ekkor pontosan a p1-el osztható számok nem lesznek relat́ıv pŕımek
n-hez, és n

p1
= pe1−11 darab n-nél nem nagyobb, p-vel osztható szám van. Ezért

φ(n) = pe11 − pe1−11 = pe1−11 (p1 − 1).

Az általános esetet (amikor n nem feltétlenül 1 darab, hanem r darab - páronként
különböző alapú - pŕımhatvány szorzata) φmultipikativitásával (azaz a 3.41 Tétellel)
intézzük el:

φ(n) = φ(pe11 p
e2
2 · · · perr ) = φ(pe11 )φ(pe22 ) · · ·φ(perr ) =

(p1 − 1)pe1−11 · ... · (pr − 1)per−1r .

Végül

φ(n) = (p1−1)pe1−11 ·...·(pr−1)per−1r = (pe11 p
e2
2 · · · perr )

(
1 − 1

p1

)(
1 − 1

p2

)
· · ·
(

1 − 1

pr

)

= n

(
1 − 1

p1

)(
1 − 1

p2

)
· · ·
(

1 − 1

pr

)
.
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3.43. Tétel (Euler-Fermat). Ha (a,m) = 1, akkor aφ(m) ≡ 1 (mod m).

Bizonýıtás. Tekintsük a {t1, t2, . . . , tφ(m)} redukált maradékrendszert modulo m. A
3.40 Tétel miatt {at1, at2, . . . , atφ(m)} is redukált maradékrendszer modulo m. Ezért
minden 1 és φ(m) közé eső i-hez pontosan 1 darab (1 és φ(m) közés eső) j van, melyre
ati ≡ tj (mod m). Emiatt

at1 · at2 · · · atφ(m) ≡ t1 · t2 · · · tφ(m) (mod m)

azaz
aφ(m)(t1t2 · · · tφ(m)) ≡ t1t2 · · · tφ(m) (mod m).

Mivel ∀i : (ti,m) = 1, azaz t1t2 · · · tφ(m) relat́ıv pŕım m-hez, ezért (a 3.26 Tétel
szerint) egyszerűśıthetünk vele:

aφ(m) ≡ 1 (mod m).

3.44. Tétel (Kis Fermat-tétel). Legyen p pŕımszám.

(1) Ha p ∤ a, akkor ap−1 ≡ 1 (mod p).

(2) Tetszőleges a egész számra ap ≡ a (mod p).

Bizonýıtás. (1) Ha p pŕım és p ∤ a, akkor (a, p) = 1 és φ(p) = p − 1, ı́gy a 3.43
Euler-Fermat tétel miatt:

ap−1 ≡ 1 (mod p).

(2)-t esetszétválasztással bizonýıtjuk.
1. eset: p ∤ a.

Ekkor (1) alapján ap−1 ≡ 1 (mod p). Mindkét oldalt a-val szorozva:

ap ≡ a (mod p).

2. eset: p | a
Ekkor a ≡ 0 (mod p), tehát:

ap ≡ 0 (mod p) és a ≡ 0 (mod p)

ı́gy ap ≡ a (mod p).
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4. Speciális algebrai struktúrák (félcsoportok, cso-

portok, ... stb.)

4.1. Defińıció (Félcsoport). Az (A, ·) struktúra félcsoport, ha a szorzás asszoci-
at́ıv:

∀x, y, z ∈ A : x · (y · z) = (x · y) · z.

4.2. Defińıció (Monoid). Az (A, ·, 1) struktúra monoid, ha:
� (A, ·) félcsoport, és
� ∀x ∈ A : 1 · x = x · 1 = x (azaz létezik egységelem).

4.3. Defińıció (Csoport). Az (A, ·, 1) struktúra csoport, ha:
� (A, ·, 1) monoid, és
� ∀x ∈ A ∃x−1 ∈ A : x ·x−1 = x−1 ·x = 1 (azaz minden elemnek létezik inverze).

4.4. Defińıció (Abel-csoport). Egy csoport Abel-csoport, ha:

∀x, y ∈ A : x · y = y · x

(azaz a szorzás művelete kommutat́ıv).

4.5. Defińıció (Test). Az (A,+, ·, 0, 1) struktúra test, ha:
� (A,+, 0) Abel-csoport,
� (A \ {0}, ·, 1) csoport és
� A szorzás disztribut́ıv az összeadásra nézve.

4.6. Példa. Példák:
� (Z,+, 0): Abel-csoport,
� (N, ·, 1): kommutat́ıv monoid,
� (Z,+, ·, 0, 1): gyűrű, de nem test,
� (Q,+, ·, 0, 1): test.

Függvények tulajdonságai

4.7. Defińıció. Legyen f : A→ B függvény.
• Az f függvény injekt́ıv, ha:

∀x, y ∈ A : x ̸= y ⇒ f(x) ̸= f(y).

• Az f függvény szürjekt́ıv, ha:

∀y ∈ B ∃x ∈ A : f(x) = y.

• Az f függvény bijekt́ıv, ha injekt́ıv és szürjekt́ıv (kölcsönösen egyértelmű
leképezés).
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Struktúramegőrző leképezések

A következő defińıciókban azt szeretnénk prećızzé tenni, hogy két struktúra
ugyanolyan (lényegében azonos), vagy legalább hasonĺıt egymásra abból a szem-
pontból, hogy elemeik olyan módon is megfeleltethetők egymásnak, hogy a megfe-
leltetés a műveletekkel kompatibilis legyen. Ilyen esetekben teljesül ugyanis, hogy a
két srtruktúrában

”
ugyanúgy”, vagy legalább

”
nagyon hasonlóan” kell számolni.

4.8. Defińıció (Izomorfizmus). Legyenek A = (A, fi)i∈I és B = (B, gi)i∈I azonos
t́ıpusú struktúrák.
Egy α : A→ B leképezés izomorfizmus, ha:

1. α bijekció, és

2. α művelettartó:

∀i ∈ I,∀x1, . . . , xn ∈ A : α(fi(x1, . . . , xn)) = gi(α(x1), . . . , α(xn)).

Egy α : A → B leképezés homomorfizmus, ha a művelettartás teljesül (de az 1.
feltételt nem kötjük ki).

4.9. Megjegyzés. Középiskolás tanulmányokból ismerős lehet a gráfok izomor-
fiájának fogalma: két gráf akkor és csak akkor izomorf, ha csúcsaik között meg
lehet adni egy

”
éleket megőrző” bijekciót (amely tehát élt élbe, nem-élt pedig nem

élbe visz). Az izomorf gráfokat pedig azonosnak (vagy legalább lényegében azo-
nosnak) tekinthetjük. A 4.8 Defińıció mögött nagyon hasonló gondolat húzódik
meg: két algebrai struktúra izomorf (lényegében azonos), ha elemeik között van
művelettartó bijekció. A 4.8 Defińıció tehát a gráfok izomorfizmus-fogalmának al-
gebrai struktúrákra vonatkozó természetes adaptációja.

4.1. Struktúrák és azonosságok

4.10. Defińıció (Változók és termek). Legyen V ̸= ∅ egy változóhalmaz (általában
V = {x, y, z, . . . }, de lehet véges is).

A termek halmazát a következőképpen definiáljuk:
(1) Ha x változó vagy kitüntetett konstans, akkor x term;
(2) Ha t1, . . . , tn termek és f n-változós függvény, akkor f(t1, . . . , tn) is term;
(3) Minden term az előző két szabály véges sokszori alkalmazásával áll elő.

4.11. Példa. Példák:
� x(y + z) egy gyűrű-term;
� x((y+) nem term;
� x(y + z) nem csoport-term (csoportban 1 db kétváltozós művelet van).

4.12. Defińıció (Azonosság). A t1 = t2 szimbólumsorozatot azonosságnak ne-
vezzük, ha t1, t2 termek.
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A 2.2 Defińıcióban szereplő gyűrűaxiómák, csakúgy mint a 4.1-4.4 Defińıciókban
szereplő félcsoport-, csopartaxiómák,... stb. mind mind azonosságok. De pl. tes-
tekben a multiplikat́ıv inverzre vonatkozó feltételek nem azonosságok (mert a null-
elemnek nincs reciproka, ezért a multiplikat́ıv inverz képzése nem olyan művelet,
amely minden test-elemen értelmezve van).

4.13. Tétel (Azonosságok megőrzése). Legyenek A = (A, fi)i∈I és B = (B, gi)i∈I
azonos t́ıpusú struktúrák. Tegyük fel, hogy α : A→ B szürjekt́ıv homomorfizmus.

(1) Tetszőleges t(x1, . . . , xn) termre és a1, . . . , an ∈ A esetén:

α(tA(a1, . . . , an)) = tB(α(a1), . . . , α(an))

ahol pl. tA(a1, . . . , an) az A struktúrának azt az elemét jelöli, amelyet a t term
ad eredményül, ha a benne szereplő műveleteket A-ban elvégezzük az a1, . . . , an
elemekre.

(2) Ha t1 = t2 azonosság igaz A-ban, akkor B-ben is igaz.

Bizonýıtás. (1) A t termben előforduló függvényjelek m száma szerinti indukciót
alkalmazunk.

Alaplépés (m = 0): t valamelyik változó vagy konstans. Ekkor (1) mindkét
oldalán ugyanannak az A-beli elemnek az α szerinti képe áll, ezek nyilván egyenlők.
(Kicsit részletesebben, pl. ha a t term az x változó, melybe a ∈ A-t helyetteśıtünk,
akkor (1) baloldalát ı́gy értelmezhetjük:

”
A-ban a-val további műveleteket nem

végzünk, majd az eredménynek (vagyis a-nak) vesszük az α szerinti képét”. Ha-
sonlóan, ebben az esetben (1) jobboldala ı́gy értelmezhető:

”
vesszük az a elem α

szerinti képét, és ezzel a képpel B-ben további műveleteket már nem végzünk”.
Világos, hogy a baloldal és a jobboldal előző értelmezései szerint mindkét esetben
α(a)-t kapunk eredményül, tehát az Alaplépés esetében (1) baloldala és jobboldala
valóban egyenlő.)

Indukciós lépés: Tegyük fel, hogy t = f(t1, . . . , tk) és (1)-et tudjuk már a
t1, . . . , tk termekre. Ekkor

α(tA(a1, . . . , an)) = α(fA(tA1 (ā), . . . , tAk (ā))) (de α homomorfizmus)

= fB(α(tA1 (ā)), . . . , α(tAk (ā))) (ind. feltevés)

= fB(tB1 (α(ā)), . . . , tBk (α(ā)))

= tB(α(a1), . . . , α(an)).

(2) Tegyük fel, hogy t1 = t2 igaz A-ban. Kell: igaz B-ben is. Legyen b1, . . . , bn ∈
B tetszőleges. Mivel α szürjekt́ıv, ezért vannak olyan a1, . . . , an ∈ A elemek, me-
lyekre α(a1) = b1, . . . , α(an) = bn.
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Ekkor:

tB1 (b1, . . . , bn) = tB1 (α(a1), . . . , α(an)) ((1) alapján)

= α(tA1 (a1, . . . , an)) (t1 = t2 igaz A-ban)

= α(tA2 (a1, . . . , an)) (megint (1) alapján)

= tB2 (α(a1), . . . , α(an)) = tB2 (b1, . . . , bn). ✓

4.14. Következmény. Nincs olyan gyűrűazonosság, amely pontosan a nullosztómentes
gyűrűkben igaz.

Bizonýıtás. Ellentmondást keresve tegyük fel, hogy van olyan t1 = t2 gyűrűazonosság,
amely pontosan a nullosztómentes gyűrűkben igaz. Tekintsük a következő struktúrákat:

� Z: nullosztómentes gyűrű;
� Z4: nem nullosztómentes gyűrű.
Legyen α : Z → Z4, f(n) = n (mod 4).

Ez szürjekt́ıv homomorfizmus. Mivel Z nullosztómentes, ezért t1 = t2 igaz Z-ben.
Ezért az előző 4.13 Tétel miatt t1 = t2 igaz Z4-ben is. De Z4-ben van nullosztó,
ellentmondás.
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5. Komplex számok

5.1. A komplex számok bevezetésének motivációja

Leopold Kronecker (1823-1891) korának neves német matematikusa szerint

”
A természetes számokat Isten teremtette, minden más az ember műve.”

Valóban, egészen ősi kultúrák ismerték, és használták a természetes számokat. Ugyan-
akkor, ahogy azt a 2. fejezet elején láttuk, meglepően nehéz kérdés annak tisztázása,
hogy pontosan mik is a természetes számok. Ezért, ezen a kurzuson a természetes
számok fogalmát ismertnek tekintettük és tekintjük (illetve további vizsgálatukat
más kurzusokra halasztjuk), de kiemeljük a következőket.

• Egyrészt a természetes számok azonośıthatók egy (egyirányban végtelen) félegyenes
pontjaival a szokásos módon (úgy, hogy szomszédos természetes számoknak egységnyi
távolságú pontok felelnek meg).
• Másrészt, a természetes számok körében pl. az

(1) x+ 3 = 1

egyenlet nem oldható meg: akármelyik természetes számot adjuk is értékül x-nek,
a baloldal eredménye sosem lesz 3-nál kevesebb, ezért x értékét nem tudjuk úgy
választani, hogy a jobboldalon szereplő 1-et kapjuk eredményül.

Az (1)-hez hasonló t́ıpusú egyenletek megoldhatósága érdekében érdemes beve-
zetni az egész számokat: ezek között lehetnek negat́ıvak is. Negat́ıv számokat is meg-
engedve könnyen megtalálhatjuk az (1) egyenlet megoldását. Ugyanakkor, a negat́ıv
egész számok fogalma már nem annyira szemléletes: pl. egy buszon akkor utazik −2
darab utas, ha 2 utasnak fel kell szállni ahhoz, hogy a busz üres legyen. Ezt ebben
a formában nehéz elképzelni (de pl. az egészen szemléletes, hogy negat́ıv számokat
is megengedve egyszerűen tudjuk modellezni a

”
profit és költség” vagy

”
tőke és

adósság” ellentétes fogalompárjait). Az egész számok halmaza egészen konkrétan
megkonstruálható a természetes számok halmazából, e konstrukcióval kapcsolatban
a 2025 őszi kurzus 4. adag házi feladatai közül a 7. feladatra utalunk. E konstrukció
során meg kellett adni, hogy

1. Mik az egész számok;

2. Mikor tekintünk két egész számot egyenlőnek;

3. Hogyan kell a szokásos műveleteket elvégezni az egész számokon.

Az 1. és 2. pontokkal kapcsolatban (a részletek felidézése nélkül) azt jegyezzük
meg, hogy az egész számok azonośıthatók a természetes számok rendezett párjainak
bizonyos ekvivalenciaosztályaival. A konstrukció végén azt mondhatjuk, hogy ha
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tudnánk, mik a természetes számok, akkor tudnánk azt is, hogy mik az egész számok.
Ismét kiemeljük a következő aspektusokat.

• Mindenek előtt a természetes számok összeadásra és szorzásra vett félcsoportjai
természetes módon beágyazhatók az egész számok összeadásra és szorzásra vett
félcsoportjaiba (azaz van olyan injekt́ıv függvény, mely a természetes számokat
képezi az egész számok halmazába, és megtartja az összeadás és szorzás műveletét,
tehát durván fogalmazva van injekt́ıv homomorfizmus N-ből Z-be).
• Az egész számok azonośıthatók egy (mindkét irányban végtelen) egyenes pontjai-
val a szokásos módon (úgy, hogy szomszédos egész számoknak egységnyi távolságú
pontok felelnek meg).
• Végül, az egész számok körében pl. a

(2) 2x+ 4 = 1

egyenlet nem oldható meg: akármelyik egész számot adjuk is értékül x-nek, a
baloldal eredménye páros lesz, ezért x értékét nem tudjuk úgy választani, hogy
eredményül a jobboldalon szereplő páratlan 1-et kapjuk.

Az előző bekezdésben szereplő (2)-höz hasonló egyenletek megoldhatósága érde-
kében ismét érdemes újfajta számokat bevezetni, ezek lesznek a racionális számok,
melyek akár tört értékűek is lehetnek. A racionális számok körében könnyen meg
tudjuk oldani a (2)-höz hasonló egyenleteket, emellett a (pozit́ıv) racionális számok
könnyen el is képzelhetők: pl. egy almát 3 egyenlő részre felszeletelve viszonylag
pontos (bár a szeletelés óhatatlan pontatlansága miatt nem teljesen pontos) módon
(fizikailag, érzékszervi tapasztalással is) érzékelhetünk 1

3
darab almát. Amint azt a

2025 őszi kurzus 4. heti gyakorlatra szánt 8. feladatában vázoltuk, az egész számok
esetéhez hasonlóan, a racionális számok teste is egészen konkrétan megkonstruálható
az egész számok gyűrűjéből. Ismét azt kell tisztázni, hogy

1. Mik a racionális számok;

2. Mikor tekintünk két racionális számot egyenlőnek;

3. Hogyan kell a szokásos műveleteket elvégezni racionális számokon.

Ahogy azt általános iskolában megtanultuk, a racionális számok egész számokból
álló (számlálóra és nevezőre tagolt) rendezett párokból képzett ekvivalenciaosztályok
(két egész számokból álló pár ekvivalens, ha közös nevezőre bőv́ıtve őket, a számlálóik,
mint egész számok egyenlőkké válnak). A racionális számok konstrukciója végén
ismét azt mondhatjuk, hogy ha tudnánk, mik az egész számok, akkor tudnánk azt
is, hogy mik a racionális számok. Ismét kiemeljük a következőket.

• Van olyan injekt́ıv függvény, mely az egész számokat képezi a racionális számok
halmazába, és megtartja az összeadás és szorzás műveletét (azaz, a részleteket elna-
gyolva: van injekt́ıv homomorfizmus Z-ből Q-ba).
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• A racionális számok azonośıthatók egy (mindkét irányban végtelen) egyenes bizo-
nyos pontjaival a szokásos módon, és egy ilyen azonośıtás után a racionális pontok
halmaza sűrű lesz a számegyenesen: bármely két különböző racionális szám között
van további (valójában van végtelen sok további) racionális szám.

• A valós számok bevezetésének nem algebrai okai vannak. Noha a racionális számok
a számegyenes sűrű részhalmazát adják, még mindig nem kaptuk meg a számegyenes
összes pontját. A valós számok bevezetésének oka és célja az, hogy kitöltsük a
számegyenesen azokat a hézagokat, amelyek a racionális számok bevezetése után
még mindig megmaradtak. A racionális számok egy másfajta bőv́ıtését indokolná,
ha pl. a

(3) x2 = −1

egyenletet szeretnénk megoldani. A racionális számok halmazának ilyen bőv́ıtéseivel
kapcsolatban az alábbi 2 lehetőséget emĺıtjük meg:

Algebrai számok: racionális együtthatós polinomok gyökei,

pl.: 5 + 2
√

2,
5
√√

3 +
√

2 + 1.

Gyökkifejezések: termek a (Q,+, ·, 0, 1, n
√

)n∈N+ struktúrában.

A 2.4 Tétel szerint Q valódi részhalmaza a gyökkifejezéseknek és meg lehet mutatni,
hogy a gyökkifejezések valódi részhalmazát alkotják az algebrai számoknak (és mel-
lesleg: az algebrai számok nem is feltétlenül valósak). Az algebrai számok fogalmára
és a gyökkifejezésekre alább még vissza fogunk térni.

A (3)-hoz hasonló egyenletek még a valós számok körében sem oldhatók meg:
minden valós szám négyzete nemnegat́ıv, ezért nem tudunk olyan valós értéket adni
x-nek, hogy (3) baloldala egyenlő legyen a negat́ıv jobboldalával. A (3)-hoz ha-
sonló egyenletek megoldása (akár a számfogalom bőv́ıtése árán) egészen a reneszánsz
koráig komoly fejtörést okozott a matematikusoknak, és további évszázadokra volt
szükség a kérdéskör pontos tisztázásához. Ebben a fejezetben alább a komplex
számokat és alaptulajdonságaikat ismertetjük. Az előző bekezdésekben ismétlődő
mintázat szerint kibőv́ıtjük a számfogalmat a valós számokon túlra, mégpedig azért,
hogy a (3)-hoz hasonló egyenletek megoldhatók legyenek. Az újfajta számokat
komplex számoknak fogjuk nevezni. A komplex számokat is valós számpárokkal
azonośıthatjuk, és egészen pontosan meg fogjuk majd adni, hogy az újfajta (komp-
lex) számokon hogyan kell a szokásos műveleteket elvégeznünk. Konstrukciónk
ismét olyan lesz, hogy egy alkalmas injekt́ıv homomorfizmus a valós számok R
testét beágyazza a komplex számok C testébe. Ismét elmondhatjuk majd, hogy
ha tudnánk, hogy mik azok a valós számok, akkor azt is tudnánk, hogy a komplex
számok micsodák. Emellett - mivel a valós számok már teljes mértékben kitöltik
a számegyenest - a komplex számokat nem egy egyenes, hanem egy śık pontjaival
tudjuk azonośıtani.

Felmerül a kérdés, hogy esetleg még bonyolultabb egyenletek megoldhatóságának
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érdekében további számfogalom-bőv́ıtésre lenne-e szükség, és ha ez ı́gy van, akkor
a számfogalom-bőv́ıtéseinknek végére érünk-e valaha. Ezzel kapcsolatban jó h́ırünk
van, ugyanis igaz a következő:

5.1. Tétel (Az Algebra Alaptétele). 1 Minden komplex-együtthatós, legalább elsőfokú
polinomnak van gyöke C-ben.

Bizonýıtás. Bizonýıtás év végén → sőt másik félévben.

Ez a tétel a természet egy kisebbfajta csodája: azt álĺıtja, hogy a polinom-
egyenletek megoldhatósága szempontjából megállhatunk a komplex számoknál még
akkor is, ha polinomegyenleteinkben szerepelhetnek az újfajta komplex számaink is.

Végül megjegyezzük, hogy a számfogalom bőv́ıthető a végtelen nagy (vagy akár
a végtelen pici) mennyiségek irányába is; a végtelenség más-más aspektusait meg-
ragadva a végtelen nagy mennyiségekkel (számosságokkal, rendszámokkal) a hal-
mazelmélet, a végtelen pici mennyiségekkel a (nemsztenderd) anaĺızis foglalkozik.
Ezek (akár több) önálló tantárgyat kitöltő területek; ebben a kurzusban a végtelen
mennyiségeken végzett műveletekkel és azok tulajdonságaival nem foglalkozunk.

5.2. Komplex számok defińıciója

5.2. Defińıció (Komplex számok halmaza és egyenlősége). C = R× R és

(a, b) = (c, d) ⇔ (a = c) ∧ (b = d).

Jelölés: az (a, b) ∈ C komplex számot a+ bi alakban is ı́rjuk, és a kérdéses komplex
szám algebrai alakjának nevezzük.

Az előző Defińıció jelöléseit megtartva hangsúlyozzuk a következőket. A fenti,
szigorú algebrai alak mellett 0 + bi helyett ı́rhatunk egyszerűen bi-t, és hasonlóan,
a+ 0i helyett ı́rhatunk egyszerűen a-t is.

Egy komplex szám tehát egy valós számpár: a z = a+ ib komplex számnak a a
valós, és b a képzetes része, ezekre alább az 5.5 Defińıcióban vezetünk be jelöléseket.
A racionális számok esetében a törtvonal külöńıti el a számlálót a nevezőtől. Eh-
hez némileg hasonlóan, az algebrai alakban az i szorzótényező jelöli meg a komplex
számunk képzetes részét. A következő defińıcióban megadjuk, hogyan kell összeadni
és összeszorozni két komplex számot. Látjuk majd, hogy az algebrai alak jelölései
kényelmesek lesznek az egyszerűbb műveletek elvégzésére. Lesz egy új számolási
szabályunk is: i2 = −1. Ezek szerint az új i szám megoldása lesz a valósak körében
megoldhatatlan x2 = −1 egyenletnek; emiatt néha az i =

√
−1 jelölést is alkal-

mazzák (ami egy picit pontatlan: egyrészt egyelőre nem definiáltuk negat́ıv szám
négyzetgyökét; másrészt, ha már definiáltuk is volna, egy ilyen jelöléshez akkor is be
kéne látni, hogy −1-nek pontosan 1 darab négyzetgyöke van. Ezzel szemben az derül

1Ezt a tételt újabban a Klasszikus Algebra Alaptételének nevezik.
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majd ki, hogy két olyan kompex szám is van, melyek négyzete −1: az egyik ilyen
szám i a másik pedig −i azaz szigorúan vett algebrai alakban 0 + 1i és 0 + (−1)i).
Emiatt a 5.12 Defińıcióban további magyarázattal fogunk majd szolgálni, hogy pl.
az

√
−1 jelölést hogyan alkalmazzuk.

5.3. Defińıció (Műveletek).

� Összeadás: (a, b) + (c, d) = (a+ c, b+ d) azaz

a+ bi+ c+ di = (a+ c) + (b+ d)i.

� Szorzás: (a, b) · (c, d) = (ac− bd, ad+ bc)i azaz

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i,

ahol tehát i2 = −1.

A műveletek előbbi defińıciója alapján valóban praktikus az algebrai alak használata:
komplex számokkal

”
úgy számolunk, mint a szokásos kéttagú összegekkel, azzal a

szabállyal kiegésźıtve, hogy i2 = −1”.

5.4. Tétel. (C,+, ·, 0, 1) test.

Bizonýıtás. A testaxiómák ellenőrzésével. A bizonýıtásra egy másik (rövidebb, de
absztraktabb, és további előkészületi lépéseket igénylő) lehetőség az lehetne, hogy
igazoljuk: C izomorf egy gyűrű (polinomgyűrű) speciális homomorf képével. Mi-
vel a 4.13 Tétel szerint a gyűrűhomomorfizmusok megőrzik a gyűrűazonosságok
igazságát is, ezért ebből azonnal adódna, hogy C egy gyűrű. Azt pedig külön (vi-
szonylag röviden) meg lehetne gondolni, hogy a homomorfizmust olyan speciális
módon is választhatjuk, hogy értékkészletében (azaz C-ben) a nemnulla elemek mind
invertálhatók legyenek.

5.3. Komplex számok algebrai alakja és a műveletek alaptu-
lajdonságai

5.5. Defińıció (Algebrai alak). Ha z = (a, b) ∈ C, akkor a+bi a z algebrai alakja.

5.6. Defińıció (Valós és képzetes rész). z = a+ bi esetén:
� ℜ(z) = a: valós rész;
� ℑ(z) = b: képzetes rész;
� |z| =

√
a2 + b2: a z komplex szám abszolút értéke (= 0-tól való távolsága);

� z = a− bi: z konjugáltja.

Ahogy korábban megjegyeztük, a számegyenes minden pontja megfelel egy valós
számnak. Mivel egyetlen valós szám négyzete sem negat́ıv, ezért az i számot nem
tudjuk elhelyezni a számegyenesen, hanem azon ḱıvül helyezzük el: felveszünk egy, a
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számegyenesre merőleges, origón átmenő újabb egyenest – amit képzetes tengely-
nek nevezünk – és i-t a képzetes tengely egyik olyan pontjával azonośıtjuk, melynek
1 a távolsága az origótól. A valós számok eredeti számegyenese és a képzetes ten-
gely együtt megad egy derékszögű koordinátarendszert. Ennek seǵıtségével az a+ ib
komplex számot a śık (a, b) koordinátájú pontjával azonośıtjuk, és az azonośıtás
után a komplex számok śıkjáról (vagy számśıkról) beszélünk – pontosan ugyanúgy,
ahogy a valós számok esetében használjuk a

”
számegyenes” kifejezést. A komp-

lex számok összeadása egybeesik a nekik megfelelő helyvektorok, mint śıkvektorok
összeadásával. Alább, a 5.14 Megjegyzésben látjuk majd, hogy a komplex számok
szorzásának is van egy nagyon világos geometriai jelentése, amely azonban nem tel-
jesen nyilvánvaló; ismertetése további előkészületeket igényel.

5.7. Tétel (Konjugálás tulajdonságai). Legyen z ∈ C.

1. z = z;

2. z · z = |z|2 ∈ R.

Bizonýıtás. (1) a+ bi = a− bi = a+ bi ✓.

(2) z · z = (a+ bi)(a− bi) = a2 − abi+ abi+ b2 = a2 + b2 = |z|2. ✓

5.8. Példa (Osztás algebrai alakban).

5 + 2i

1 + i
=

(5 + 2i)(1 − i)

(1 + i)(1 − i)
=

5 − 5i+ 2i− 2i2

2
=

7 − 3i

2
=

7

2
− 3

2
i.

5.9. Tétel. A konjugálás automorfizmus. Részletesebben, az

f : C → C, f(z) = z

függvény egy gyűrűizomorfizmus C-ből C-be, azaz:

1. f(z1 + z2) = f(z1) + f(z2);

2. f(z1z2) = f(z1)f(z2).

Bizonýıtás. Legyen z1 = a1 + b1i, z2 = a2 + b2i. Ki fogjuk számı́tani 1. bal- és
jobboldalát, és látjuk majd, hogy valóban egyenlőek.

f(z1 + z2) = f((a1 + a2) + (b1 + b2)i) = (a1 + a2) − (b1 + b2)i

f(z1) + f(z2) = (a1 − b1i) + (a2 − b2i) = (a1 + a2) − (b1 + b2)i. ✓

2. Hasonlóan igazolható.
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5.4. Komplex számok trigonometrikus alakja

HIÁNYZIK A ŚıKBELI POLÁRKOORDINÁTA RENDSZER !!!!!!!!!!!!!

5.10. Defińıció (Trigonometrikus alak). Legyen z = a + bi ∈ C, z ̸= 0. Ekkor z
feĺırható trigonometrikus alakban:

z = r(cosφ+ i sinφ)

ahol:
� r = |z| =

√
a2 + b2 a komplex szám abszolút értéke;

� φ a komplex szám argumentuma (szöge), amelyre:

cosφ =
a

r
, sinφ =

b

r

Az argumentum csak 2π egész számú többszörösei erejéig van meghatározva.

5.11. Tétel (Szorzás trigonometrikus alakban). Legyenek z1 = r1(cosφ1 + i sinφ1)
és z2 = r2(cosφ2 + i sinφ2) komplex számok. Ekkor:

z1z2 = r1r2[cos(φ1 + φ2) + i sin(φ1 + φ2)].

Bizonýıtás.

z1z2 = r1r2(cosφ1 + i sinφ1)(cosφ2 + i sinφ2)

= r1r2[(cosφ1 cosφ2 − sinφ1 sinφ2) + i(cosφ1 sinφ2 + sinφ1 cosφ2)]

= r1r2[cos(φ1 + φ2) + i sin(φ1 + φ2)].

5.5. Komplex gyökök és egységgyökök

5.12. Defińıció (Komplex gyökök). Legyen z ∈ C, n ∈ N, n ≥ 1. Ekkor:

n
√
z = {w ∈ C | wn = z}.

Ezek szerint a z komplex szám n-edik gyöke egy halmaz: az n
√
z halmaz azokat

a komplex számokat tartalmazza, melyek n-edik hatványa éppen z.

5.13. Tétel (Osztás és gyökvonás trigonometrikus alakban). Legyenek

z1 = r1(cosφ1 + i sinφ1), z2 = r2(cosφ2 + i sinφ2) ̸= 0

komplex számok és legyen n ∈ N.

1.
z1
z2

=
r1
r2

(cos(φ1 − φ2) + i sin(φ1 − φ2));
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2. zn = rn(cos(nφ) + i sin(nφ)) (Moivre-formula);

3.

n
√
z =

{
n
√
r

(
cos

(
φ+ 2kπ

n

)
+ i sin

(
φ+ 2kπ

n

))
| k = 0, 1, ..., n− 1

}
.

Bizonýıtás. 1. Ellenőrizhető:

r1
r2

(cos(φ1 − φ2) + i sin(φ1 − φ2)) · z2 = z1.

2. Triviális (indukció n-re).

3. Tetszőleges k ∈ N esetén:[
n
√
r

(
cos

(
φ+ 2kπ

n

)
+ i sin

(
φ+ 2kπ

n

))]n
= r(cos(φ+ 2kπ) + i sin(φ+ 2kπ))

= r(cosφ+ i sinφ) = z.

Ezért a jobboldali halmaz elemei mind benne vannak az n
√
z halmazban. Ezek

páronként különbözőek, mert a sin és cos függvények legkisebb közös periódusa
2π. Mivel 2π közös periódusa sin-nek és cos-nak, ezért nagyobb k-k nem adnak új
gyököket: k = 0, . . . , n− 1. Végül, n

√
z-nek más elemei a már igazolt 2. miatt nem

lehetnek.

5.14. Megjegyzés. A 5.13 Tételből látszik, hogy tetszőleges z ∈ C-vel való szorzás:
nyújtva forgatás (nyújtás |z|-szeresre + origó körüli forgatás z argumentumával).
Speciálisan, ha a z ∈ C komplex szám abszolútértéke 1, akkor a z-vel való szorzás
geometriai hatása éppen a z argumentumával való elforgatás (0 körül).

5.15. Példa. Legyen n ∈ N+; ekkor az n
√

1 halmaz elemei a következők:

ε0 = 1(cos 0 + i sin 0) = 1;

ε1 = 1

(
cos

(
2π

n

)
+ i sin

(
2π

n

))
;

ε2 = 1

(
cos

(
4π

n

)
+ i sin

(
4π

n

))
;

...

εn−1 = 1

(
cos

(
2(n− 1)π

n

)
+ i sin

(
2(n− 1)π

n

))
.

Megjegyezzük még, hogy az ε1-el való szorzás 2π
n
-nel való elforgatás (0 körül).
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A következő defińıcióban az előző példát általánośıtjuk.

5.16. Defińıció (Rend). Legyen z ∈ C. A z rendje az a legkisebb n ∈ N, n ≥ 1
(ha van ilyen), melyre zn = 1.

� Ha ∀n ∈ N-re zn ̸= 1, akkor rend(z) = ∞;
� Ha z-nek van rendje, akkor |z| = 1.

ε ∈ C: n-edik egységgyök, ha εn = 1 (speciálisan ε = 1 is n-edik egységgyök).
További példák: i 4. egységgyök, hiszen i4 = 1.

5.17. Defińıció. ε ∈ C primit́ıv n-edik egységgyök, ha ε n-edik egységgyök és
rendje n.

5.18. Megjegyzés. Rögźıtett n-re legyen

A = {ε ∈ C | εn = 1} (n-edik egységgyökök halmaza) és

tekintsük az A = (A, ·) struktúrát, ahol · a C-ből öröklődő szorzás művelete. Ekkor
A izomorf a (Zn,+) csoporttal.

Továbbá, ha ε a legkisebb pozit́ıv szögű eleme A-nak, és z ∈ C, akkor

n
√
z = {εkz0 | k = 0, 1, . . . , n− 1}.

hiszen az ε-al való szorzás hatása: 2π
n

-nel való 0 körüli forgatás.

5.19. Példa. Legyen n ∈ N rögźıtett, ε0, ε1, . . . , εn−1 az összes n-edik egységgyök.
Ekkor

n−1∑
k=0

εk = 0.

1. bizonýıtás. Legyen ε a legkisebb pozit́ıv szögű n-edik egységgyök:

ε = ε1 = cos

(
2π

n

)
+ i sin

(
2π

n

)
.

Ekkor εk = εk. Legyen

A =
n−1∑
k=0

εk =
n−1∑
k=0

εk.

Ekkor

εA =
n−1∑
k=0

εk+1 =
n∑

k=1

εk = A.

Tehát εA = A, azaz (ε− 1)A = 0. Mivel ε ̸= 1, ezért A = 0.

2. bizonýıtás. A mértani sorozatok összegére vonatkozó képlet szerint

A =
n−1∑
k=0

εk =
εn − 1

ε− 1
=

1 − 1

ε− 1
= 0.
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5.6. Komplex számok és śıkgeometria

Ebben az alfejezetben a komplex számokat – algebrai alakjukat derékszögű
koordinátákként használva – azonośıtjuk a śık pontjaival. Ennek megfelelően pl.
közvetlenül fogunk egyes komplex számok mértani helyéről beszélni (ahelyett, hogy
a komplex számunknak megfelelő pont mértani helyéről beszélnénk).

5.20. Példa. Hol vannak azok a z ∈ C komplex számok, melyekre

|z + 3 − i| = 2?

Megoldás. Átalaḱıtjuk:
|z − (−3 + i)| = 2.

Tehát azoknak a z kompelx számoknak a mértani helyét keressük, melyek távolsága
−3 + i-től 2. Ez egy kör:

� Középpont: −3 + i;
� Sugár: 2.

ℜ

ℑ

−3 + i

5.21. Példa. Hol vannak azok a z ∈ C komplex számok, melyekre

|z + i| = |z − i|?

1. Megoldás. z távolsága i-től és −i-től azonos. Ezért a kérdéses z komplex
számok mértani helye az (i,−i) szakasz felezőmerőlegese (mint egyenes).

ℜ

ℑ

i

−i

valós tengely
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2. Megoldás. Vegyük fel z-t algebrai alakban: z = x + iy és fogalmazzuk át a
feltételünket:

|x+ iy + i| = |x+ iy − i|
|x+ i(y + 1)| = |x+ i(y − 1)|√
x2 + (y + 1)2 =

√
x2 + (y − 1)2 (abszolútérték nem negat́ıv valós).

Négyzetre emelünk:

x2 + (y + 1)2 = x2 + (y − 1)2

x2 + y2 + 2y + 1 = x2 + y2 − 2y + 1

2y = −2y

4y = 0

y = 0.

Tehát z a valós tengelyen van (és a valós tengely mindegyik pontja megfelelő).

5.7. Binomiális együtthatók és a Binomiális Tétel

5.22. Defińıció (Binomiális együttható). Legyen n ∈ N, k ∈ N, 0 ≤ k ≤ n. Az
(
n
k

)
szimbólum (melyet binomiális együtthatónak nevezünk) azt a számot jelöli, ahány k
elemű részhalmaza van egy n elemű halmaznak. Ismertnek tekintjük, hogy(

n

k

)
=

n!

k!(n− k)!
.

5.23. Példa (Pascal-háromszög).
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

A Pascal-háromszög szélein 1-esek vannak, beljebb minden elem egyenlő a felette
levő két elem összegével. A Pascal-háromszög sorait, és a sorokon belül az eleme-
ket 0-tól sorszámozzuk. Ismertnek tekintjük, hogy ezzel a konvencióval a Pascal-
háromszög n. sorának k. eleme éppen

(
n
k

)
. Például, a Pascal-háromszög 2. sorának

0. eleme
(
2
0

)
= 1, 2. sorának 1. eleme

(
2
1

)
= 2, stb.
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5.24. Tétel (Binomiális tétel). Tetszőleges kommutat́ıv gyűrű tetszőleges a, b ele-
meire és n ∈ N+-ra

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

(ahol egy c gyűrűelem az m ∈ N számmal való mc szorzatán az m-tagú c+ c+ ...+ c
ismételt összeadás eredményét értjük).

Bizonýıtás. (a+b)n = (a+b)(a+b) · · · (a+b) (n db) zárójelek felbontásával: hányszor
kapunk an−kbk-t? Pontosan annyiszor, ahányféleképpen ki tudunk választani k da-
rab b-t az n darab tényező közül, azaz

(
n
k

)
-szor.

5.25. Megjegyzés (Pascal-tetraéder). A (a + b + c)n = ((a + b) + c)n kifejtéséhez
hasonlóan definiálhatjuk a trinomiális együtthatókat.

A Binomiális tétel alkalmazásai

5.26. Példa.

2n = (1 + 1)n =
n∑

k=0

(
n

k

)
1n−k1k =

n∑
k=0

(
n

k

)
.

5.27. Példa.

0 = (1 − 1)n =
n∑

k=0

(
n

k

)
1n−k(−1)k =

n∑
k=0

(−1)k
(
n

k

)
ha n > 0.

5.28. Példa. Egyrészt a Binomiális Tételt (5.24 Tételt) alkalmazva:

(1 + i)n =
n∑

k=0

(
n

k

)
1n−kik =

n∑
k=0

(
n

k

)
ik.

Másrészt a hatványozást trigonometrikus alakban elvégezve:

(1 + i)n = (
√

2)n
(

cos
π

4
+ i sin

π

4

)n
= 2n/2

(
cos

nπ

4
+ i sin

nπ

4

)
.

A valós és képzetes részek összehasonĺıtásával:

n∑
k=0

k páros

(−1)k/2
(
n

k

)
= 2n/2 cos

nπ

4
,

n∑
k=0

k páratlan

(−1)(k−1)/2
(
n

k

)
= 2n/2 sin

nπ

4
.

5.29. Példa. Legyen φ ∈ R, n ∈ N tetszőleges. Fejezzük ki sin(nφ)-t és cos(nφ)-t
sin(φ), cos(φ)-vel.

46



Az ötlet az, hogy a (cosφ + i sinφ) komplex szám n-edik hatványát két módon
(egyszer a Binomiális Tétel seǵıtségével, egyszer pedig a trigonometrikus alakok-
ra vonatkozó hatványozással) számoljuk ki; mivel ugyanazt a dolgot számoljuk ki
kétféle módon, a két eredmény egyenlő lesz...
Egyrészt Binomiális tétellel:

(cosφ+ i sinφ)n =
n∑

k=0

(
n

k

)
(cosφ)n−k(i sinφ)k

=
n∑

k=0

(
n

k

)
ik cosn−k φ sink φ.

Másrészt trigometrikus alak hatványaként:

(cosφ+ i sinφ)n = cos(nφ) + i sin(nφ).

A valós részek összehasonĺıtásából:

cos(nφ) =
n∑

k=0
k páros

(−1)k/2
(
n

k

)
cosn−k φ sink φ;

hasonlóan, a képzetes részek összehasonĺıtásából:

sin(nφ) =
n∑

k=0
k páratlan

(−1)(k−1)/2
(
n

k

)
cosn−k φ sink φ.

5.30. Példa (n = 3 eset).

(cosφ+ i sinφ)3 =

(
3

0

)
cos3 φ(i sinφ)0 +

(
3

1

)
cos2 φ(i sinφ)1

+

(
3

2

)
cosφ(i sinφ)2 +

(
3

3

)
cos0 φ(i sinφ)3

= cos3 φ+ 3i cos2 φ sinφ− 3 cosφ sin2 φ− i sin3 φ

= (cos3 φ− 3 cosφ sin2 φ) + i(3 cos2 φ sinφ− sin3 φ).

Másrészt: (cosφ+ i sinφ)3 = cos(3φ) + i sin(3φ).
A valós részek egyenlőségéből:

cos(3φ) = cos3 φ− 3 cosφ sin2 φ.

A képzetes részek egyenlőségéből:

sin(3φ) = 3 cos2 φ sinφ− sin3 φ.
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6. Polinomok

Alapdefińıciók

Polinomokkal korábban ebben az anyagban is találkoztunk már, sőt középiskolai
tanulmányainkból is ismerős lehet a polinomok fogalma. Eddigi ismereteink szerint
az x-et, mint határozatlant tartalmazó polinomok

a0 + a1x+ a2x
2 + ...

alakú véges összegek; egy polinomot tehát úgy szoktunk megadni, hogy megadjuk az
egyes x-hatványok együtthatóit. Mivel a polinomok véges összegek, az első néhány
együttható felsorolása után elég azt rögźıteni, hogy a további (nagyobb kitevős x-
hatványokhoz tartozó) együtthatók mind nullák. Más szavakkal, egy polinomot
azonośıthatunk a nemnulla együtthatói véges sorozatával (úgy, hogy a sorozatunk
nulladik tagja x0 együtthatóját, első tagja x1 együtthatóját, stb. adja meg). Ezt
teszi prećızzé a következő defińıció, melyben nem az a lényeg, hogy konkrétan hogyan
definiáltuk a polinomokat, hanem az az igazán fontos, hogy a polinomokat ı́gy-vagy-
úgy, de teljesen prećızen definiáltuk. Később látjuk majd, hogy az alábbi defińıció
praktikus jelölést biztośıt rengeteg kérdés tisztázásához.

6.1. Defińıció (Polinomok halmaza). Legyen R kommutat́ıv, egységelemes gyűrű.
Az R feletti polinomok halmazát a következőképpen definiáljuk:

A = {a : N → R | ∃N ∈ N : ∀n > N : a(n) = 0}.
A műveletek:

� Összeadás: (a+ b)(k) = a(k) + b(k) (∀k ∈ N);

� Szorzás: (ab)(k) =
k∑

m=0

a(m)b(k −m) (∀k ∈ N).

Az ı́gy kapott (A,+, ·) struktúrát R[x]-el jelöljük, és megelőlegezve a 6.5 Tételt, R
feletti egyváltozós polinomgyűrűnek nevezzük.

6.2. Defińıció (Jelölés és alakok). Ha a ∈ A egy polinom, akkor a következő alakban
ı́rhatjuk:

a = a0 + a1x+ a2x
2 + · · · + anx

n

ahol ak = a(k) a k. együttható és x a határozatlan.

Általában x0-t nem ı́rjuk ki és ha ar = 0, akkor nem mindig ı́rjuk ki a megfelelő
tagot.

Polinomok foka és speciális tulajdonságai

6.3. Defińıció (Fok). Legyen a ∈ R[x]. Ekkor az a polinom fokát a következőképpen
definiáljuk:

deg(a) =

{
−∞, ha ∀k : ak = 0;

max{k | ak ̸= 0}, különben.
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Ha b = b0 + b1x+ · · · + bnx
n és bn ̸= 0, akkor

� bn a b polinom főegyütthatója;
� ha bn = 1, akkor a b polinom monikus;
� a bkx

k alakú összeadandókat a b polinom tagjainak nevezzük.

6.4. Tétel (Alaptulajdonságok).

1. A φ : R → R[x], φ(a) = a (jobboldalon a konstans polinom van) függvény
injekt́ıv homomorfizmus;

2. Ha f, g ∈ R[x], akkor

deg(f + g) ≤ max{deg(f), deg(g)};

3. Ha R nullosztómentes, akkor

deg(f · g) = deg(f) + deg(g).

Bizonýıtás. Az álĺıtások R[x]-ben való megfelelőjét középiskolában már megismertük;
a bizonýıtás R helyett tetszőleges R gyűrűre hasonlóan végezhető el.

6.5. Tétel (Gyűrűtulajdonságok).

1. R[x] kommutat́ıv egységelemes gyűrű;

2. Ha R nullosztómentes, akkor R[x] is nullosztómentes.

Bizonýıtás.

1. A gyűrűaxiómák könnyen (de hosszadalmasan) ellenőŕızhetők, ezért nem részletezzük,
hogy:

� Az összeadás kommutat́ıv csoportot alkot;
� A szorzás asszociat́ıv és kommutat́ıv;
� A disztributivitás teljesül;
� Az 1 konstans polinom egységelem.

2. Tegyük fel, hogy R nullosztómentes. Legyenek f, g ∈ R[x], f ̸= 0, g ̸= 0.

Ekkor deg(f) ≥ 0 és deg(g) ≥ 0, ı́gy az előző tétel (3) pontja miatt:

deg(f · g) = deg(f) + deg(g) ≥ 0.

Ezért f · g ̸= 0.
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6.1. Polinomok oszthatósága és maradékos osztása

6.6. Defińıció (Oszthatóság). Legyenek f, g ∈ R[x]. A 2.5 Defińıcióra emlékeztetve,
az R[x] gyűrű esetében is azt mondjuk, hogy f osztója g-nek (jelölés: f | g), ha

∃h ∈ R[x] : g = f · h.

6.7. Defińıció (Maradékos osztás). Azt mondjuk, hogy f ∈ R[x] maradékosan
osztható g ∈ R[x]-szel, ha

∃q, r ∈ R[x] : f = g · q + r és deg(r) < deg(g).

Ekkor q-t hányadosnak, r-et maradéknak nevezzük.

6.8. Példa (Ellenpélda). Z[x]-ben x2 nem osztható maradékosan 2x-szel:
Tegyük fel, hogy x2 = (2x)h+ r, ahol deg(r) < 1.
Ekkor deg(r) ≤ 0 és ezért r = 0, de h főegyütthatója is egész szám kellene, hogy

legyen, emiatt nem található megfelelő h.

6.9. Tétel (Maradékos osztás feltétele). Legyen R kommutat́ıv, egységelemes gyűrű
és f ∈ R[x]. A következő álĺıtások ekvivalensek:

1. f -fel lehet maradékosan osztani, azaz

∀g ∈ R[x] ∃h, r ∈ R[x] : g = f · h+ r, deg(r) < deg(f);

2. f főegyütthatója invertálható R-ben.

Bizonýıtás. (1) ⇒ (2): (1) miatt f ̸= 0, legyen n = deg(f). (1) alapján a g = xn

polinomot is el lehet maradékosan osztani f -el, ezért

∃h, r ∈ R[x] : xn = f · h+ r, ahol deg(r) < deg(f).

A főegyütthatók összehasonĺıtásából:

1 = an · (h főegyütthatója),

mert deg(r) < deg(f). Ezért an invertálható R-ben.
(2) ⇒ (1): Legyen f = anx

n+· · ·+a1x+a0, ahol an invertálható. Ellentmondást
keresve tegyük fel, hogy van olyan g ∈ R[x], amit nem lehet f -fel maradékosan
osztani; legyen m a legkisebb fokszám, amelyre van ilyen g és legyen g ∈ R[x]
olyan, hogy deg(g) = m és g-t nem lehet f -fel maradékosan osztani. Vegyük fel g
együtthatóit:

g = bmx
m + bm−1x

m−1 + · · · + b1x+ b0.

Figyeljük meg, hogy m ≥ n (különben g = 0 · f + g jó maradékos osztás lenne).
Tekintsük a következő polinomot:

g̃ = g − (a−1n bmx
m−n)f.
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Ekkor deg(g̃) < m, ezért m választása (illetve g fokszámának minimalitása) miatt
g̃ maradékosan osztható f -fel:

∃h, r ∈ R[x] : g̃ = h · f + r, deg(r) < deg(f).

Ezért
g = g̃ + (a−1n bmx

m−n)f = (h+ a−1n bmx
m−n)f + r.

Ez ellentmondás, hiszen az előző sor szerint g is maradékosan osztható f -fel.

6.10. Tétel (Maradékos osztás egyértelműsége). Ha f ∈ R[x] főegyütthatója in-
vertálható, akkor a maradékos osztás egyértelmű.

Bizonýıtás. Tegyük fel, hogy

g = h1f + r1 = h2f + r2

ahol deg(r1) < deg(f) és deg(r2) < deg(f). Ekkor

(∗) (h1 − h2)f = r2 − r1.

Ellentmondást keresve tegyük fel, hogy h1 ̸= h2; ebből:
� deg((h1 − h2)f) ≥ deg(f) (mert f főegyütthatója invertálható);
� deg(r2 − r1) < deg(f).

Ezek szerint (∗) baloldalának foka legalább deg(f), jobboldalának foka pedig szi-
gorúan kisebb ennél. Ez ellentmondás, ezért mégiscsak h1 = h2 és ebből r1 = r2.

6.11. Következmény. Ha R test, akkor R[x]-ben minden nem nulla polinommal
lehet maradékosan osztani.

Bizonýıtás. Testben minden nem nulla elem invertálható, ı́gy minden nem nulla
polinom főegyütthatója is invertálható.

6.2. Polinomfüggvények

6.12. Defińıció. Legyen f ∈ R[x], f = anx
n + an−1x

n−1 + · · ·+ a0 és c ∈ R. Ekkor
f c-nél vett helyetteśıtési értéke:

f(c) = anc
n + an−1c

n−1 + · · · + a0.

Az f -hez tartozó polinomfüggvény:

pf : R → R, pf (c) = f(c).

6.13. Példa. Legyen f1 = x, f2 = x2 a Z2 felett.

c f1(c) f2(c)
0 0 0
1 1 1
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Itt f1 ̸= f2 mint polinomok, de pf1 = pf2 mint függvények.

6.14. Defińıció. c ∈ R gyöke f -nek, ha f(c) = 0.

6.15. Megjegyzés. Klasszikus kérdés: Adott f ∈ R[x]-nek keressük meg a gyökeit!
Hogyan keressük a gyököket? c ∈?? (Általában, – nem mindig – ha f ∈ R[x], akkor
c-t R-ben keressük).

6.16. Példa. Legyenek f1(x) = xn − 2 és f2(x) = x2 + 1. Hány gyökük van? A
különböző Q, R, C testekben és a Z gyűrűben:

Q R C Z
f1 0 1-2 n 0
f2 0 0 2 0

6.17. Megjegyzés. A 6.21 Következményben látjuk majd, hogy kummutat́ıv, nul-
losztómentes gyűrűk feletti polinomgyűrűkben a gyökök száma mutat valamiféle
rendezettséget (legfeljebb annyi gyök van, mint a polinom fokszáma). A 6.22 pont-
ban látunk majd patologikus példákat olyan (nullosztót tartalmazó) kommutat́ıv
gyűrűre, melyben az előző álĺıtás nem igaz; ott a gyökök számának furcsa visel-
kedése a nullosztók létezésén múlik. A gyökök számának szempontjából nemcsak
a nullosztók, hanem az alapgyűrű kommutativitása is lényeges: a 2025 őszi kur-
zus 10. heti gyakorlatára szánt 5. feladatában láttuk, hogy a kvaterniók NEM-
KOMMUTAT́ıV teste felett van olyan másodfokú polinom, melynek végtelen sok
gyöke van; itt a problémát a kommutativitás hiánya okozza (hiszen minden test
nullosztómentes).

A reneszánsz idejében már intenźıven vizsgálták a harmadfokú, sőt még magasabb-
fokú polinom-egyenleteket is. Ugyanakkor a negat́ıv számok fogalma nem volt még
teljesen rendbe téve. Emiatt, a mai jelöléseinket használva, a másodfokú

f(x) = x2 + ax+ b ∈ R[x]

polinom vizsgálata is nehézkes volt. Mivel együtthatóként neagt́ıv számokat nem
használtak még, az előző f -re az f(x) = 0 egyenletet 4 különböző esetre bontották,
és külön kezelték az

x2 = ax+ b;

x2 + ax = b;

x2 + b = ax;

x2 + ax+ b = 0

alakú egyenleteket (úgy értve, hogy mind a 4 esetben a, b, c nemnegat́ıv számok).
Látjuk majd, hogy e technikai nehézségek ellenére meglepően messzire jutottak a
harmad- és negyedfokú egyenletek megoldása terén.
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6.3. Polinomok gyökei és faktorizáció

6.18. Tétel (A behelyetteśıtés homomorfizmus). 2 Legyen R kommutat́ıv gyűrű,
c ∈ R és legyen

Φc : R[x] → R, Φc(f) = f(c).

Ekkor Φc (azaz a c-t behelyetteśıtő függvény) gyűrűhomomorfizmus.

Bizonýıtás. Azt kell ellenőŕıznünk, hogy Φc megtartja a gyűrű-műveleteket. Ehhez
legyenek f, g ∈ R[x], mondjuk

f =
∑
k

akx
k, g =

∑
k

bkx
k.

Ekkor egyrészt

Φc(f + g) = Φc

(∑
k

akx
k +

∑
k

bkx
k
)

= Φc

(∑
k

(ak + bk)xk
)

=

∑
k

(ak + bk)ck =
∑
k

akc
k +

∑
k

bkc
k = Φc(f) + Φc(g).

Másrészt, hasonlóan

Φc(fg) = Φc

((∑
k

akx
k
)(∑

k

bkx
k
))

= Φc

(∑
k

( k∑
j=0

ajbk−j
)
xk
)

=

∑
k

k∑
j=0

(
ajbk−j

)
ck =

(∑
k

akc
k
)(∑

k

bkc
k
)

= Φc(f)Φc(g).

6.1. Konvenció.

A továbbiakban R mindig kommutat́ıv, egységelemes gyűrű.

6.19. Tétel. Legyen f ∈ R[x], c ∈ R. Ekkor ekvivalensek:

(a) f(c) = 0 (azaz c gyöke f -nek);

(b) (x− c) | f (azaz x− c osztója f -nek).

2Ez a tétel teljesen kimaradt abból az anyagból, amit a hallgatóktól kaptam. Léırom a bi-
zonýıtást újra, de ebben a bizonýıtásban a jelölések nem feltétlenül lesznek azonosak azzal, ahogy
előadáson (emlékeim szerint 2025 október 17.-én) elmondtam.
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Bizonýıtás. (a) ⇒ (b): x − c főegyütthatója 1, ezért a 6.9 Tétel miatt lehet vele
maradékosan osztani: vannak olyan q, r ∈ R[x] polinomok, melyekre

f = (x− c)q + r, deg(r) < 1.

Mindkét oldalba c-t helyetteśıtve, a 6.18 Tétel miatt

0 = f(c) = (c− c)q(c) + r(c) = r(c),

tehát r = 0.
(b) ⇒ (a): Tudjuk, hogy ∃g ∈ R[x] : f = (x − c)g. Ismét, mindkét oldalba c-t
helyetteśıtve és a 6.18 Tételre hivatkozva azt kapjuk, hogy f(c) = (c − c)g(c) = 0,
azaz c gyöke f -nek.

6.20. Tétel. Ha R nullosztómentes és c1, . . . , ck különböző gyökei f -nek, akkor

(x− c1)(x− c2) · · · (x− ck) | f.

Bizonýıtás. Indukció k-ra.
Alaplépés: k = 1, az előző, 6.19 Tétel miatt.
Indukciós lépés: Tegyük fel, hogy c1, . . . , ck különböző gyökei f -nek. Az előző,
6.19 Tétel szerint: (x − c1) | f , azaz ∃g ∈ R[x] : f = (x − c1)g. Ismét a 6.18 Tétel
miatt, tetszőleges 2 ≤ i ≤ k-ra:

f(ci) = (ci − c1)g(ci) = 0.

Mivel a c1, . . . ck gyökök páronként különböznek, ezért ci − c1 ̸= 0, és ı́gy a nul-
losztómentesség miatt g(ci) = 0. Ezért c2, . . . , ck gyökei g-nek, és alkalmazható az
indukció.

6.21. Következmény. Ha R kommutat́ıv, nullosztómentes gyűrű, f ∈ R[x], deg(f) =
n, akkor f -nek legfeljebb darab n különböző gyöke lehet.

Bizonýıtás. Legyenek f gyökei c1, c2, · · · ∈ R. Az 6.20 Tétel ismételt alkalmazásával
f -ből az (x− c1), (x− c2), . . . lineáris tényezőket egyesével ki lehet emelni. Minden
ilyen kiemelés 1-el csökkenti a fokszámot, tehát a kiemeléseket legfeljebb deg(f) = n-
szer lehet megismételni. Ezért a gyökök száma nem lehet nagyobb n-nél.

6.22. Példa. A 6.21 Következmény nullosztót tartalmazó gyűrűkben nem marad
érvényben. Pl. a másodfokú x2 − 1-nek Z8-ban gyöke 1, 3, 5, 7, ez összesen 4 darab
(ezzel kapcsolatban még a 6.55 Példára is utalunk).
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6.4. Gyökök és együtthatók kapcsolata

Mint emĺıtettük már, a polinomegyenletek megoldásának klasszikus problémája
az, hogy adott polinom együtthatóiból álĺıtsuk elő a gyökeit. Erre a kérdésre vissza
fogunk térni, ebben az alfejezetben azonban a ford́ıtott, és jóval egyszerűbb kérdést
vizsgáljuk: hogyan állnak elő a gyökökből az együtthatók, azaz adott c1, . . . cn
gyűrűelemekhez hogyan találhatjuk meg egy olyan polinom együtthatóit, melynek
pont a c1, . . . cn gyűrűelemek a gyökei. Ez a ford́ıtott, és könnyebb irány hasznos
lesz az eredeti, gyökök előálĺıtására vonatkozó kérdések vizsgálatánál is.

6.23. Tétel (Viète-formulák). Legyen f = xn + an−1x
n−1 + · · · + a1x+ a0 monikus

polinom. Ha f = (x− c1)(x− c2) · · · (x− cn), akkor:

an−1 = −(c1 + c2 + · · · + cn);

an−2 = c1c2 + c1c3 + · · · + cn−1cn;

...

a1 = (−1)n−1(c2c3 · · · cn + c1c3 · · · cn + · · · + c1c2 · · · cn−1);
a0 = (−1)nc1c2 · · · cn.

Bizonýıtás. A szorzatot kibontva:

(x− c1)(x− c2) · · · (x− cn) = xn − (c1 + · · · + cn)xn−1 + · · · + (−1)nc1 · · · cn.

Az an−k együttható egyenlő (−1)k-szor a {c1, . . . cn} halmaz összes k-elemű részhalmaza
szorzatainak összegével.

Gyakorlati szempontból az előző tétel azt mutatja, hogy szorzat alakban adott
polinomok esetében a szorzást (zárójelek felbontását) csak indokolt esetben célszerű
elvégezni, mert ezt bármikor, viszonylag könnyen megtehetjük. Ugyanakkor egy
együtthatóival adott polinom szorzattá alaḱıtása sok fejtörést okozhat.

6.24. Példa. Oldjuk meg C-n:

u+ v = 4;

uv = 3.

A Viète-formulák miatt u és v gyökei az

x2 − 4x+ 3 = 0

másodfokú egyenletnek. Ennek gyökei: x = 1 és x = 3, tehát (u, v) = (1, 3) vagy
(3, 1).
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6.5. Harmadfokú egyenletek C felett

Általános alak és redukció

� Általános alak: ax3 + bx2 + cx+ d = 0.
� Redukált alak: y3 + py + q = 0.

6.25. Tétel (Harmadfokú egyenlet redukálása). Minden harmadfokú

ax3 + bx2 + cx+ d = 0, a ̸= 0

alakú egyenlet átalaḱıtható y3 + py + q = 0 alakúra.

Bizonýıtás. A főegyütthatóval osztva feltehetjük, hogy polinomunk monikus:

x3 +
b

a
x2 +

c

a
x+

d

a
= 0.

A baloldali polinomot rendezzük át x+ b
3a

hatványai szerint:

x3 +
b

a
x2 +

c

a
x+

d

a
=
(
x+

b

3a

)3
− x
( b2

3a2

)
−
( b

3a

)3
+
c

a

(
x+

b

3a

)
− bc

3a2
+
d

a
=

(
x+

b

3a

)3
+
( c
a
− b2

3a2

)(
x+

b

3a

)
+

b3

9a3
− b3

27a3
− bc

3a2
+
d

a
,

ez, az

x = y − b

3a
, p =

c

a
− b2

3a2
, q =

2b3

27a3
− bc

3a2
+
d

a

jelölésekkel y3 + py + q = 0 alakú.

Az y3 + py + q = 0 egyenlet megoldása C-ben.
Feltehetjük, hogy p ̸= 0, mert p = 0 esetén y értékeit azonnal megkapnánk a −q-ból
való (komplex) köbgyökvonással.

Keressük y-t y = u+ v alakban. A Binomiális tételből (5.24 Tételből)

y3 = (u+ v)3 = u3 + 3u2v + 3uv2 + v3 =

u3 + v3 + 3uv(u+ v) = u3 + v3 + 3uv · y,

azaz
y3 − 3uv · y − (u3 + v3) = 0,

és ez mindig igaz, ha y = u + v. Annak érdekében, hogy az előző sorban szereplő
egyenletet kapcsolatba hozzuk az y3 + py + q = 0 egyenlettel, következő lépésként
olyan u, v-t keresünk, melyekre p = −3uv és q = −(u3 + v3), azaz
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(1) uv = −p
3

és
(2) u3 + v3 = −q.

Az előző (1) feltételből következik, hogy

(3) u3v3 = −
(

p
3

)3
,

de ez a következtetés nem ford́ıtható meg: w3 = −
(

p
3

)3
-ből w = −

(
p
3

)
nem követ-

kezik, mert három (különböző) komplex szám is van, melyek köbe −
(

p
3

)3
(hiszen

−
(

p
3

)
-et a harmadik egységgyökökkel szorozva mindhárom szám köbe −

(
p
3

)3
lesz).

Ezt fejben tartva, keressünk olyan u, v-t, melyre (2) és (3) teljesül. Láthatjuk, hogy
u3 és v3 összegére és szorzatára vonatkozó elő́ırásokat kell kieléǵıtenünk, ezért a
másodfokú egyenletekre vonatkozó Viète-formulák (azaz a 6.23 Tétel) alapján u3 és
v3 gyökei a következő másodfokú egyenletnek:

z2 + qz −
(p

3

)3
= 0.

Ennek megoldásai:

z = −q
2
±
√(q

2

)2
+
(p

3

)3
.

Tehát:

(4) u =
3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
, v =

3

√
−q

2
−
√(q

2

)2
+
(p

3

)3
.

Ebből u+v-re 9 db lehetőség is adódhat, mert a komplex köbgyökvonás eredményei
általában 3-elemű halmazok. Ugyanakkor a 6.21 Következmény alapján harmad-
fokú egyenletünknek (legfeljebb) 3 darab gyöke lehet. A hamis-gyökök megjelenését
az okozza, hogy az (1) → (3) következtetés nem ford́ıtható meg (azaz, amint azt
átgondoltuk, (3)-ból nem következik (1)). Tudjuk azonban, hogy u-nak és v-nek
nemcsak a fenti (3) feltételt, hanem az ennél erősebb (1) feltételt is teljeśıtenie kell,
azaz teljesülnie kell uv = −p

3
-nak is.

Válasszuk u értékét a (4)-ből adódó 3 lehetőség közül tetszőlegesen; u ̸= 0, mert
(1) alapján u = 0-ból p = 0 következne. Legyen v′ = − p

3u
, ekkor u · v′ = −p

3
és

(v′)3 = (− p

3u
)3 = −

(p
3

)3
· 1

u3
= v3,

tehát u, v′-re igaz, hogy u+ v′ gyöke y3 + py + q-nak.
Legyen ε a 120◦-hoz tartozó harmadik egységgyök, ekkor a lehetséges értékek
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u-ra: u0, u0 · ε és u0 · ε2, ezekből meghatározhatók v megfelelő értékei u0-hoz, u0 · ε-
hoz és u0 · ε2-hez. Ott tartunk tehát, hogy harmadfokú egyenletünkhöz találtunk 3
gyököt, de azt még nem tudjuk, hogy megtaláltuk-e az összes gyököt (hiszen elvileg
elképzelhető lenne, hogy a fenti módszerrel megtalált 3 gyökünk közül néhány akkor
is egyenlő lenne egymással, ha a harmadfokú egyenletünknek 3 különböző gyöke
van). Szerencsére nem ez a helyzet, a fenti módszerrel elő tudjuk álĺıtani harmadfokú
egyenletünk összes gyökét. Ezt úgy lehetne ellenőrizni, hogy az

(x− (u0 + v0))(x− (u1 + v1))(x− (u2 + v2))

polinomban felbontva a zárójeleket (elvégezve a szorzásokat), éppen y3 + py + q
adódna, ami mutatná, hogy a fenti módon minden gyököt megkaptunk (ezt a hossza-
dalmas számolást elhagyjuk, vizsgán sem kell tudni).

Összefoglalva, azt kaptuk, hogy y3 + py + q = 0 megoldása a következő. Ha
p = 0, akkor y = 3

√
−q. Ha p ̸= 0, akkor y = u+ v, ahol

u =
3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
és v = − p

3u
; ezeket nevezik Cardano-képleteknek.

A harmadfokú egyenletek most ismeretett megoldási módszerének nagyon érdekes
története van, előadáson meséltem róla. Javaslom, hogy nézz utána a

”
harmad-

fokú egyenlet”,
”

Gerolamo Cardano” és
”
Niccolo Tartaglia” Wikipewdia-oldalainak

(Cardano személyét ne keverd össze a Cardano elnevezésű kriptovalutával). Ugyan-
csak elmeséltem, hogy R, illetve C felett a negyedfokú egyenletek megoldhatók úgy,
hogy minden (R, illetve C feletti) negyedfokú polinom két másodfokú szorzatára
bomlik. Közelebbről, az egyik másodfokú tényező együtthatóit ügyesen választva, a
másik másodfokú tényező határozatlan együtthatóira harmadfokú feltételek adódnak,
melyeket a Cardano-képletekkel meg lehet határozni. Meséltem arról is, hogy a leg-
alább ötödfokú egyenleteknek nincs szokásos megoldóképlete, egész egyszerűen azért,
mert (az 5.1 alfejezet elején, a racionális számok után bevezetett terminológiával)
nem minden algebrai szám gyökkifejezés: pl. az

x5 − 4x− 2

polinom gyökei algebrai számok (hiszen minden racionális együtthatós polinom min-
den gyöke algebrai), de meg lehet mutatni, hogy az előző polinom egyetlen gyöke sem
gyökkifejezés, ezért e gyököket egész egyszerűen nem tudjuk megnevezni racionális
számok, az alapműveletek, és gyökvonások seǵıtségével - emiatt megoldóképlet sem
létezhet. Röviden meséltem még Galois-ról, Abel-ről, és arról, hogy bizonyos szer-
kesztési feladatok (kockakettőzés, szögharmadolás) miért nem oldhatók meg.

A harmadfokú egyenletek megoldásának első lépése az volt, hogy polinomunkból
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kiküszöböltük a másodfokú tagot, azaz y3+py+q alakúra hoztuk úgy, hogy alkalma-
san választott u paraméterrel átrendeztük x − u hatványai szerint. Alfejezetünket
azzal zárjuk, hogy ez mindig megtehető.

6.26. Tétel (Polinomok (x−c) szerinti feĺırása). Legyen R kommutat́ıv, egységelemes
gyűrű, f ∈ R[x], c ∈ R. Ekkor f feĺırható (x− c) hatványai szerint:

f = bn(x− c)n + bn−1(x− c)n−1 + · · · + b1(x− c) + b0.

Bizonýıtás. Teljes indukció deg(f)-re.
Alaplépés: deg(f) = 0.

f = a0 = 0 · (x− c) + a0 (azaz b0 = a0)

megfelelő átrendezés.
Indukciós lépés: Osszuk el f -et maradékosan (x− c)-vel:

f = (x− c)g + d, deg(g) < deg(f).

Az indukciós feltevés szerint g feĺırható ı́gy:

g = bn(x− c)n−1 + bn−1(x− c)n−2 + · · · + b1.

Ebből

f = (x− c)[bn(x− c)n−1 + · · · + b1] + d = bn(x− c)n + · · · + b1(x− c) + b0.

ahol b0 = d.
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6.6. Szimmetrikus Polinomok

Ebben az alfejezetben olyan polinomokkal fogunk foglalkozni, melyekben több
változó (határozatlan) is szerepelhet. A többhatározatlanú polinomok gyűrűinek
rekurźıv defińıciójával kezdünk.

6.27. Defińıció. Legyenek x1, ...xn határozatlanok. Az R[x1] egyhatározatlanú poli-
nomgyűrűt definiáltuk már a 6.1 Defińıcióban. Ha az (n− 1)-határozatlanú

R[x1, . . . , xn−1]

polinomgyűrűt definiáltuk már, akkor legyen

R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].

Az előző defińıcióban számı́t a változók sorrendje: pl. R[x][y] ésR[y][x] formálisan
nézve különböző gyűrűk (az elsőben y-nak olyan polinomjai vannak, melyekben az
együtthatók x polinomjai, a másodikban pedig x olyan polinomjai vannak, me-
lyekben az együtthatók y polinomjai). Noha ezek a gyűrűk szigorú értelemben
különböznek, annyira természetes módon izomorfak, hogy azonośıtani fogjuk őket,
és úgy számolunk bennük, hogy az x és y határozatlanok

”
egyenrangúak”, függet-

lenül attól, hogy az R alapgyűrűt a határozatlanok milyen sorrendjében bőv́ıtettük
sokhatározatlanú polinomgyűrűvé. Például, a kéthatározatlanú

x2y2 + xy2 + 7 ∈ R[x, y]

polinom tekinthető az (y2)x2 + (y2)x + 7 ∈ R[y][x] polinomnak, de tekinthető az
(x2+x)y2+7 ∈ R[x][y] polinomnak is. Ez a nagyvonalúság a gyakorlatban semmilyen
problémát nem fog okozni.

6.28. Defińıció. Egy f(x1, . . . , xn) polinom szimmetrikus, ha bármely két változóját
felcserélve a polinom nem változik.

6.29. Példa. f(x, y) = x2 + y2 − 3(x2 + y2)7 szimmetrikus.

A 2025 őszi kurzus 11. adag házi feladataiban a 7. feladat szerint minden
permutáció előálĺıtható transzpoźıciók kompoźıciójaként. Ezért az f ∈ R[x1, . . . , xn]
polinom akkor és csak akkor szimmetrikus, ha az {1, 2, . . . , n} halmaz tetszőleges π
permutációjára

f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)).

6.30. Defińıció (Elemi szimmetrikus polinomok).

σ1 = x1 + x2 + · · · + xn;

(
n

1

)
= n db összeadandó

σ2 = x1x2 + x1x3 + · · · + xn−1xn;

(
n

2

)
db összeadandó

...

σn = x1x2 · · ·xn
(
n

n

)
= 1 db összeadandó.
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Általában: σk-t úgy kapjuk, hogy vesszük az {x1, . . . , xn} halmaz összes k-elemű
részhalmazát, e k-elemű részhalmazok elemeit összeszorozzuk, és az összes ilyen (k-
tényezős) szorzatot összeadjuk.

6.31. Példa. x1x2x3 + x1 + x2 + x3 szimmetrikus, de nem elemi (hiszen elemi
szimmetrikus polinomokban minden összeadandó ugyanannyi-tényezős szorzat).

Következő célunk a Szimmetrikus Polinomok Alaptételének (6.37 Tétel) iga-
zolása, mely durván szólva úgy foglalható össze, hogy minden szimmetrikus polinom
előálĺıtható (ráadásul pontosan 1 módon álĺıtható elő) elemi szimmetrikus polinomok
polinomjaként. E tétel igazolásához további előkészületekre lesz szükségünk.

Lexikografikus rendezés

6.32. Defińıció. Legyen (A,≤) rendezett halmaz, I = {1, . . . , n} véges halmaz. Ek-
kor I lexikografikus hatványa az a rendezés, melynek

• alaphalmaza

AI = {A elemeiből alkotott, I-vel indexelt sorozatok};

• rendezése: ha s ̸= t, si = ti minden i = 1, . . . , d− 1-re és sd < td, akkor s < t.

A lexikografikus rendezés tehát olyan, mint a szigorú névsor szerinti rendezés:
s-ben és t-ben megkeressük az első eltérést (az előző defińıcióban ez a d. poźıciónál
van), és s pontosan akkor előzi meg t-t, ha az első eltérés poźıciójánál s-ben kisebb
érték van, mint t-ben.

6.33. Tétel. Ha (A,≤) jólrendezett és I véges, akkor a lexikografikus hatvány is
jólrendezett.

Bizonýıtás. Ezt a tételt nem bizonýıtottuk, ebben a kurzusban semmit nem kell
tudni ennek a bizonýıtásáról. Annyit hadartam el, hogy ha a lexikografikus hatvány
nem lenne jólrendezett, akkor lenne benne végtelen leszálló lánc. E lánc párjait
sźınezzük meg I sźınnel aszerint, hogy melyik poźıcióban térnek el. Ramsey tétele
szerint kapnánk a végtelen leszálló láncunkban egy olyan végtelen részsorozatot,
melyben az egymást követő elemek mindig ugyanabban a poźıcióban (mondjuk
az i. poźıcióban) térnének el, ezért az előbbi részsorozatban szereplő sorozatok
i. koordinátái A-ban is adnának egy végtelen leszálló láncot, ami ellentmondana A
jólrendezettségének.

6.34. Defińıció. Többhatározatlanú polinomjainkat a kitevőik szerint lexikografiku-
san rendezzük. f ∈ R[x1, . . . , xn] főtagja L(f) az a tag, amelynek kitevő-sorozata
lexikografikusan a legnagyobb.
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6.35. Tétel (Szorzat főtagja). Ha f, g ∈ R[x1, . . . , xn], akkor L(f · g) = L(f) ·L(g).

Bizonýıtás. Legyen

L(f) = axd11 · · ·xdnn és L(g) = bxe11 · · ·xenn .

Ekkor egyrészt L(f) ·L(g) kitevő-sorozata (d1 +e1, . . . , dn +en). Másrészt, vegyük f
és g két tetszőleges tagját, az f -ből választott tag kitevő-sorozata legyen (d′1, . . . , d

′
n)

és a g-ből választott tag kitevő-sorozata legyen (e′1, . . . , e
′
n). Ha kiszemelt tagjain-

kat összeszorozzuk, szorzatuk kitevő-sorozata (d′1 + e′1, . . . , d
′
n + e′n) lesz, és ez lexi-

kografikusan kisebb (d1 + e1, . . . , dn + en)-nél, hiszen a főtag defińıciója értelmében
(d′1, . . . , d

′
n) lexikografikusan kisebb, vagy egyenlő (d1, . . . , dn)-nél és (e′1, . . . , e

′
n) lexi-

kografikusan kisebb, vagy egyenlő (e1, . . . , en)-nél. Emiatt fg főtagjának kitevő-so-
rozata L(fg) = (d1 + e1, . . . , dn + en), ahogy álĺıtottuk.

6.36. Példa (Elemi szimmetrikus polinomok főtagjai).

L(σ1) = L(x1 + · · · + xn) = x1;

L(σ2) = L(x1x2 + · · · + xn−1xn) = (x1x2) = x1x2;

...

L(σn) = L(x1 · · ·xn) = x1 · · ·xn.

Szimmetrikus polinomok előálĺıtása

6.37. Tétel (Szimmetrikus Polinomok Alaptétele). Ha f ∈ R[x1, . . . , xn] szimmet-
rikus polinom, akkor ∃!g ∈ R[y1, . . . , yn]:

f(x1, . . . , xn) = g(σ1, . . . , σn).

Bizonýıtás. Bizonýıtásunk egyúttal módszert is ad g előálĺıtására. Tegyük fel, hogy
L(f) = r·xm1

1 xm2
2 · · ·xmn

n . Mivel f szimmetrikus polinom, ezért váltózóit tetszőlegesen
permutálva nem változik meg. Emiatt az {1, . . . n} halmaz minden π permutációjára
igaz, hogy f -ben van olyan tag, melynek kitevő-rendszere (π(m1), π(m2), . . . . , π(mn)).
Ezek a permutált kitevőrendszerek lexikografikusan mind kisebbek, vagy egyenlőek
f főtagjának kitevő-rendszerénél, ami azt jelenti, hogy az m1,m2 . . .mn számokra
teljesül, hogy

(∗) m1 ≥ m2 ≥ · · · ≥ mn−1 ≥ mn.

Válasszuk a k1, . . . , kn ∈ N számokat úgy, hogy:

k1 + k2 + · · · + kn = m1;

k2 + · · · + kn = m2;

...

kn−1 + kn = mn−1;

kn = mn.
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Ilyen k1, . . . , kn-et az előző egyenleteken alulról felfele haladva (∗) miatt valóban
tudunk választani. Tekintsük most a g1 = r · xk11 xk22 · · ·xknn polinomot. Ekkor:

L(g1(σ1, . . . , σn)) = r · xm1
1 xm2

2 · · · xmn
n = L(f).

Így tehát f1 = f − g1(σ1, . . . , σn) egy olyan szimmetrikus polinom, melynek főtagja
lexikografikusan kisebb, mint f főtagja. Ezt az eljárást ismételgetve a főtag kitevő-
sorozata lexikografikusan csökken, ezért a lexikografikus hatvány jólrendezettsége
(6.33 Tétel) miatt véges sok lépésben befejeződik és megkapjuk g-t.

Egyértelműség. Ellentmondást keresve tegyük fel, hogy g1, g2 ∈ R[y1, . . . , yn],
g1 ̸= g2 de

g1(σ1, . . . , σn) = g2(σ1, . . . , σn).

Ekkor

(a) (g1 − g2)(σ1, . . . , σn) = 0, de
(b) g1 − g2 ̸= 0.

Ezért (b) miatt L(g1−g2) ̸= 0. A 6.18 Tétel szerint a behelyetteśıtés homomorfizmus,
ezért (L(g1− g2))(σ1, ..., σn) ̸= 0, amiből viszont (g1− g2)(σ1, ..., σn) ̸= 0 következik,
ellentmondva (a)-nak, és ezzel készen vagyunk.

A szimmetrikus polinomok vizsgálatával meglepő összefüggéseket találhatunk a
gyökkifejezések között. Egy ilyet (a ḱıváncsiság felkeltése érdekében) bizonýıtás
nélkül közlünk:

6.38. Példa. A = B, ahol

A =
√

5 +

√
22 + 2

√
5

és

B =

√
11 + 2

√
29 +

√
16 − 2

√
29 + 2

√
55 − 10

√
29.
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6.7. Oszthatóság polinomgyűrűkben

Ebben az alfejezetben szisztematikusan megvizsgáljuk a polinomgyűrűk oszt-
hatósági relációit. Egy rövid emlékeztetővel kezdünk.

Emlékeztető

Legyen R tetszőleges gyűrű (nem feltétlenül polinomgyűrű), és legyen c ∈ R olyan
gyűrűelem, amely 0-tól és R egységeitől is különbözik. A 3.30 Defińıció szerint

� c pŕım, ha c | ab⇒ c | a vagy c | b és
� c felbonthatatlan (irreducibilis), ha c = ab⇒ a egység vagy b egység.
Továbbá, ha R kommutat́ıv, egységelemes, nullosztómentes gyűrű, akkor a 6.5

Tétel szerint R[x] is kommutat́ıv, egységelemes, nullosztómentes gyűrű. Ezért a
2.12 Tétel alkalmazható R[x]-re, és azt kapjuk, hogy az R[x]-beli oszthatóság is
reflex́ıv,

”
majdnem antiszimmetrikus”, tranzit́ıv reláció, mely megörződik lineáris

kombinációra, azaz igazak az alábbiak:
1. ∀f ∈ R[x] : f | f ;
2. ∀f, g ∈ R[x] : (f | g, g | f) ⇔ ∃e1, e2 egységek: f = e1g, g = e2f ;
3. ∀f, g, h ∈ R[x] : (f | g, g | h) ⇒ f | h és
4. ∀f, g, h, u, v ∈ R[x] : (f | g, f | h) ⇒ f | (ug + vh).

Egységek polinomgyűrűben

6.39. Tétel. Legyen R kommutat́ıv, egységelemes, nullosztómentes gyűrű. Ekkor:

f ∈ R[x] egység R[x]-ben ⇔ f ∈ R és f egység R-ben.

Bizonýıtás. (⇒:) Tegyük fel, hogy g ∈ R[x] egység, azaz ∀h ∈ R[x] : g | h. Emiatt
(mivel 1 ∈ R[x]), g | 1. Speciálisan deg(g) = 0, azaz g ∈ R. Továbbá, 1 egység
R-ben ezért 1 osztója R összes elemének. Tehát az R-beli oszthatóság tranzitivitása
miatt g is osztója R minden elemének, vagyis g egység R-ben.

(⇐) Tegyük fel, hogy g ∈ R egység R-ben. Ekkor g | 1 R-ben és – mivel 1 egység
R[x]-ben is, ezért – minden h ∈ R[x] : 1 | h. Ezért (most az R[x]-beli) oszthatóság
tranzitivitása miatt g osztója R[x] összes elemének, vagyis g egység R[x]-ben.

Kitüntetett közös osztó

6.40. Defińıció. Legyen f, g ∈ R[x], h ∈ R[x] kitüntetett közös osztója f -nek és
g-nek, ha:

1. h | f és h | g;
2. ∀r ∈ R[x] : r | f és r | g ⇒ r | h.
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6.41. Tétel. Legyen R kommutat́ıv, egységelemes, nullosztómentes gyűrű, f, g ∈
R[x]. Ekkor f és g kitüntetett közös osztója egységszeres erejéig egyértelmű.

Bizonýıtás. Tegyük fel, hogy h1, h2 kitüntetett közös osztói f -nek és g-nek. Ekkor
h1 | h2 és h2 | h1, vagyis h1 és h2 kölcsönösen osztják egymást, emiatt (az előző
Emlékeztető 2. pontja szerint) egymás egységszeresei.

Test feletti polinomok

6.42. Tétel. Ha K test, f, g ∈ K[x] (f ̸= 0 vagy g ̸= 0), akkor egységszeres erejéig
egyértelműen létezik f és g legnagyobb közös osztója (jelölés: (f, g)).

Bizonýıtás. Egyértelműség: A 6.41 Tétel szerint ez nemcsak testekben, hanem
kommutat́ıv, egységelemes, nullosztómentes gyűrűkben is igaz.

Létezés: A 6.9 Tétel miatt testekben minden (nemnulla) polinommal lehet
maradékosan osztani. K[x]-ben a maradékos osztás elvégzésekor a maradék-polinom
foka szigorúan kisebb, mint az osztó polinom foka. Ezért (N jólrendezettsége miatt)
K[x]-ben az euklideszi algoritmus véges sok lépésben befejeződik. Ugyanúgy, ahogy
azt a 3.13 Tétel bizonýıtásában láttuk, az euklideszi algoritmus során képződő utolsó
nem nulla maradék kitüntetett közös osztó.

6.43. Megjegyzés. A fokszámok összevetéséből azonnal adódik, hogy (mindegyik)
kitüntetett közös osztó egyben maximális fokú közös osztó. Ezért néha polinom-
gyűrűk esetében is használjuk a legnagyobb közös osztó kifejezést (amin legnagyobb
fokú közös osztót értünk).

Továbbá, a Z-re megismert kiterjesztett euklideszi algoritmus és a rá vonatkozó
tétel (3.14 Tétel) – szó szerint megismételhető bizonýıtással – érvényben marad
K[x]-re is:

∀f, g ∈ K[x] ((f, g) ̸= 0) ∃u, v ∈ K[x] : (f, g) = uf + vg.

Felbonthatatlan és pŕım polinomok

6.44. Tétel. Legyen K test, f ∈ K[x] felbonthatatlan (irreducibilis) ⇐⇒ f pŕım.

Bizonýıtás. ⇐: Tegyük fel, hogy f pŕım, és f = g · h. Azt kell belátnunk, hogy
g vagy h valamelyik egység K[x]-ben. Speciálisan, f ̸= 0, ezért g ̸= 0 és h ̸= 0.
Egyrészt, mivel f pŕım, ezért f | g vagy f | h; mondjuk f | g (az f | h eset teljesen
szimmetrikusan kezelhető).

Másrészt, a bizonýıtás első mondata szerint g | f . Tehát f és g kölcsönösen
osztják egymást, emiatt egymás egységszeresei; speciálisan, a 6.39 Tétel miatt deg(f) =
deg(g). Mivel f = g ·h, ez csak úgy lehet, ha deg(h) = 0, azaz h ∈ K. Mivel azonban
K test, ezért h egység K-ban, ı́gy a 6.39 Tétel miatt K[x]-ben is.
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⇒:Tegyük fel: f ∈ K[x] felbonthatatlan és f | g · h. Most azt kell belátnunk, hogy
f | g vagy f | h. De (f, g) | f ezért ∃u ∈ K[x] : f = u · (f, g). Mivel f felbonthatat-
lan, ezért u egység vagy (f, g) egység.
1. eset: u egység. Ekkor f és (f, g) egymás egységszeresei, ezért f | (f, g). Mivel
(f, g) | g, ezért az oszthatóság tranzitivitása miatt f | g.
2. eset: (f, g) egység. Ekkor ∃v, w ∈ K[x] : (f, g) = 1 = v · f + w · g. Ezért

(∗) h = 1 · h = (v · f + w · g) · h = v · f · h+ w · g · h.

Az előző sor legvégén lévő összegben nyilván f | (v · f · h). Továbbá a bekezdés
elején feltettük, hogy f | g · h, ezért f | w · g · h. Tehát f osztója (∗) jobboldalának,
emiatt h-nak is.

Számelmélet alaptétele test feletti polinomokra

6.45. Tétel. Legyen K test. A számelmélet alaptétele érvényes K[x]-re, azaz ha
f ∈ K[x], f ̸= 0 és f nem egység, akkor:

1. Van felbonthatatlan g1, . . . , gm ∈ K[x] : f = g1 · · · gm;
2. Ez a felbontás sorrendtől és egységszorzóktól eltekintve egyértelmű.

Bizonýıtás. Indukció n = deg(f)-re.
1. Alaplépés: n = 1, azaz deg(f) = 1. Ebben az esetben f -et egy elsőfokú és egy
nulladfokú polinom szorzatára lehet csak felbontani. De minden ilyen felbontásban
a nulladfokú tényező egység, mert K test. Ezért f irreducibilis, és önmagának egy
1-tényezős felbontása. Továbbá az előző gondolatmenet azt is adja, hogy f min-
den felbontásában valamelyik tényező egység, ezért a felbontás egység-szorzó erejéig
egyértelmű.

2. Indukciós lépés: TFH: álĺıtásunk igaz minden n-nél kisebb, vagy egyenlő fokú
polinomra, és THF deg(f) = n+ 1.
1. eset: f felbonthatatlan. Ekkor, az n = 1 esethez teljesen hasonlóan, f
sajátmagának egy 1-tényezős felbontása, és ez egységszorzó erejéig egyértelmű is.
2. eset: f nem irreducibilis, azaz van g, h ∈ K[x]:

f = g · h, deg(g), deg(h) < deg(f).

Az indukciós feltevés miatt g és h felbontható: vannak g1, . . . gu, gu+1, . . . gu+v ir-
reducibilis polinomok, melyekre:

g = g1 · · · gu és
h = gu+1 · · · gu+v.

De ekkor
f = g · h = g1 · · · gu · gu+1 · · · gu+v
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f egy felbontása irreducibilis tényezőkre. Ezzel a felbontás létezését beláttuk. Kell
még (2), azaz az egyértelműség. TFH f = g1 · · · gp = h1 · · ·hm az f két felbontása ir-
reducibilis tényezők szorzatára. Kell: p = m és ∀i ∃j : gi és hj egymás egységszeresei.
Világos, hogy g1 | h1 · · ·hm. Mivel g1 irreducibilis, ezért a 6.44 Tétel miatt pŕım
is. Emiatt valamelyik k-ra g1 | hk. De hk irreducibilis, ezért g1 és hk egymás
egységszeresei. Osszunk g1-el:

g2 · · · gn = h1 · · ·hj−1 · e · hj+1 · · ·hm,

ahol e valamelyik egység, és a két oldalon álló polinom(ok) közös foka kisebb, mint
deg(f). Ezért az indukciós feltevés miatt ez a felbontás sorrendtől és egységszorzóktól
eltekintve egyértelmű. Ezért ugyanez f felbontásaira is igaz.

6.46. Tétel. Legyen K test.
1. Ha f ∈ K[x], deg(f) = 1, akkor f irreducibilis;
2. Ha f ∈ K[x], deg(f) = 2 vagy deg(f) = 3, akkor (f irreducibilis ⇐⇒ nincs

gyöke K[x] − ben).

Bizonýıtás. (1) Bizonýıtását lényegében elvégeztük már a 6.45 Tétel bizonýıtásának
alaplépésében: THF f ∈ K[x], deg(f) = 1 és TFH: f = g · h. Azt kell belátnunk,
hogy g egység vagy h egység. Mivel deg(f) = deg(g)+deg(h) = 1, ezért a fokszámok
összevetéséből: deg(g) = 0 vagy deg(h) = 0 ⇒ valamelyik 0-tól különböző testelem
K[x]-ben, de K test ⇒ g vagy h egység.

(2) ⇒: TFH f ∈ K[x], 2 ≤ deg(f) ≤ 3, és f(c) = 0, c ∈ K. Ekkor a 6.20 Tétel
szerint f osztható x−c-vel, vagyis ∃h : f = (x−c)·h, ekkor deg(h) = deg(f)−1 ≥ 1.
Ezért (x − c) nem egység és h nem egység, vagyis f nem irreducibilis. Mellesleg
itt deg(f)-re a felső korlátot nem is használtuk: azt kaptuk, hogy ha egy legalább
másodfokú polinomnak van gyökeK-ban, akkor a polinom nem irreducibilisK felett.

⇐: TFH: 2 ≤ deg(f) ≤ 3, f -nek nincs gyöke. TFH: f felbontható, azaz vannak
olyan (nullától és) egységektől különböző g, h ∈ K[x], melyekre f = g · h. Ekkor
g és h fokaira kizárólag a következő lehetőségek adódnak: deg(g) = 1, deg(h) = 2,
vagy ford́ıtva. Ha pl. g az elsőfokú, mondjuk g = ax + b, akkor könnyen adódik,
hogy g-nek van gyöke K-ban: ax + b = 0 ⇔ x = − b

a
; emiatt f -nek is van gyöke

K-ban.

Az előző tétel 3-nál nagyobbfokú polinomokra nem marad érvényben: pl. a
negyedfokú ((x2 + 1)2 (R feletti) polinomnak nincs gyöke R-ben, de mégsem irredu-
cubilis.

6.8. Formális deriváltak és többszörös gyökök

6.47. Defińıció (Többszörös gyök). f ∈ K[x]-nek c ∈ K n-szeres gyöke, ha

(x− c)n | f,

vagyis f kanonikus alakjában (x− c) kitevője legalább n.
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6.48. Defińıció. Legyen R kommutat́ıv gyűrű, a ∈ R, n ∈ N. Ekkor na = a+· · ·+a
(n-szer).
Hangsúlyozzuk, hogy n nem feltétlenül gyűrűbeli szám, ezért n · a nem feltétlenül a
gyűrűbeli szorzás.

Formális derivált

6.49. Defińıció. Legyen R kommutat́ıv, egységelemes gyűrű. Ha

f = anx
n + an−1x

n−1 + · · · + a1x+ a0 ∈ R[x],

akkor f formális deriváltja:

f ′ = nanx
n−1 + (n− 1)an−1x

n−2 + · · · + 2a2x+ a1.

6.50. Példa. Legyen f(x) = 2x3 + 2x2.
� Ha f ∈ C[x] akkor f ′ a szokásos: f ′ = 6x2 + 4x.
� Ha f ∈ Z3[x] akkor f ′ = 0x2 + x = x (mert 6 ≡ 0 (mod 3)).

A formális deriváltról megjegyezzük még a következőket. A fenti értelemben csak
polinomoknak definiáltuk a formális deriváltját, másfajta függvényeknek nem. Itt a

”
formális” jelző arra utal, hogy a defińıcióhoz csak olyan eszközöket használtunk, me-

lyek minden gyűrűben rendelkezésre állnak; nem használtunk semmilyen távolság-
fogalmat, nem emĺıtettünk különbségi hányadosokat, mégkevésbé ezek határértékeit
(mert egy absztrakt gyűrűben legalábbis nem világos, hogy hogyan kéne a határétrék
fogalmát értreni, ha nincs beéṕıtve, nincs - a gyűrűműveletek mellett – külön meg-
adva valamilyen távolság-fogalom). Defińıciónkat az motiválja, hogy a valós test
feletti polinomok esetében az imént definiált formális derivált egybeesik a poli-
nomfüggvények, mint valós-valós függvények szokásos deriváltfüggvényeivel. Ugyan-
akkor vannak olyan deriválható valós-valós függvények, melyek nem polinom-függ-
vények, ebből a szempontból a mi defińıciónk kevésbé általános. Viszont a formális
deriváltakat nem csak R feletti polinomok esetében vizsgálhatjuk, hanem tetszőleges
(kommutat́ıv, egységelemes) gyűrűk felett, ilyen értelemben a formális derivált ál-
talánosabb, mint a bevezető anaĺızis derivált-fogalma. Valós polinomok esetében
régóta ismertek különböző összefüggések polinomok többszörös gyökei és deriváltjaik
gyökei között. Alább ezekből az összefüggésekből mutatunk be néhányat, melyek
tetszőleges (kommutat́ıv) test felett érvényben maradnak. Végig tisztán algebrai
keretek között maradunk; következő célunk vizsgálataink technikai előkésźıtése (az-
zal, hogy a szokásos deriváltakra vonatkozó néhány számolási szabályra algebrai -
emiatt minden kommutat́ıv test felett érvényes - bizonýıtást adunk).

6.51. Tétel (Deriválási szabályok). Legyen K test, f, g ∈ K[x], c ∈ K. Ekkor:
1. (c)′ = 0;
2. (cf)′ = c(f ′);
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3. (f + g)′ = f ′ + g′;
4. (fg)′ = f ′g + fg′;
5. ((x− c)m)′ = m(x− c)m−1.

Bizonýıtás. (1): c = c · x0 ⇒ (c)′ = 0 · c · x−1 = 0.

(2) egyszerű számolással adódik:

(cf)′ =

(
n∑

k=0

cakx
k

)′
=

n∑
k=1

kcakx
k−1 = c

n∑
k=1

kakx
k−1 = c(f ′).

(3) igazolásához legyen f = a0 + a1x + · · · + anx
n, g = b0 + b1x + · · · + bmx

m és
legyen N = max(n,m). Ezekre

(f+g)′ =

(
N∑
k=0

(ak + bk)xk

)′
=

N∑
k=1

k(ak+bk)xk−1 =
N∑
k=1

kakx
k−1+

N∑
k=1

kbkx
k−1 = f ′+g′.

(4) igazolásához legyenek

f =
n∑

i=0

aix
i, g =

m∑
j=0

bjx
j.

A két polinom szorzata:

f · g =
n∑

i=0

m∑
j=0

aibjx
i+j.

A szorzat deriváltja (azaz (4) baloldala):

(f · g)′ =

(
n∑

i=0

m∑
j=0

aibjx
i+j

)′
=

n∑
i=0

m∑
j=0

(i+ j)aibjx
i+j−1.

Számı́tsuk ki a jobb oldal tagjait külön-külön.

A deriváltak:

f ′ =
n∑

i=1

iaix
i−1, g′ =

m∑
j=1

jbjx
j−1.

Ezért (4) jobboldalának első összeadandója

f ′ · g =

(
n∑

i=1

iaix
i−1

)(
m∑
j=0

bjx
j

)
=

n∑
i=1

m∑
j=0

iaibjx
i+j−1
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és hasonlóan, második összeadandója:

f · g′ =

(
n∑

i=0

aix
i

)(
m∑
j=1

jbjx
j−1

)
=

n∑
i=0

m∑
j=1

jaibjx
i+j−1.

E két tag összege (azaz (4) jobboldala):

f ′ · g + f · g′ =
n∑

i=1

m∑
j=0

iaibjx
i+j−1 +

n∑
i=0

m∑
j=1

jaibjx
i+j−1

=
n∑

i=0

m∑
j=0

(i+ j)aibjx
i+j−1.

Ezek alapján (4) baloldala és jobboldala megegyezik, és ezzel (4) bizonýıtásával
készen vagyunk. (5)-höz előszöris vegyük észre, hogy

(∗)

(
n

k

)
=

n!

k! (n− k)!
=
n

k
· (n− 1)!

(k − 1)! (n− k)!
=
n

k

(
n− 1

k − 1

)
.

Ekkor:

((x+ c)n)′ =

(
n∑

k=0

(
n

k

)
xkcn−k

)′
=

n∑
k=0

(
n

k

)
k xk−1cn−k

(∗)
=

n∑
k=0

n

k

(
n− 1

k − 1

)
k xk−1cn−k

= n
n∑

k=0

(
n− 1

k − 1

)
xk−1cn−k

= n
n∑

k=0

(
n− 1

k − 1

)
xk−1c(n−1)−(k−1)

Binomiális Tétel
= n(x+ c)n−1.

Többszörös gyökök és gyökteszt

6.52. Tétel. Legyen f ∈ K[x], c ∈ K, k ∈ N, k ≥ 2. Ekkor ekvivalensek:
1. c f -nek k-szoros gyöke;
2. c f -nek és f ′-nek (k − 1)-szeres gyöke.

Bizonýıtás. (1) ⇒ (2): TFH c f -nek k-szoros gyöke. Ekkor ∃g ∈ K[x] : f =
(x− c)kg. Ezért

f ′ = k(x− c)k−1g + (x− c)kg′ = (x− c)k−1(kg + (x− c)g′),
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ez mutatja: c f ′-nek (k − 1)-szeres gyöke (nyilván f -nek is).

(2) ⇒ (1): TFH c f -nek és f ′-nek (k − 1)-szeres gyöke. Speciálisan, ∃g ∈ K[x] :
f = (x− c)k−1g. Mindkét oldalt deriválva:

(∗) f ′ = (k − 1)(x− c)k−2g + (x− c)k−1g′.

Továbbá, (2) szerint c f ′-nek (k − 1)-szeres gyöke, ezt (∗) jobboldalával összevetve
(x− c) | g. De ekkor (x− c)k | f , vagyis c f -nek k-szoros gyöke.

6.53. Megjegyzés. 1. Gyökkeresésnél érdemes redukálni a fokszámot (mert leg-
feljebb 4-edfokú polinomokra van megoldóképlet).

2. Az f
(f,f ′)

polinom gyökei egyszeresek, azonosak f gyökeivel, ez hasznos fokszám-
redukció lehet.

3. A gyökök pontos előálĺıtása helyett próbálkozhatunk közeĺıtő módszerekkel.

6.54. Tétel (Rolle-féle gyökteszt). Ha f ∈ Z[x], f = a0 +a1x+ · · ·+anx
n, p, q ∈ Z

relat́ıv pŕımek, és f
(

p
q

)
= 0, akkor q | an és p | a0.

Szavakban: ha egy egész együtthatós polinomnak a tovább már nem egyszerűśıthető
p
q
racionális szám gyöke, akkor a p számláló osztója a polinom konstans tagjának, és

a q nevező osztója a főeggyüthatónak.

A tétel seǵıtségével meg tudjuk keresni egy egész együtthós polinom összes raci-
onális gyökeit: soroljuk fel a főegyüttható és a konstans tag osztóinak hányadosait,
ı́gy véges sok racionális számot kapunk. Ezeket egyenként kipróbálva (visszahe-
lyetteśıtve) megtalálhatjuk polinomunk összes racionális gyökét. A főegyüttható
és a konstans tag osztóinak hányadosaiból álló lista tartalmazhat olyan racionális
számokat is, melyek nem gyökei a polinomunknak (ennek ı́gy kell lennie, ha a
főegyütthatónak, vagy a konstans tagnak sok osztója van a polinom fokához képest).
De a megvizsgálandó racionális számok halmaza véges, ez elméleti szempontból
azért érdekes, mert a racionális számok végtelen halmazát le tudtuk szűḱıteni egy
véges halmazra, mely minden racionális gyököt tartalmaz. Ennek az a gyakorlati
jelentősége, hogy a racionális gyökök megkeresésére javasolt módszerünk véges sok
lépésben befejeződik.

Bizonýıtás. f
(

p
q

)
= 0 miatt

a0 + a1
p

q
+ · · · + an

pn

qn
= 0.

Szorozzuk be mindkét oldalt qn-el:

qna0 + qn−1a1p+ · · · + anp
n = 0.

Mivel a jobboldali 0 osztható p-vel és q-val is, ezért a baloldal is osztható p-vel és
q-val. Mivel q | qna0 + qn−1a1p + · · · + an−1p

n−1q, ezért q | anpn. De (q, pn) = 1,
emiatt q | an.

Hasonlóan, p | qna0, amiből p | a0 adódik.
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6.55. Példa (Polinomok gyűrűkben). Gyűrűkben nem feltétlenül igaz az egyértelmű
szorzatra bontás. Ennek illusztrálására mutatunk néhány perverz példát.

• Z8[x]-ben: x2 − 1 = (x+ 1)(x− 1) = (x+ 3)(x− 3).

A 6.46 Tételben láttuk, hogy testek felett minden elsőfokú polinom irreducibilis.
Gyűrűk felett ez sem feltétlenül marad érvényben:

• Z6[x]-ben: x = (2x+ 3)(3x+ 2).

Sőt Z-ben 6 nem irreducibilis: 6 = 2·3, bár 6 Q-ban sem irreducibilis (Q-ban egység).

6.9. Irreducibilis polinomok C[x]-ben és R[x]-ben

Irreducibilis polinomok C[x]-ben

6.56. Tétel. f ∈ C[x] irreducibilis ⇔ deg(f) = 1.

Bizonýıtás. ⇐: C test ezért a 6.46 Tétel szerint C felett minden elsőfokú polinom
irreducibilis.
⇒: TFH f ∈ C[x] irreducibilis: ha deg(f) ≤ 0 akkor f = 0 vagy f egység C[x]-ben,
ezért nem irreducibilis. Ha deg(f) ≥ 2, akkor az algebra alaptétele miatt deg(f) db
gyöke van: c1, . . . , cdeg(f) ∈ C, és a megfelelő gyöktényezők f -ből kiemelhetők:

f = an(x− c1)(x− c2) · · · (x− cdeg(f)).

Ezért f nem irreducibilis. Azt kaptuk, hogy ha f irreducibilis, akkor foka kizárólag
1 lehet.

Irreducibilis polinomok R[x]-ben

6.57. Tétel. Ha f =
∑
akx

k ∈ R[x], c ∈ C, f(c) = 0, akkor f(c) = 0 (azaz, ha egy
valós együtthatós f polinomnak a c komplex szám gyöke, akkor c is gyöke f -nek).

Bizonýıtás. Mivel f mindegyik ak együtthatója valós, ezért minden k-ra ak = ak.
Ezt azzal kombinálva, hogy (az 5.9 Tétel szerint) a konjugálás automorfizmus:

0 = 0 = f(c) =
∑

akck =
∑

akc
k =

∑
akc

k = f(c),

vagyis c valóban gyöke f -nek.

6.58. Tétel. Ha c ∈ C, akkor (x− c)(x− c) valós együtthatós.

Bizonýıtás.

(x− c)(x− c) = x2 − (c+ c)x+ cc = x2 − 2ℜ(c)x+ |c|2.

Mivel ℜ(c) ∈ R, |c|2 ∈ R, ezért készen vagyunk.
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6.59. Tétel. Ha f ∈ R[x], deg(f) ≥ 1, akkor van g1, . . . , gk ∈ R[x], ∀i :
• deg(gi) = 1 vagy
• deg(gi) = 2 és gi-nek nincs gyöke R[x]-ben.

Szavakban: R felett minden legalább elsőfokú polinom olyan szorzattá bontható, mely-
ben minden tényező vagy elsőfokú, vagy olyan másodfokú, melynek nincs valós gyöke.

Bizonýıtás. Tudjuk, hogy f -nek annyi komplex gyöke van, mint a foka. Legyenek
ezek: d1, . . . , dn ∈ R, β1, β1, . . . , βm, βm ∈ C \ R. Legyen c az f főegyütthatója.
Ekkor:

f = c(x− d1) · · · (x− dn)(x− β1)(x− β1) · · · (x− βm)(x− βm).

Minden j-re legyen gj = (x− βj)(x− βj). Ekkor deg(gj) = 2, a 6.58 Tétel miatt gj
valós együtthatós, és (nyilván) nincs gyöke R-ben.

6.60. Tétel. f ∈ R[x] ekvivalensek:
1. f irreducibilis R[x]-ben;
2. deg(f) = 1 vagy (deg(f) = 2 és f -nek nincs valós gyöke R-ben).

Bizonýıtás. (1) ⇒ (2): A 6.59 Tételben szereplő felbontásból:

f = p1 · · · pnq1 · · · qm.

Ezért, ha f irreducibilis, akkor 1 ≤ deg(f) ≤ 2. Ha deg(f) = 2, akkor a 6.46 Tétel
szerint nincs gyöke R-ben.

(2) ⇒ (1): R test, ezért (ismét a 6.46 Tétel szerint) R felett minden elsőfokú polinom
irreducibilis és ha deg(f) = 2 és f -nek nincs gyöke R-ben, akkor f irreducibilis.

6.10. Irreducibilis polinomok Z[x]-ben és Q[x]-ben

6.61. Defińıció (Primit́ıv polinom). f = anx
n + · · · + a1x + a0 ∈ Z[x] primit́ıv,

ha LNKO(a0, a1, . . . , an) = 1.

6.62. Megjegyzés. Ha f irreducibilis, akkor primit́ıv, ugyanis ha c (̸= ±1) valódi
közös osztója lenne a0, . . . , an-nek, akkor f = c

∑ ak
c
xk az f egy olyan felbontása

lenne, melyben a jobboldal egyik tényezője sem egység (hiszen c nem egység Z-ben).

6.63. Példa. Z[x]-ben: 2x2 + 4 = 2(x2 + 2).
Z[x]-ben ez olyan felbontás, melyben egyik tényező sem egység (az ilyen felbontásokat
röviden valódi felbontásoknak, vagy nemtriviális felbontásoknakis nevezik).

6.64. Defińıció (Redukció modulo n). Legyen n ∈ N, µn : Z → Zn,

µn(x) = x (mod n),
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és legyen φn : Z[x] → Zn[x],

φn

(∑
akx

k
)

=
∑

µn(ak)xk.

Szavakban: tetszőleges f ∈ Z[x]-re φn(f)-et úgy kapjuk, hogy f együtthatóit külön-
külön (mod n) vesszük.

6.65. Példa. Ha f = 3x2 − 7x+ 4 és n = 3, akkor

φ3(f) = 0x2 − 1x+ 1.

6.66. Tétel. Előző jelölésekkel, tetszőleges n ≥ 1-re:

φn : Z[x] → Zn[x] homomorfizmus.

Bizonýıtás. Legyen f, g ∈ Z[x], f =
∑
akx

k, g =
∑
bkx

k

φn(f + g) = φn

(∑
(ak + bk)xk

)
=
∑

µn(ak + bk)xk

=
∑

(µn(ak) + µn(bk))xk =
∑

µn(ak)xk +
∑

µn(bk)xk

= φn(f) + φn(g).

Hasonlóan,

µn(f · g) = φn

(∑
k

(
k∑

j=0

aibj

)
xk

)
=

∑
k

µn

(
k∑

j=0

ajbk−j

)
xk =

∑
k

k∑
j=0

µ(aj) · µ(bk−j)x
k = φ(f) · φ(g).

6.67. Tétel. Ha f ∈ Q[x], f ̸= 0, akkor ∃!r ∈ Q+, ∃!g ∈ Z[x]: f = r · g, g primit́ıv.
Ha f ∈ Z[x], akkor r ∈ Z.

Szavakban: minden nem-nulla racionális együtthatós f polinom előálĺıtható egy r
pozit́ıv racionális szám és egy g ∈ Z[x] primit́ıv polinom szorzataként, az előálĺıtás
egyértelmű, és ha f egész-együtthatós, akkor r egész szám.

Bizonýıtás. Az ötlet a következő: f -et felszorozzuk együtthatói nevezőinek legki-
sebb közös többszörösével, majd ebből kiemeljük az együtthatók legnagyobb közös
osztóját – amit kapunk, primit́ıv polinom lesz. Részletesebben, legyen B az f együtt-
hatói nevezőinek legkisebb közös többszöröse, és legyen A az (egész-együtthatós)
B · f polinom együtthatóinak legnagyobb közös osztója. Végül legyen r = A

B
> 0.

Ezekkel:

f =
1

B
·B · f =

A

B
· B
A
f = r · B

A
f.
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Világos, hogy A és B választása miatt B
A
f egész együtthatós polinom, sőt primit́ıv

polinom (mert B ·f együtthatóinak legnagyobb közös osztója épp A volt). Továbbá,
ha f már eredetileg is egész együtthatós volt, akkor B = 1, és emiatt r ∈ Z is teljesül.

Be kell még látnunk a felbontás egyértelműségét. Ehhez TFH: f = r1g1 és f = r2g2
az f két felbontása (ahol tehát r1, r2 ∈ Q+ és g1, g2 ∈ Z[x] primit́ıv polinomok).
Ezekből

g1 =
1

r1
f =

r2
r1
g2.

Itt r2
r1

egy pozit́ıv racionális szám, ezért vannak olyan a, b ∈ N számok, hogy r2
r1

= a
b
,

és feltehető, hogy a jobboldali tört tovább már nem egyszerűśıthető, azaz a és b
relat́ıv pŕımek. Tehát

(∗) g1 =
a

b
g2.

Mivel g1 együtthatói egész számok, ezért a
b
g2 együtthatói is egész számok, ami csak

úgy lehet, ha b (közös) osztója g2 mindegyik együtthatójának. De g2 primit́ıv poli-
nom, ezért együtthatói legnagyobb közös osztója 1 és emiatt b = 1 (hiszen b > 0).
Ekkor viszont (∗) miatt a közös osztója g1 együtthatóinak, amiből g1 primit́ıvsége
miatt a = 1 következik. Ezek szerint a = b = 1, tehát (∗) alapján g1 = g2 (és emiatt
r1 = r2).

Gauss-lemma és irreducibilitás

6.68. Tétel (Gauss-lemma). Ha f, g ∈ Z[x] primit́ıv polinomok, akkor f · g is
primit́ıv.

Bizonýıtás. Indirekt tegyük fel, hogy f ·g nem primit́ıv. Ekkor ∃p pŕımszám: p osztja
f · g összes együtthatóját. Tekintsük a 6.64 Defińıcióban szereplő φp : Z[x] → Zp[x]
modulo p redukáló függvényt; ez a 6.66 Tétel miatt homomorfizmus.

Ekkor egyrészt p választása miatt φp(f · g) = 0. Másrészt viszont

(∗) φp(f · g) = φp(f) · φp(g).

Mivel f és g primit́ıvek, ezért φp(f) ̸= 0 és φp(g) ̸= 0. Továbbá Zp test, tehát
nullosztómentes, ezért (∗) jobboldala nem lehet nulla. Ez ellentmond e bekezdés
első mondatának.

A Z[x]-beli és Q[x]-beli irreducibilitás közti kapcsolat

6.69. Tétel. Legyen f ∈ Z[x] primit́ıv polinom. Ekkor:

f irreducibilis Z[x]-ben ⇔ f irreducibilis Q[x]-ben.
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Bizonýıtás. Nyilván elég azt belátni, hogy

f felbontható Z[x]-ben ⇔ f felbontható Q[x]-ben.

⇒: Ha f felbontható Z[x]-ben, akkor ugyanez a felbontás mutatja, hogy felbontható
Q[x]-ben is.

⇐: Tegyük fel, hogy f felbontható Q[x]-ben: ∃g1, g2 ∈ Q[x] : f = g1 · g2, ahol
0 < deg(g1), deg(g2) < deg(f). A 6.67 Tétel szerint g1 és g2 előálĺıtható primit́ıv
polinomok seǵıtségével:

g1 = r1 · g∗1, r1 ∈ Q+, g∗1 ∈ Z[x] primit́ıv,

g2 = r2 · g∗2, r2 ∈ Q+, g∗2 ∈ Z[x] primit́ıv.

Ezekkel f = (r1r2) · (g∗1g
∗
2). De a Gauss-lemma (6.68 Tétel) miatt g∗1g

∗
2 primit́ıv.

Mivel f = 1 · f is primit́ıv, ezért a 6.67 Tétel (egyértelműségre vonatkozó része)
szerint r1r2 = 1 és f = g∗1 · g∗2; ez f egy Z[x]-beli felbontását adja.

Karakterizációk

6.70. Tétel (Irreducibilis polinomok Z[x]-ben). Egy f ∈ Z[x] polinom pontosan
akkor irreducibilis, ha:

1. deg(f) = 0 és f pŕımszám, vagy
2. deg(f) ≥ 1, f primit́ıv és irreducibilis Q[x]-ben.

Bizonýıtás. ⇒:
� Ha deg(f) = 0, akkor f ∈ Z. Itt az irreducibilitás megegyezik a pŕımséggel.
� Ha deg(f) ≥ 1 és f nem primit́ıv, akkor legyen c az f egyxütthatóinak LNKO-

ja. Ezzel f = c · 1
c
f ahol c > 1 és 1

c
f primit́ıv, tehát f felbontható.

� Ha deg(f) ≥ 1 és f primit́ıv, akkor az előző tétel (6.69 Tétel alapján f Q[x]-
ben is irreducibilis.

⇐: ha deg(f) = 0 (azaz f ∈ Z) pŕım, akkor f Z[x]-ben is nullad fokúak szorza-
taként áll elő, de ilyen nemtriviális felbontás nem létezik. Végül, ellentmondást
keresve TFH f primit́ıv, deg(f) ≥ 1 és irreducibilis Q[x]-ben, de f -nek Z[x]-ben van
nemtrivi felbontása. Egy ilyen felbontás mindkét tényezője legalább elsőfokú, mert
f primit́ıv, de ekkor ez a Z[x]-beli felbontás egyúttal Q[x]-beli nemtrivi felbontás is
lenne, ellentmondás.

6.71. Tétel (Irreducibilis polinomok Q[x]-ben). Egy f ∈ Q[x] polinom pontosan
akkor irreducibilis, ha:

∃g ∈ Z[x] primit́ıv, irreducibilis polinom és ∃r ∈ Q : f = r · g.

Bizonýıtás. (⇒:) TFH f ∈ Q[x] irreducibilis Q[x]-ben. A 6.67 Tétel szerint f
feĺırható f = r · g alakban, ahol r ∈ Q és g ∈ Z[x] primit́ıv. Mivel f irreducibilis
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Q[x]-ben, ezért g-nek is irreducibilisnek kell lennie Q[x]-ben (mert r egység Q-ban).
Ezért a 6.69 Tétel miatt g irreducibilis Z[x]-ben is.

(⇐:) TFH g primit́ıv, irreducibilis Z[x]-ben és r ∈ Q. Azt kell belátnunk, hogy
f = r · g irreducibilis Q[x]-ben. A 6.69 Tétel miatt g irreduciblis Q[x]-ben is.
Továbbá r egység Q-ban, ezért f valóban irreducibilis Q[x]-ben.

Számelmélet alaptétele Z[x]-ben
6.72. Tétel. Z[x]-ben is igaz a számelmélet alaptétele:
Ha f ∈ Z[x], deg(f) ≥ 1, akkor ∃!f = g1 · · · gk ∈ Z[x] irreducibilis faktorokra bontás.

Bizonýıtás. Létezés. Az alapötlet a következő: először bontsuk fel f -et egy egész
szám és egy primit́ıv polinom szorzatára, a primit́ıv tényezőt bontsuk irreducbilis
tényezőkre Q felett, végül gondoljuk meg, hogy ebből hogyan kapunk Z feletti fel-
bontást.

Részletesebben, a 6.67 Tétel szerint van olyan r ∈ Q és f ∗ ∈ Z[x] primit́ıv poli-
nom, hogy f = r · f ∗. De f egész-együtthatós, ezért a 6.67 Tétel szerint r is egész
szám.

Mivel Q test, ezért (a 6.45 Tétel szerint) Q[x]-ben igaz a Számelmélet Alaptétele.
Tehát vannak Q[x]-ben irreducibilis h1, . . . , hk ∈ Q[x] polinomok, melyekre:

f = h1 · · ·hk.

A (6.67 Tétel szerint) minden hj-hez (j = 1, . . . , k) ∃rj ∈ Q, ∃gj ∈ Z[x] primit́ıv
polinom:

hj = rj · gj.

Mivel mindegyik hj irreducibils Q[x]-ben és rj egység Q-ban, ezért mindegyik gj is ir-
reducibils Q[x]-ben. De mindegyik gj primit́ıv is, ezért a 6.70 Tétel miatt mindegyik
gj irreducibilis Z[x]-ben is. De ekkor:

f = h1 · · ·hk = (r1 · g1) · · · (rk · gk) = (r1 · · · rk) · (g1 · · · gk).

Továbbá, a Gauss-lemma (6.68 Tétel) szerint a g1 · · · gk szorzat egy primit́ıv poli-
nom. De f = r · f ∗ is f egy primit́ıvvé bontása, ezért a 6.67 Tétel egyértelműségre
vonatkozó része miatt r = r1 · · · rk egy egész szám. Ezt Z-ben pŕımek szorzatára
bonthatjuk:

r1 · · · rk = p1 · · · pℓ.

Ezekkel f felbontása Z[x]-ben:

f = p1 · · · pℓ · g1 · · · gk

ahol tehát
� p1, . . . , pℓ ∈ Z pŕımek (0-adfokú irreducibilis polinomok);
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� g1, . . . , gk ∈ Z[x] (primit́ıv) irreducibilis polinomok.
Egyértelműség.3 Először tegyük fel, hogy f ∈ Z[x] primit́ıv és f két irreducibilis
tényezőkre bontása:

f = g1 · · · gk = h1 · · ·hm.

Mivel f primit́ıv, ezért mindegyik gi és hj legalább elsőfokú. Mivel mindegyik gi és
hj irreducibilis Z[x]-ben, ezért primit́ıvek is. Ezért a 6.69 Tétel miatt mindegyik gi
és hj irreducibilis Q[x]-ben is.

De a 6.45 Tétel miatt a Számelmélet Alaptétele test feletti polinomgyűrűkben
igaz, ezért f megadott két felbontása sorrendtől és Q-beli egységszorzóktól elte-
kintve egyértelmű. Mivel azonban mindegyik gi és hj primit́ıv, ezért (a 6.67 Tétel
egyéretlműségre vonatkozó része miatt) a szóbajövő Q-beli egységszorzók csak ±1-
ek lehetnek. Ezzel primit́ıv f -ekre a felbontás Z[x]-beli egyértelműségét beláttuk.

Ha f ∈ Z[x] tetszőleges (nem feltétlenül primit́ıv) polinom, akkor a 6.67 Tétel
szerint pontosan egy olyan r szám és primit́ıv f ∗ van, hogy f = r ·f ∗. Mivel f egész
együtthatós, ezért r egész szám; ez Z-ben egyértelműen bontható fel pŕımszámok
szorzatára. Végül, az előző bekezdés szerint, a primit́ıv f ∗ egyértelműen bontható
fel irreducibilisek szorzatára Z[x]-ben.

Láttuk, hogy Z-ben és testek feletti polinomgyűrűkben be lehet vezetni, és el
lehet végezni a maradékos osztást. Erre alapozva a kiterjesztett euklideszi algorit-
mus seǵıtségével igazolható a kitüntetett közös osztók létezése, és az, hogy a pŕım és
irreducibilis elemek egybeesnek; a Számelmélet Alaptételének analogonjait mindig
ezek seǵıtségével igazoltuk.

Ugyanakkor a 6.8 példában láttuk, hogy Z[x]-ben a maradékos osztás elvégzése
nem lehetséges mindig, tehát az előző bekezdésben összefoglalt sémát nem tudjuk
adaptálni Z[x]-re. A 6.72 Tétel szerint a Számelmélet Alaptétele mégis érvényben
marad Z[x]-ben: bizonýıtásunk azon múlt, hogy a 6.45 Tétel értelmében test feletti
polinomgyűrűkben (tehát Q[x]-ben is) a Számelmélet Aleptétele igaz, és Z[x] és Q[x]
valamilyen értelemben nagyon közel vannak egymáshoz. Végül pedig azt jegyezzük
meg, hogy a Számelmélet Alaptételéből egyszerűen következik, hogy bármely két
elemnek van kitüntetett közös osztója. Ezért kitüntetett közös osztók Z[x]-ben is
léteznek, noha a maradékos osztást nem lehet mindig elvégezni.

Kronecker kitalált egy viszonylag egyszerű (de nem túl hatékony) algoritmust,
melynek bemenete Z[x] egy eleme, az algoritmus mindig véges sok lépésben megáll,
és helyes választ ad arra a kérdésre, hogy bemenete irreducibilis-e Z[x]-ben. Ez-
zel együtt, Q[x], Z[x] irreducibilis elemeire szép jellemzés (szükséges-és-elégséges
feltétel) nem ismert. Ezért azzal folytatjuk, hogy megadjuk a Q[x]-beli irreducibi-
litás néhány - a gyakorlatban hasznosnak bizonyult - elégséges feltételét.

3Emlékeim szerint előadáson ezt időhiány miatt nem részleteztem. A hallgatóktól kapott
anyagban mégis volt egy elég zavaros vázlat erről, ezért a rend kedvéért kiegésźıtettem, de az
egyértelműségről vizsgán elég annyit tudni, hogy a

”
Q[x]-beli felbontás egyértelműségéből követ-

kezik a Z[x]-beli felbontás egyértelműsége”. A létezés bizonýıtását - természetesen - részletesen,
pontosan kell tudni.
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Schönemann-Eisenstein kritérium

6.73. Tétel. Legyen f = anx
n + an−1x

n−1 + · · · + a1x+ a0 ∈ Z[x].

1. Schönemann-Eisenstein kritérium. Ha ∃p ∈ N olyan pŕım, hogy:
(a) p | a0, p | a1, . . . , p | an−1;
(b) p ∤ an és
(c) p2 ∤ a0,
akkor f irreducibilis Q[x]-ben.

2. Ford́ıtott Schönemann-Eisenstein kritérium. Ha ∃p ∈ N olyan pŕım,
hogy:
(a) p | a1, . . . , an,
(b) p ∤ a0 és
(c) p2 ∤ an,
akkor f irreducibilis Q[x]-ben.

Schönemann-Eisenstein kritérium bizonýıtása. A 6.67 Tétel szerint van r ∈ Q és
primit́ıv f ∗ ∈ Z[x], hogy f = r · f ∗. Mivel f egész-együtthatós, ezért r egész szám.

Ellentmondást keresve TFH: f nem irreducibilis Q[x]-ben ⇒ f ∗ sem irreducibilis
Q[x]-ben. De f ∗ primit́ıv, ezért a 6.69 Tétel szerint f ∗ Z[x]-ben sem irreducibilis:
∃g, h ∈ Z[x] : f ∗ = g · h. Tehát

f = r · f ∗ = r · g · h,

deg(f) = deg(g)+deg(h). Továbbá f ∗ primit́ıv, tehát egyetlen szorzatra bontásában
sem lehetnek nulladfokú tényezők (mert a nulladfokú tényező osztaná f ∗ összes
együtthatóját). Emiatt 1 ≤ deg(g), deg(h) és ı́gy deg(g), deg(h) < n. Vegyük fel g
és h együtthatóit, legyen mondjuk

g = bmx
m + · · · + b1x+ b0,

h = ckx
k + · · · + c1x+ c0.

Mint a 6.64 Defińıcióban, legyen µp : Z → Zp, µp(x) = x (mod p) és legyen

φp : Z[x] → Zp[x], φp(f) = f együtthatói (mod p).

Az álĺıtásban megadott feltételek miatt (és mivel a 6.66 Tétel szerint φp homo-
morfizmus):

• φp(f) = µp(an)xn = µp(an)xn+0xn−1+· · ·+0 (mert p osztja f összes többi együtthatóját) és
• φp(f) = φp(r · g · h) = φp(r · g) · φp(h).

Ezért φp(r · g) | µp(an)xn és φp(h) | µp(an)xn. De Zp[x]-ben µp(an)xn egy irreducu-
bilis tényezőkre bontása

µp(an)xn = (µp(an)x) · x · · ·x,
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ezért az Alaptétel miatt osztói is konstans-szor x-hatvány alakúak, azaz ∃u, t ∈ Zp:

φp(r · g) = u · xm,
φp(h) = t · xk,

és egyrészt m+ k = n, másrészt m, k < n miatt m, k ≥ 1. Tehát φp(r · g) konstans
tagja 0 és ezért r · g konstans tagja (azaz b0) osztható p-vel. Hasonlóan: h konstans
tagja (azaz c0) szintén osztható p-vel. Végül: f -nek a0 a konstans tagja és a0 = b0·c0.
Emiatt a0 osztható p2-el is; ez ellentmond a tétel feltételeinek.

Ford́ıtott Schönemann-Eisenstein bizonýıtása. Az előző bizonýıtás jelöléseit megtart-
va, ellentmondást keresve TFH: f nem irreducibilis Q[x]-ben. Ebből (pontosan
ugyanúgy, mint az előző bizonýıtásban) azt kapjuk, hogy ∃r ∈ Z, g, h ∈ Z[x]:

f = (r · g) · h, 1 ≤ deg(g), deg(h) < n.

A feltételek szerint:

φp(f) = µp(a0) ̸= 0 és

φp(f) = φp(r · g) · φp(h).

Ezek szerint φp(r · g) | µp(a0) és φp(h) | µp(a0). Tehát φp(r · g) és φp(h) nulladfokú
polinomok. Mivel azonban r · g és h legalább elsőfokúak, ez csak úgy lehet, ha
r · g főegyütthatója (azaz bm) és h főegyütthatója (azaz ck) oszthatók p-vel. Ekkor
azonban f főegyütthatója (azaz an) az an = bmck egyenlőség miatt osztható p2-el,
ami ellentmond az álĺıtásban felsorolt feltételeknek.

6.74. Megjegyzés. Ha f = anx
n + · · · + a1x+ a0, akkor

S(f) = a0x
n + a1x

n−1 + · · · + an

az f reciprok polinomja. Pl.: ha f = 3x2−7x+2, akkor S(f) = 2x2−7x+3. Könnyen
ellenőŕızhető, hogy rögźıtett n ∈ N-re (tetszőleges kommutat́ıv, nullosztómentes
gyűrű felett) a legfeljebb n-edfokú polinomok között S művelettartó bijekció. Erre
alapozva a Schönemann-Eisenstein kritérium és a ford́ıtott Schönemann-Eisenstein
kritérium gyorsan bebizonýıtható egymásból.

A Schönemann-Eisenstein kritériumok Q[x]-beli irreducibilitást garantálnak. Ha
f ∈ Z[x] primit́ıv és teljesül valamelyik Schönemann-Eisenstein feltétel, akkor a
6.69 Tétel értelmében f Z[x]-ben is irreducibilis. A Schönemann-Eisenstein feltétel
elégséges, de nem szükséges az irreducibilitáshoz. Például

27x3 + 8

irreducibilis Q[x]-ben (mert egyetlen gyöke sem racionális, azaz nincs gyöke Q-ban,
és harmadfokú). De egyik kritérium sem teljesül: konstans tagja 2-hatvány, ezért
a Schönemann-Eisenstein kritérium esetében csak p = 2 jön szóba; főegyütthatója
pedig 3-hatvány, ezért a ford́ıtott Schönemann-Eisenstein kritérium esetében csak
p = 3 jön szóba. De
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� p = 2: 22 = 4 | 8 ⇒ Schönemann-Eisenstein nem alkalmazható;
� p = 3: 32 = 9 | 27 ⇒ ford́ıtott Schönemann-Eisenstein nem alkalmazható.

6.75. Megjegyzés (Algoritmikus aspektus). Léteznek hatékony irreducibilis ténye-
zőkre bontó algoritmusok (LLL-algoritmus: Lenstra-Lenstra-Lovász).

Irreducibilis polinomok fokszámairól

Láttuk, hogy C[x]-ben az irreducibilis polinomok elsőfokúak, R[x]-ben pedig leg-
feljebb másodfokúak. A következő tételben megmutatjuk, hogy Q[x]-ben, illetve
véges testek feletti polinomgyűrűkben az irreducibilis polinomok fokai nem marad-
nak korlátosak.

6.76. Tétel.

1. Q[x]-ben minden n ∈ N+-ra van n-edfokú irreducibilis polinom.
2. Legyen I = {f ∈ Zp[x] | f irreducibilis}. Ekkor I végtelen és Zp[x]-ben az

irreducibilis polinomok fokszáma nem marad egy közös korlát alatt.

Bizonýıtás. (1)-hez elég az xn + 2 polinomot vizsgálni: ennek irreducibilisa követ-
kezik a Schönemann-Eisenstein kritériumból (p = 2-vel).

(2) igazolása hasonló lesz Eukleidész, a pŕımszámok végtelenségére vonatkozó jól is-

mert bizonýıtásához. Ellentmondást keresve TFH I véges. Legyen g =
(∏

f∈I f
)

+1.

Mivel Zp test, g is irreducibilis tényezőkre bontható, de g nem osztható I egyetlen
elemével sem, ez ellentmondás. Tehát I végtelen. De rögźıtett n-re Zp[x]-ben csak
véges sok n-edfokú polinom van, ezért:

{deg(f) : f ∈ Zp[x] irreducibilis} nem korlátos.

Végül megjegyezzük, hogy az előző érvelés szó szerint érvényben marad Zp[x] helyett
tetszőleges véges testre.

6.77. Példa (Schönemann-Eisenstein alkalmazása).

� x4 + 4 irreducibilis? p = 2: 2 | 4, 2 ∤ 1, 22 = 4 | 4 ⇒ nem alkalmazható.
� x3 − 2 irreducibilis? p = 2: 2 | 2, 2 ∤ 1, 22 = 4 ∤ 2 ⇒ irreducibilis.
� 2x3 + 3x2 + 6x + 12 irreducibilis? p = 3: 3 | 3, 6, 12, 3 ∤ 2, 32 = 9 ∤ 12 ⇒
irreducibilis.
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7. A lineáris algebra alapjai

Előkészületek

7.1. Defińıció (Permutációcsoport). Ha I halmaz, akkor

Sym(I) = {f : I → I | f bijekció}.

A csoportműveletek a függvény-kompoźıció, és a függvény-invertálás (ezekkel tényleg
csoportot kapunk).

Ha n ∈ N, akkor [n] = {1, 2, 3, . . . , n}.
Sym([n]) elemei megadhatók úgy, hogy [n] elemeit sorba tesszük (mindegyiket

pontosan 1-szer használva).

7.2. Példa. Ha n = 5, akkor(
1 2 3 4 5
5 1 2 3 4

)
egy permutáció.

Mivel a felső sor mindig ugyanaz, általában elhagyjuk.

7.3. Defińıció (Inverzió). Legyen σ = a1a2 . . . an az [n] egy permutációja. Ebben
(i, j) inverziót alkot, ha i < j de ai > aj.

7.4. Példa. 5 1 2 3 4-ben inverziók: (1, 5), (2, 5), (3, 5), (4, 5).

7.1. Vektorterek fogalma

7.5. Defińıció (Vektortér). Legyen K test, V halmaz (vektorok).
V vektortér K felett, ha:

� +: V × V → V (vektorok összeadása),
� ·: K × V → V (testelemmel szorzás)

olyan függvények, hogy:
1. (V,+) Abel-csoport;
2. ∀α ∈ K, ∀u, v ∈ V : α(u+ v) = αu+ αv;
3. ∀α, β ∈ K, ∀u ∈ V : (α + β)u = αu+ βu;
4. ∀α, β ∈ K, ∀u ∈ V : α(βu) = (αβ)u;
5. ∀u ∈ V : 1u = u (1 az alaptest multiplikat́ıv egysége).

7.6. Megjegyzés. A vektor-összeadás kummutativitása következik a többi vek-
tortér-axiómából, ugyanis tetszőleges u, v ∈ V -re egyrészt

(1 + 1)(u+ v) = (u+ v) + (u+ v) = u+ v + u+ v,

másrészt
(1 + 1)(u+ v) = (1 + 1)u+ (1 + 1)v = u+ u+ v + v.

Ezekből u + v + u + v = u + u + v + v, ahonnan (balról u-t, jobbról v-t kivonva)
v + u = u+ v adódik.
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7.7. Példa.

� K = R (esetleg K = C test);
� n = 2 (vagy n = 3) mellett V = Kn; műveletek koordinátákként:

ha (a1, a2) ∈ R2, (b1, b2) ∈ R2, c ∈ R, akkor

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

és
c(a1, a2) = (ca1, ca2),

R2 ezekkel vektorteret alkot.

Lineáris kombináció

7.8. Defińıció (Lineáris kombináció). Ha adottak v1, . . . , vn ∈ V vektorok, akkor a
számolási szabályok (a 7.5 Defińıcióban megadott vektortér-axiómák) miatt ezekből
pontosan c1v1+c2v2+· · ·+cnvn alakú vektorok álĺıthatók elő (c1, . . . , cn ∈ K). Ezeket
a kifejezéseket nevezzük v1, . . . , vn lineáris kombinációinak.

7.2. Lineáris egyenletrendszerek

7.9. Defińıció (Lineáris egyenletrendszer).
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

Itt a11 . . . amn, b1, . . . bm adottak, és feladatunk az x1, . . . xn ismeretlenek értékeinek
meghatározása.

Mivel a lineáris egyenletrendszerek nagyon hasonló alakúak, az egészet összefog-
lalhatjuk egy táblázatba (mátrixba). Táblázatunk i-edik sorának j-edik poźıciójába
aij-t ı́rva, majd a táblázat jobb szélét egy további oszloppal kiegésźıtve, melybe
felülről lefele b1, b2, . . . értékeit ı́rjuk, minden információt rögźıtettünk (abban az
értelemben, hogy egy ilyen táblázatból fel tudjuk ı́rni egyenletrendszerünk előző
defińıcióban megadott alakját).

7.10. Megjegyzés.
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� Sormodell: Látjuk majd, hogy minden egyes lineáris egyenlet (azaz egyenlet-
rendszerünk minden egyes sora) egy hiperśıkot ı́r le, ezért az egyenletrendszer
megoldása hiperśıkok metszete lesz.

� Oszlopmodell: Legyen

u1 =


a11
a21
...
an1

, u2 =


a12
a22
...
an2

 · · · ,un =


a1m
a2m
...

anm

, b =


b1
b2
...
bn


� Az egyenletrendszerünk megoldásása során valójában az a feladatunk, hogy
álĺıtsuk elő b-t u1, . . . , un lineáris kombinációjaként: olyan x1, . . . , xn kell, hogy
x1u1 + · · · + xnun = b teljesüljön.

Lineáris egyenletrendszerek megoldása

7.11. Példa. Oldjuk meg a következő egyenletrendszert:
x+ y + 2z = 0

2x+ 2y + 3z = 2

x+ 3y + 3z = 4

x+ 2y + z = 5.

Megoldás lépésenként. Egy 1-ismeretlenes lineáris egyenletrendszert nagyon könnyen
meg tudunk oldani. Ha több ismeretlenünk van, akkor próbálkozhatunk azzal,
hogy valamelyik ismeretlent kiküszöböljük, ı́gy egy olyan egyenletrendszert kapunk,
amiben kevesebb ismeretlen van. Ezt ismételgethetjük, amı́g 1-ismeretlenes egyen-
letrendszert nem kapunk. Hogyan küszöböljünk ki ismeretleneket? Ha az egyik
egyenletünk valahányszorosát egy másik egyenletünkhoz adjuk, akkor az új egyen-
let következni fog a korábbiakból (abban az értelemben, hogy ami a régi egyen-
letrendszernek megoldása volt, az megoldása marad az új egyenletrendszernek is).
Ezzel a módszerrel úgy tudunk kiejteni (kiküszöbölni) ismeretleneket, hogy az egyik
(mondjuk az i-edik) egyenletnek olyan számszorosát (mondjuk c-szeresét) adjuk egy
másik egyenlethez (mondjuk a j-edikhez), hogy valamelyik ismeretlen együtthatója
a j-edik egyenletben épp −c-szerese legyen ugyanennek az ismeretlennek az i-edik
egyenletben szereplő együtthatójának. Példánkon ezt az ötletet fogjuk illusztrálni;
a módszer szisztematikusabb változatait Gauus-eliminációnak nevezik.

Írjuk fel a kibőv́ıtett mátrixot és végezzük el az elemi sorátalaḱıtásokat:
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
1 1 2 0
2 2 3 2
1 3 3 4
1 2 1 5

 R2→R2−2R1−−−−−−−→


1 1 2 0
0 0 −1 2
1 3 3 4
1 2 1 5

 R3→R3−R1−−−−−−−→


1 1 2 0
0 0 −1 2
0 2 1 4
1 2 1 5


R4→R4−R1−−−−−−−→


1 1 2 0
0 0 −1 2
0 2 1 4
0 1 −1 5

 R2↔R3−−−−→


1 1 2 0
0 2 1 4
0 0 −1 2
0 1 −1 5

 R4→R4−
1
2
R2

−−−−−−−−→


1 1 2 0
0 2 1 4
0 0 −1 2
0 0 −3

2
3


R4→R4−

3
2
R3

−−−−−−−−→


1 1 2 0
0 2 1 4
0 0 −1 2
0 0 0 0


Az utolsó sor: 0x+ 0y + 0z = 0 mindig teljesül.
Most oldjuk meg visszafele (lemtről felfele) haladva:

−1z = 2 ⇒ z = −2;

2y + z = 4 ⇒ 2y − 2 = 4 ⇒ 2y = 6 ⇒ y = 3;

x+ y + 2z = 0 ⇒ x+ 3 − 4 = 0 ⇒ x− 1 = 0 ⇒ x = 1.

Tehát a megoldás: x = 1, y = 3, z = −2.

Elemi sorátalaḱıtások

7.12. Defińıció (Elemi sorműveletek).

1. Sorcsere: két sor felcserélése;
2. Sor szorzása: egy sor szorzása ̸= 0 skalárral;
3. Sorok összeadása: egyik sorhoz hozzáadjuk egy másik sor skalárszorosát.

7.13. Megjegyzés. Az elemi sorátalaḱıtások nem változtatják meg az egyenletrend-
szer megoldáshalmazát. Ez a következők miatt van ı́gy. Az világos, hogy az elemi
sorátalaḱıtásokkal mindig olyan egyenletrendszerhez jutunk, hogy eredeti egyenlet-
rendszerünk minden megoldása megoldása marad az új egyenletrendszernek is.

De minden elemi sorátalaḱıtás
”
visszacsinálható”: egy másik, alkalmasan választott

elemi sorátalaḱıtással az új egyenletrendszerünkből visszakaphatjuk az eredetit. Ezért
az előző bekezdés gondolata azt is adja, hogy új egyenletrendszerünk minden meg-
oldása egyúttal megoldása az eredeti egyenletrendszernek is.

Az előző két bekezdés szerint az eredeti és az új egyenletrendszerünk megoldás-
halmazai kölcsönösen tartalmazzák egymást, ezért az eredeti és az új egyenletrend-
szer megoldásainak halmaza egyenlő egymással.

85



7.14. Megjegyzés. A fenti példában:
� A negyedik egyenlet redundáns volt (a többi következménye);
� Pontosan 1 megoldás volt (azaz a megoldás egyértelmű): (1, 3,−2).

7.3. Vektorterekről bővebben

7.15. Defińıció. Legyenek V és W vektorterek a K test felett. Ekkor W altere
V -nek, ha W ⊆ V (azaz W elemei egyúttal V -nek is elemei) és a W -beli vektorokon
minden műveletnek ugyanaz az eredménye, mintha V -ben végeznénk el őket.

Tipikus esetben adott egy V vektortér és vektoroknak egy W ⊆ V részhalmaza,
és a V -ben adott vektortér-műveleteket akarjuk W elemein elvégezni. Mikor lesz
ezekkel a műveletekkel W a V egy altere? A vektortér-axiómák nyilvánvalóan kivétel
nélkül érvényben maradnak, hiszen, ha néhány W -beli vektor megsértené pl. a vek-
torösszeadásra vonatkozó asszociativitási szabályt, akkor ugyanezek a vektork V -ben
is ellenpéldát szolgáltatnának az asszociativitásra (ami nyilván lehetetlen, mert V
vektortér). Az egyetlen problémát az jelentheti, hogy minden vektortérben bármely
két vektort össze lehet adni és bármely vektort meg lehet szorozni bármelyik test-
elemmel. Ha tehát W is vektorteret alkot a V -beli műveletekkel, akkor szükséges,
hogy

• W bármely két vektorával együtt azok V -ben számolt összegét is tartamazza
(azaz ∀u, v ∈ W : (u+V v ∈ W );

• W bármely vektorával együtt annak minden (V -ben számolt) skalárszorosát is
tartamazza (azaz ∀u ∈ W, c ∈ K : (c ·V u ∈ W ).

Ezekre a feltételekre együtt úgy hivatkozunk, hogy W zárt a V -beli műveletekre.
Az előző két bekezdés szerint W ⊆ V a V -ből örökölt műveletekkel akkor és

csak akkor lesz altere V -nek, ha W zárt a V -beli műveletekre. Mostantól - picit
pontatlanul - egy vektortér altereinek mindig csak az alaphalmazát adjuk meg, és
hallgatólagosan úgy értjük, hogy a vektortér-műveletek mindig V -ből öröklődnek.

7.16. Defińıció (Generált altér). Legyen K test, V vektortér K felett, n ∈ N,
{v1, . . . , vn} ⊆ V . Ekkor a {v1, . . . , vn} által generált altér:

Span{v1, . . . , vn} = {λ1v1 + · · · + λnvn : λi ∈ K}.

Könnyű meggondolni, hogy az előző defińıcióban szereplő Span{v1, . . . , vn} zárt
a V -beli műveletekre, ezért altere V -nek. Továbbá, ha W ⊆ V olyan altér, melyre
{v1, . . . , vn} ⊆ W , akkor Span{v1, . . . , vn} ⊆ W is teljesül. Ezért Span{v1, . . . , vn}
a legkisebb altere V -nek, ami tartalmazza a v1, . . . , vn vektorokat.

7.17. Defińıció (Lineáris függetlenség). F ⊆ V lineárisan független, ha egyik f ∈ F
sem fejezhető ki a többivel (azaz ∀f ∈ F : f /∈ Span(F \ {f})).

7.18. Defińıció (Generátorrendszer). G ⊆ V generátorrendszer, ha ∀v ∈ V kife-
jezhető G-beliek lineáris kombinációjaként (azaz ∀v ∈ V : v ∈ Span(G)).
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7.19. Defińıció (Bázis). B ⊆ V bázis, ha B független generátorrendszer.

7.20. Tétel (Lineáris függetlenség ekvivalens feltételei). Legyen V vektortér K felett
és legyen {v1, . . . , vn} ⊆ V . Ekvivalensek:

1. {v1, . . . , vn} lineárisan független;
2. Ha λ1v1 + · · · + λnvn = 0 (nullvektor), akkor λ1 = · · · = λn = 0 (vagyis a

nullvektort csak a triviális lineáris kombninációval lehet előálĺıtani).

Bizonýıtás. (1) ⇒ (2): Ellentmondást keresve tegyük fel, hogy van nem csupa-nulla
λ1, . . . , λn (azaz ∃j : λj ̸= 0), hogy

n∑
i=1

λivi = 0.

Ekkor

vj = − 1

λj

n∑
i=1
i ̸=j

λivi,

ami – ellentmondva (1)-nek – mutatja, hogy vj ∈ Span({v1, . . . , vn} \ {vj}).
(2) ⇒ (1): Tegyük fel, hogy {v1, . . . , vn} nem független. Ekkor ∃j, hogy vj ki-
fejezhető a többi lineáris kombinációjaként, azaz van olyan λ1, . . . λj−1, λj+1, . . . λn,
hogy

vj = λ1v1 + · · · + λj−1vj−1 + λj+1vj+1 + · · · + λnvn.

Ekkor (mindkét oldalból vj-t kivonva)

λ1v1 + · · · + λj−1vj−1 − 1 · vj + λj+1vj+1 + · · · + λnvn = 0

ahol vj együtthatója −1 (tehát, (2)-nek ellentmondva, vj ”
λ-ja” nem nulla, mégis a

nullvektort kaptuk).

Bázis ekvivalens tulajdonságai

A generált alterek bevezetésénél már használtuk egy V vektortér részhalmazaira
a

”
legkisebb” kifejezést. Általában is, egy alaphalmaz részhalmazait a tartalmazás

szerint rendezzünk: az egyik részhalmaz nagyobb a másiknál, ha részhalmazként
tartalmazza azt. Vigyázzunk: ez csak részbenrendezés: lehetnek olyan halma-
zok, melyek egyike sem részhalmaza a másiknak, ezért egyik sem kisebb/nagyobb
a másiknál (vagyis a szóbanforgó halmazok összehasonĺıthatatlanok). Ugyanebben
az értelemben használjuk majd a

”
minimális” és

”
maximális” kifejezéseket. Hal-

mazok egy B összességében az X halmaz maximális, ha nincs olyan B-beli halmaz,
melynek X részhalmaza lenne (azaz B-ben nincs X-nél nagyobb halmaz). Telje-
sen hasonlóan, X minimális, ha nincs B-ben olyan halmaz, mely részhalmaza lenne
X-nek. Mégegyszer hangsúlyozzuk azonban, hogy B-ben lehetnek olyan halmazok,
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melyek összehasonĺıthatatlanok egy minimális, illetve maximális halmazzal. Tehát
pl. egy maximális halmazra csak az igaz, hogy nincs nála nagyobb halmaz B-ben,
de az nem feltétlenül igaz, hogy egy maximális halmaz minden B-beli halmaznál
nagyobb.

A generált alterek esetében a legkisebb kifejezést jogosan használtuk: legyen V
vektortér, és legyen

B = {W ⊆ V : v1, . . . , vn ∈ W, Waltere V -nek}.

Ekkor Span{v1, . . . , vn} nemcsak minimális részhalmaz B-ben, hanem valóban leg-
kisebb: ugyanis Span{v1, . . . , vn} tényleg részhalmaza B összes elemének.

7.21. Tétel (Bázis ekvivalens jellemzései). Legyen B = {v1, . . . , vm} ⊆ V . Ekviva-
lensek:

1. B bázis;
2. B minimális generátorrendszer;
3. B maximális független rendszer;
4. ∀v ∈ V : ∃!λ1, . . . , λm ∈ K hogy v = λ1v1 + · · · + λmvm.

7.22. Megjegyzés. A (4)-es tulajdonságnál [λ1, . . . , λm] a v vektor koordináta-
vektora a B bázisra vonatkozóan.

7.23. Példa. R2-ben:

� B =

{(
1
0

)
,

(
0
1

)}
bázis, ez a szokásos koordinátákat adja:

� a v =

(
x
y

)
vektor B-re vonatkozó koordinátá-vektora: [x, y].

Bizonýıtás. (ciklikus bizonýıtás)
(1) ⇒ (2): B generátorrendszer, mert defińıció szerint minden bázis generátorrendszer.

B minimális generátorrendszer, mert ∀i-re vi /∈ Span(B \ {vi}), mert B független.
Ez mutatja, hogy B valódi részhalmazai nem generátorrendszerek, tehát B a ge-
nerátorrendszerek között valóban minimális halmaz.

(2) ⇒ (3): B független, mert TFH valamilyen nem csupa-nulla λ1, . . . , λm-re:

λ1v1 + · · · + λmvm = 0.

Legyen j olyan, hogy λj ̸= 0. Ekkor:

vj = − 1

λj

∑
i ̸=j

λivi ⇒ vj ∈ Span(B \ {vj}),

ezért B nem lenne minimális generátorrendszer (hisz B \ {vj} generálná B-t, ami
generálná az egész vektorteret).
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Kell még, hogy B a független vektorhalmazok között maximális.
Ha lenne olyan v ∈ V , hogy B ∪ {v} független, akkor v /∈ Span(B), ezért, (2)-vel
ellentétben, B nem lenne generátorrendszer.

(3) ⇒ (4):
(3) miatt B maximális független, ezért ∀v ∈ V : v ∈ Span(B). Ez (4)-ből a

megfelelő λ-k létezését mutatja. Kell még a λ-k egyértelműsége. Legyen λ1, . . . , λm
és µ1, . . . , µm úgy, hogy v =

∑
λivi =

∑
µivi. Ekkor

∑
(λi − µi)vi = 0, és mivel B

független, λi = µi minden i-re, vagyis (4)-ben a λ-k valóban egyértelműen léteznek.

(4) ⇒ (1): B generátorrendszer, mert ∀v ∈ V -re (4) miatt van λ1, . . . , λm:
v =

∑
λivi.

B független is, mert TFH: vj előáll a többi lineáris kombinációjaként, azaz van
µ1, . . . , µj−1, µj+1, . . . , µm:

vj = µ1v1 + · · · + µj−1vj−1 + 0 · vj + µj+1vj+1 + · · · + µmvm.

De vj = 0 · v1 + · · ·+ 0 · vj−1 + 1 · vj + 0 · vj+1 + · · ·+ 0 · vm a vj egy másik előálĺıtása
(hiszen az előző sorban vj együtthatója nem nulla); ez ellentmond annak, hogy (4)
szerint a koordináták egyértelműek. Ezért (1) valóban teljesül B-re.

Bázisok és dimenzió

7.24. Tétel (Bázisok elemszáma). Legyen K test, n ∈ N, V altere Kn-nek.
1. Ha B1, B2 ⊆ V bázisok V -ben, akkor elemszámuk ugyanannyi: |B1| = |B2|;
2. V -ben van (véges elemszámú) bázis.

Bizonýıtás. Először egy önmagában is érdekes lemmát igazolunk.

Kicserélési lemma: Ha F = {f1, . . . , fk} ⊆ V független, G = {g1, . . . , gm} ge-
nerátorrendszer, akkor minden i-hez van j, hogy F -ben fi-t gj-re cserélve továbbra
is független rendszert kapunk (azaz (F \ {fi}) ∪ {gj} független).

A Kicserélési Lemma bizonýıtása. Tegyük fel indirekt, hogy adott i-re fi-hez nincs
jó gj, azaz ∀j: {f1, . . . , fi−1, gj, fi+1, . . . , fk} nem független. Ekkor, a 7.20 Tétel
miatt az előző vektorrendszernek van nem csupa-nulla súlyokkal képzett lineáris
kombinációja, mely a nullvektort adja. Egy ilyen lineáris kombinációban gj együtt-
hatója nem lehet nulla (mert F független volt). Ezért gj kifejezhető a többi lineáris
kombinációjával: gj ∈ Span{f1, . . . , fi−1, fi+1, . . . , fk}. Mivel ez minden j-re igaz,
ezért Span{g1, . . . , gm} ⊆ Span{f1, . . . , fi−1, fi+1, . . . , fk} generátorrendszer, ezért
fi ∈ Span{f1, . . . , fi−1, fi+1, . . . , fk} adódna, vagyis F nem lenne független. Ezzel
az ellentmondással a kicserélési lemma be van bizonýıtva.
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A 7.24 Tétel bizonýıtását a Kicserélési Lemma egy következményével folytat-
juk. Az alábbiak szerint, a Kicserélési Lemmából azonnal adódik, hogy ha F
tetszőleges független vektorrendszer, G pedig tetszőleges véges generátorrendszer,
akkor |F | ≤ |G|. Ez azért van ı́gy, mert a Kicserélési Lemma szerint F eleme-
it sorban, egymás után (egészen addig, amı́g el nem fogynak), ki tudjuk cserélni
G elemeire. A Kicserélési Lemma garantálja, hogy menet közben F (illetve az
a vektorrendszer, melyet az átalaḱıtások során F -ből kaptunk) mindig független,
ezért a Kicserélési Lemma végig alkalmazható marad, és szintén az

”
aktuális F”

függetlensége garantálja, hogy az egyes lépésekben G-nek mindig más és más elemét
tesszük át F -be (ha nem ı́gy lenne, akkor az aktuális F nem maradna független).
Mivel F elemeit ki tudjuk cserélni G páronként különböző elemeire, ezért valóban
|F | ≤ |G|.

Következő lépésben (2)-t látjuk be. Minden i ≤ n-re legyen

ei =


0
...
1
...
0

 i-edik helyen.

{e1, . . . , en} generátor Kn-ben. Emiatt, ha {b1, . . . , bk} független V -ben, akkor per-
sze független Kn-ben is, és ezért az előző bekezdés szerint k ≤ n. Azt kaptuk, hogy
V -ben minden független vektorrendszer legfeljebb n elemű. Emiatt V -ben van ma-
ximális független rendszer (ami tehát bázis), és ez véges (legfeljebb n-elemű).

Ezek után (1) bizonýıtása a következő. Legyenek B1, B2 bázisok V -ben. A
korábbiak szerint |B1|, |B2| ≤ n. Mivel B1 független, és B2 generátorrendszer, ezért
|B1| ≤ |B2|. De B2 is független, és B1 is generátorrendszer, ezért |B2| ≤ |B1|. Tehát
|B1| = |B2|.
7.25. Defińıció. Az előző jelölések megtartásával, ha V altere Kn-ek, akkor V
bázisainak közös méretét V dimenziójának nevezzük, és dim(V )-vel jelöljük.

7.26. Megjegyzés. A korábbi jelöléseket megtartva megjegyezzük, hogy a Ki-
cserélési Lemmából, illetve a 7.24 Tételből könnyen adódik, hogy minden véges
dimenziós vektortérben:

1. Minden generátorrendszer tartalmaz bázist;
2. Minden lineárisan független rendszer kiegésźıthető bázissá;
3. dim(Rn) = n;
4. dim(Cn) = n (komplex vektortérként);
5. {e1, . . . , en} bázis Kn-ben (ezt nevezzük sztenderd bázisnak);
6. dimPn = n+ 1 (itt Pn a K feletti, legfeljebb n-edfokú polinomok vektortere).

Megjegyezzük még, hogy minden (nem feltétlenül véges dimenziós) vektortérnek
van bázisa, ezt idén nem bizonýıtjuk (mert a bizonýıtás további halmazelméleti
előkészületeket igényelne).
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7.27. Defińıció (Affin altér). W ⊆ Kn affin altér, ha van u ∈ Kn és V ⊆ Kn altér,
úgy, hogy

W = u+ V = {u+ a : a ∈ V }.

Itt u az eltolásvektor.

7.28. Defińıció (Hiperśık). W = u + V hiperśık, ha olyan affin altér, amiben V
bázisai (n− 1) eleműek.

7.29. Példa.

1. R2-ben: az egyenesek affin alterek (sőt hiperśıkok);
2. R3-ban: a śıkok hiperśıkok (dim = 2);
3. R3-ban: az egyenesek (1-dimenziós) affin alterek.

Affin alterek és lineáris egyenletrendszerek

7.30. Defińıció (Homogén és inhomogén egyenletrendszer). Az Ax = b lineáris
egyenletrendszer:

� homogén, ha b = 0;
� inhomogén, különben.

Jelölés:

MH = {u ∈ Kn : Au = 0} homogén rész megoldáshalmaza;

MI = {u ∈ Kn : Au = b} inhomogén rész megoldáshalmaza.

7.31. Megjegyzés. Tetszőleges A ∈ Km×n, u, v ∈ Kn, λ ∈ K esetén:

A(u+ v) = Au+ Av;

A(λu) = λ(Au).

7.32. Tétel (Megoldáshalmazok szerkezete). Ha A ∈ Kn×m, akkor:
1. MH altere Kn×m-nek;
2. MI affin altere Kn×m-nek, sőt tetszőleges u ∈MI-re:

MI = u+MH .

Bizonýıtás. (1) MH altér: a 7.15 Defińıció utáni megjegyzés szerint azt fogjuk
ellenőrizni, hogy MH zárt a vektorok összeadására és skalárral szorzására. Ha
u, v ∈MH , λ ∈ K, akkor:

A(u+ v) = Au+ Av = 0 + 0 = 0 ⇒ u+ v ∈MH ;

A(λu) = λ(Au) = λ · 0 = 0 ⇒ λu ∈MH .

Ez mutatja MH zártságát a megfelelő műveletekre.
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(2) Legyen u ∈MI (azaz Au = b). Ekkor egyrészt

∀w ∈MH : A(u+ w) = Au+ Aw = b+ 0 = b⇒ u+ w ∈MI ezért u+MH ⊆MI .

Másrészt ford́ıtva:

∀v ∈MI : v = u+ (v − u), ahol v − u ∈MH ,
mert:

A(v − u) = Av − Au = b− b = 0.

Tehát MI = u+MH .

7.33. Példa.

� A =

(
1 2
2 4

)
, b =

(
3
6

)
:

MH = {λ(−2, 1) : λ ∈ R}, MI = (1, 1) +MH .

� A =

(
1 1
1 1

)
, b =

(
1
2

)
: MI = ∅ (ellentmondásos).

7.4. Mátrixok és mátrixműveletek

Legyen K test, n,m ∈ N+. Az olyan téglalap alakú táblázatokat, melyeknek
n sora, m oszlopa van, és a táblázatban K elemei szerepelnek, K feletti n × m-
es mátrixoknak nevezzük; az összes ilyen mátrix hamlazát Kn×n-el jelöljük. Picit
prećızebben (de a mi céljaink szempontjából talán túlzott, a lényeget enyhén el-
fedő prcizitással) Kn×m elemei azonośıthatók azokkal a kétváltozós, K-ba képező
függvényekkel, melyek értelmezési tartománya [n]× [m]: hiszen egy mátrixban pon-
tosan az lesz fontos, hogy az i. sora j. poźıciójában K melyik eleme van - ezt meg-
adjatjuk egy függvénnyel (és végsősoron ezeket a függvényeket akár azonośıthatjuk
is a megfelelő méretű mátrixokkal).

Az előző bekezdéssel összhangban, ha A ∈ Kn×m egy mátrix, akkor A i-edik
sorának j-edik elemét (A)ij-vel jelöljük (ami utalhat a megfelelő függvény helyet-
teśıtési értékére is). Emellett használjuk még a következő jelöléseket is:

� A i-edik sora: Ai∗ = [Ai1 . . . Aim] ∈ Km;

� A j-edik oszlopa: A∗j =

A1j
...
Anj

 ∈ Kn.

Mátrixokkal találkoztunk már a lineáris egyenletrendszerek vizsgálata során.
Most szisztematikusan bezevetjük, és megvizsgáljuk az alapvető mátrix-műveleteket.
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7.34. Defińıció (Transzponált). Ha A ∈ Kn×m, akkor AT ∈ Km×n az a mátrix,
melyet A sorainak és oszlopainak felcserélésével kapunk, azaz

(AT )ij = (A)ji.

Az AT mátrixot A transzponáltjának nevezzük.

7.35. Defińıció (Mátrixszorzás). Ha A ∈ Kn×m, B ∈ Km×k, akkor AB ∈ Kn×k a
következő:

(AB)ij =
m∑
l=1

AilBlj

7.36. Megjegyzés. A mátrixszorzás nem kommutat́ıv, mert a mátrixok mérete
akár olyan is lehet, hogy egyik sorrendben összeszorozhatóak, de a másikban nem,
ilyen esetekben fel sem merül, hogy a különböző sorrendekben vett szorzatok egyenlőek-
e.

7.37. Defińıció. A négyzetes mátrix, ha sorai száma = oszlopai száma. Ekkor a
szorzás elvégezhető (mindig).

Kn×n a mátrixok összeadásával, szorzásával egy egységelemes, nem kommu-
tat́ıv gyűrűt alkot. A gyűrűaxiómák minden nehézség nélkül, de hosszadalmasan
ellenőrizhetők. A szorzás asszociativitását később, a 7.51 Tételben bebizonýıtjuk.
A multiplikat́ıv egységelemről és az inverzről most csak röviden teszünk néhány
megjegyzést, később vissza fogunk térni ezekre.

7.38. Defińıció (Egységmátrix). In ∈ Kn×n az egységmátrix:

(In)ij = δij =

{
1 ha i = j;

0 ha i ̸= j.

7.39. Defińıció (Inverz mátrix). A ∈ Kn×n-nek B inverze, ha AB = BA = In.
Jelölés: B = A−1.

Látjuk majd, hogy nem minden mátrixnak van inverze. Továbbá - mivel a
mátrix-szorzás még négyzetes mátrixok esetében sem kommutat́ıv - kétféle inverzzel
(balinverzzel és jobbinverzzel) is foglalkoznunk kéne. A balinverzek és jobbinverzek
között szerencsére van kapcsolat. A részleteket később a 7.52 Defińıcióban, és az azt
követő tételekben dolgozzuk ki. Az inverzzel való ismerkedésünket most azzal zárjuk,
hogy a B inverzet megpróbálhatjuk meghatározni az AX = In mátrixegyenlet meg-
oldásával, bár ez nem is olyan rossz módszer, lesznek más módszerek is.

7.40. Defińıció (Mátrix oszlop- és sortere). Legyen A ∈ Kn×m.
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7.41. Defińıció (Oszloptér, sortér, nulltér).

O(A) = Span{A∗1, A∗2, . . . , A∗m} A oszloptere;

S(A) = Span{A1∗, A2∗, . . . , An∗} A sortere;

N (A) = {u ∈ Km : Au = 0} = MH A nulltere.

A∗1
A∗2

O(A) N (A)

nulltér Km

Mátrixokhoz tárśıtott alterek bázisai

Hogyan találunk bázist ezekben a tereken?

I. Bázis N (A)-ban (nulltér.)

Megoldjuk az Ax = 0 homogén egyenletrendszert.
Bázist úgy kapunk, hogy a szabad változók helyébe paramétereket ı́runk, a meg-
oldást a paraméterek szerint rendezzük; ekkor a paraméterek vektor-együtthatói
adnak egy bázist.

II. Bázis S(A)-ban (sortér.)

Hozzuk redukált lépcsős alakra:

A = A0 → A1 → A2 → · · · → Ar = L.

A bázist L-nek a nem csupa-nulla sorai adják, ezt a következő tételben igazoljuk.

7.42. Tétel. S(A) egy bázisa L nem csupa 0 sorai.

Bizonýıtás. Az elemi sorátalaḱıtások olyanok, hogy Ai+1 sorai = Ai sorainak lineáris
kombinációja. Ezért S(Ai+1) ⊆ S(Ai). Mivel azonban az Ai → Ai+1 lépés meg-
ford́ıtható, ezért S(Ai) ⊆ S(Ai+1), ı́gy végülis S(Ai) = S(Ai+1). Tehát

S(A) = S(L) = Span(L nem csupa 0 sorai).

Ezért L nem csupa-nulla sorai generálják S(A)-t.
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Továbbá, L nem csupa 0 sorai lineárisan függetlenek a következők miatt. Legyen
λ1, . . . , λr ∈ K olyan, hogy

λ1L1∗ + λ2L2∗ + · · · + λrLr∗ = 0.

Ekkor λ1 = 0, különben L1∗ vezéreleme nem nullázódik le.
Hasonlóan, λ2 = 0, λ3 = 0, . . . stb. Tehát L nem csupa 0 sorai lineárisan függetle-
nek.

III. Bázis O(A)-ban (oszloptér.)

Egy rövid válasz az lehet, hogy O(A) nyilvánvalóan izomorf S(AT )-vel, ezért O(A)-
ban úgy találhatunk bázist, ha a fenti módon S(AT )-ben keresünk egyet. Az alábbi
tétel ennél több információt ad.

7.43. Tétel. Legyen A (egy) redukált lépcsős alakra hozása L. Ha L-ben a j1, j2, . . . , jr
oszlopokban van vezérelem, akkor

A∗j1 , A∗j2 , . . . , A∗jr

bázis O(A)-ban.

Bizonýıtás. Az {A∗j1 , . . . , A∗jr} vektorrendszer generálja O(A)-t, mert ha az A∗k
oszlop nincs ezek között, akkor az

[A∗j1 . . . A∗jr |A∗k]

egyenletrendszer megoldható (lépcsős alakra hozás mutatja).
Továbbá, {A∗j1 , . . . , A∗jr} lineárisan független a következők miatt. Tegyük fel,

hogy
(∗) λ1A∗j1 + λ2A∗j2 + · · · + λrA∗jr = 0.

Ekkor azonban λ1 = 0, különben A∗j1 vezéreleme (∗)-ban nem nullázódna ki. Ha-
sonlóan λ2 = 0, . . . , λr = 0.

7.44. Példa. Legyen A =

1 2 3 4
2 4 6 8
1 1 2 3


Redukált lépcsős alak:

L =

1 0 1 2
0 1 1 1
0 0 0 0


� S(A) egy bázisa: {(1, 0, 1, 2), (0, 1, 1, 1)};

� O(A) egy bázisa: A∗1 =

1
2
1

, A∗2 =

2
4
1

;

� N (A) egy bázisa: {(−1,−1, 1, 0), (−2,−1, 0, 1)}.
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Mátrix rangja és oszlopmodell

7.45. Defińıció (Oszloprang és sorrang). Legyen A ∈ Kn×m.
� A oszloprangja: ro(A) = dim(O(A)) (= hány lineárisan független oszlopa
van A-nak);

� A sorrangja: rs(A) = dim(S(A)).

7.46. Tétel (Oszloprang = sorrang). ro(A) = rs(A) (ezért rs felesleges, nem használjuk).

Bizonýıtás. rs(A) = dim(S(A)) = L nem csupa 0 sorainak száma.
ro(A) = dim(O(A)) = L-ben ennyi oszlopban van vezérelem.
 L egy nem csupa 0 sorához rendeljük hozzá azt az oszlopot, melyben a sor

vezéreleme van. Ez kölcsönösen egyértelmű megfeleltetés L nem csupa 0 sorai és
azon oszlopai között, melyekben van vezérelem. Ez a megfeleltetés mutatja, hogy
valóban:

dim(S(A)) = dim(O(A)).

7.47. Defińıció (Rang).

rang(A) = ro(A) = rs(A).

7.48. Tétel (Oszlopmodell értelmezése). Ax = c megoldható ⇔ c ∈ O(A).

Bizonýıtás. Ax = c megoldható ⇔ ∃x ∈ Km : Ax = c
⇔ c előáll A oszlopainak lineáris kombinációjaként
⇔ c ∈ O(A).

7.49. Példa. Legyen A =

(
1 2
3 4

)
, b =

(
5
6

)
Ab = 5

(
1
3

)
+ 6

(
2
4

)
=

(
5
15

)
+

(
12
24

)
=

(
17
39

)
.

A∗1

A∗2

Ab

Oszlopmodell: Ab = b1A∗1 + b2A∗2

O(A)

c1 ∈ O(A)

c2 /∈ O(A)

Ax = c megoldható ⇔ c ∈ O(A)

7.50. Tétel (Lineéris egyenletrendszerek egoldhatóságának mátrixrangos jellemzése).
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1. Ax = c megoldható ⇔ rang(A) = rang(A|c);
2. Ha rang(A) = rang(A|c) < változók száma, akkor sok megoldás van (vannak

szabad változók);
3. Ha rang(A) = rang(A|c) = változók száma, akkor pontosan 1 megoldás van

(nincsenek szabad változók);
4. Nem fordulhat elő, hogy rang(A) = rang(A|c) > változók száma, mert rang(A) =

dim(O(A)) ≤ oszlopok száma = változók száma.

7.5. Bővebben a mátrixok invertálhatóságáról

Ebben a részben a mátrixok inverzének létezésével, egyértelműségével, kiszámı́-
tásának módjaival foglalkozunk. Egy négyzetes A ∈ Kn×n mátrix főátlóján az

a11, a22, . . . , ann

elemeit értjük. Speciálisan: az In egységmátrix főátlójában 1-esek vannak. A
mátrix-szorzás asszociativitásának ellenőrzésével kezdünk.

7.51. Tétel (Asszociativitás). A,B,C ∈ Kn×n esetén:

(AB)C = A(BC).

Bizonýıtás. Tetszőleges i, j ≤ n-re

[(AB)C]ij =
n∑

l=1

(AB)ilClj =
n∑

l=1

(
n∑

k=1

AikBkl

)
Clj =

n∑
k=1

Aik

(
n∑

l=1

BklClj

)
= [A(BC)]ij.

Mint emĺıtettük, a mátrix-szorzás még a négyzetes mátrixok körében sem kom-
mutat́ıv, ezért e nem-kommutat́ıv szorzásnak kétféle inverze lehet. Részletesebben:

7.52. Defińıció (mátrix balinverze, jobbinverze). A ∈ Kn×n-nek:
� Y jobbinverze, ha AY = In;
� Y balinverze, ha Y A = In.

A 7.39 Defińıcióban megadtuk már az A mátrix inverzének defińıcióját: Y inverze
A-nak, ha AY = Y A = In, vagyis ha Y egyszerre balinverze és jobbinverze is A-nak.
E különböző inverzek között teremt kapcsolatot a következő tétel.

7.53. Tétel (Jobbinverz, inverz létezésének feltétele). Legyen A ∈ Kn×n.
1. A-nak van jobbinverze ⇔ rang(A) = n;
2. A-nak legfeljebb 1 db jobbinverze van;
3. Ha Y jobbinverz, akkor inverz is.
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Bizonýıtás. (1) ⇒: Tegyük fel: Y jobbinverze A-nak: AY = In. Ekkor tetszőleges
j-re AY∗j = j-edik oszlop In-ben. Ezért e1, e2, . . . , en ∈ O(A). De {e1, e2, . . . , en}
bázis Kn-ben. ezért dim(O(A)) = n, vagyis rang(A) = n (nagyobb nem lehet).

⇐: Ford́ıtva: ha rang(A) = n, akkor tetszőleges ej ∈ Kn-re Ax = ej megoldható
(hiszen ekkor O(A) = az egész Kn tér). Tehát ∀j: Ax = ej megoldható, e megoldás,
mint oszlopvektor lesz a jobbinverz j-edik oszlopa.

(2): Ha rang(A) < n, akkor (1) szerint nulla darab jobbinverz van, ha rang(A) = n,
akkor az inverzre (1)-ben adott konstrukció egyértelmű (a mátrixrangos jellemzés
(7.50 Tétel) miatt ∀j: Ax = ej-nek pontosan 1 megoldása van, és ennek a meg-
oldásnak kell lennie a jobbinverz j-edik oszlopának).

(3) Tegyük fel: Y jobbinverz: AY = In ⇒ AY A = A azaz Y A megoldása az

(∗) AX = A

mátrixegyenletnek. Egyrészt rang(A) = n (és a 7.50 Tétel) miatt e mátrixegyenletnek
1 megoldása van: tetszőleges j-re X∗j csak az Ay = A∗j lineáris egyenletrendszer
egyetlen megoldása lehet. Másrészt, AIn = A miatt (∗)-nak X = In megoldása,
ezért Y A = In.

7.54. Defińıció (Lineáris leképezés). Legyenek V , W vektorterek K felett.
φ : V → W vektortér homomorfizmus (= lineáris leképezés), ha ∀u, v ∈ V , c ∈ K:

φ(u+ v) = φ(u) + φ(v);

φ(cu) = cφ(u).

V W

u

v

u+ v φ(u)

φ(v)

φ(u+ v)

Lineáris leképezés: φ(u+ v) = φ(u) + φ(v).

Lineáris leképezésekre könnyű példát adni: legyen A ∈ Km×n rögźıtett mátrix.
Könnyen ellenőŕızhető, hogy ekkor a φ : Kn → Km, φ(x) = Ax függvény lineáris
leképezés lesz (valójában ezt az ellenőrzést elvégeztük már a 7.31 Megjegyzésben
is). A következő tétel szerint véges dimenziós esetben nincs is másfajta lineáris
leképezés: mindegyik mátrixszorzásból származtatható!

7.55. Tétel (Lineáris leképezések mátrixreprezentációja).

1. Ha f : Kn → Km lineáris, akkor ∃A ∈ Km×n: ∀x ∈ Kn: f(x) = Ax.
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2. (Elő́ırhatósági-tétel) Tetszőleges w1, . . . , wn ∈ Km-re ∃ lineáris f : f(e1) = w1,
. . . , f(en) = wn.

3. Ha V véges dimenziós vektortér K felett, akkor van olyan n ∈ N, hogy V
izomorf Kn-el.

(1)-ben valójában pontosan 1 ilyen A mátrix van, (2)-ben valójában pontosan 1 ilyen
f függvény van. Az egyértelműség - egyébként rövid - bizonýıtásait a vizsgára nem
kell tudni.

Bizonýıtás. (1) Az A mátrix oszlopvektorai legyenek az f(e1), . . . , f(en) oszlopvek-
torok:

A = [f(e1) | f(e2) | · · · | f(en)] ∈ Km×n.

Ekkor ∀x =

x1...
xn

 ∈ Kn:

f(x) = f

(
n∑

i=1

xiei

)
=

n∑
i=1

xif(ei) = Ax.

(2) Legyen A = [w1 | w2 | · · · | wn] ∈ Km×n (oszlopok). Definiáljuk az f függvényt
ı́gy: f(x) = Ax, ez jó.

(3) Mivel V véges dimenziós, van benne egy {b1, . . . , bn} véges bázis. ∀v ∈ V -hez
∃!λ1, . . . , λn ∈ K, hogy

v =
n∑

i=1

λibi.

[λ1, . . . , λn] koordinátavektora v-nek {b1, . . . , bn}-re. Definiáljuk φ-t ı́gy:

φ : V → Kn, φ(v) = [λ1, . . . , λn] (v koordinátái {b1, . . . , bn}-ben).

Könnyen ellenőŕızhető, hogy φ lineáris leképezés. Végül φ bijekció mert V min-
den elemének pontosan 1 koordináta-vektora van és Kn tetszőleges [λ1, . . . , λn] ele-
me koordináta-vektora valamelyik V -beli vektornak (konkrétan a

∑n
k=1 λkbk vektor-

nak).

7.56. Megjegyzés.

1. (1), (3) végtelen dimenzióban nem marad érvényben, de (2) igen.
2. (1)-ben a konstrukció bázisfüggő (ha a sztenderd bázis helyett más bázist

választunk, akkor más mátrixot kapunk, erre még vissza fogunk térni a 9.6
Tételben).
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7.57. Példa (Forgatás R2-ben).
Legyen V = W = R2, f : V → W α szögű (pozit́ıv irányú) forgatás.

f mátrixa a sztenderd bázisban:

A =

(
cosα − sinα
sinα cosα

)
(Az oszlopok a sztenderd bázisvektorok elfogatottjainak koordinátái a sztenderd bázisban.)

7.58. Példa (Polinomok terében).
Legyen V = R[X] feletti legfeljebb 2-edfokú polinomok vektortere.

f : V → V ami a polinomokat (x − 1) hatványai szerint rendezi át: ha ax2 +
bx+ c = a′(x− 1)2 + b′(x− 1) + c′, akkor f az [a, b, c] vektort [a′, b′, c′]-re képezi. Ez
az f lineáris.

f mátrixa a sztenderd {x2, x, 1} bázisban:

f(x2) = x2 = 1 · (x− 1)2 + 2 · (x− 1) + 1;

f(x) = x = 0 · (x− 1)2 + 1 · (x− 1) + 1;

f(1) = 1 = 0 · (x− 1)2 + 0 · (x− 1) + 1.

Tehát:

A =

1 0 0
2 1 0
1 1 1

 .
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8. Determinánsok

Permutációk inverzióit bevezettük már a 7.3 Defińıcióban. Ebben a részben
intenźıven használni fogjuk az inverziók további tulajdonságait, az egyik ilyen fontos
tulajdonsággal kezdünk.

8.1. Tétel. Ha π ∈ Sym([n]) az [n] egy permutációja, i < j ≤ n, akkor π-ben az i.
és j. tagot felcserélve az inverziószám paritása megváltozik.

Bizonýıtás. Legyen:

π : π(1), π(2), . . . , π(i), . . . , π(j), . . . , π(n)

π′ : π(1), π(2), . . . , π(j), . . . , π(i), . . . , π(n).

Először tegyük fel, hogy j = i+ 1. Ekkor

inv(π′) − inv(π) = ±1,

mert π(i) és π(i+1) felcserélésekor π(i) és π(i+1) egymással való inverziós viszonya
megváltozik, de sem π(i), sem π(i+1) inverziós viszonya a permutáció semelyik más
tagjával nem változik meg.

Ha i, j tetszőleges (nem feltétlenül egymás utáni) számok, akkor (a szomszédos
elemek felcserélésével)

� Mozgassuk π(i)-t π(j)-ig: ez j − i− 1 lépés;
� Cseréljük fel π(i)-t π(j)-vel; ez 1 lépés;
� Mozgassuk vissza π(j)-t π(i) helyére: ez j − i− 1 lépés.

Összesen 2(j − i− 1) + 1-szer változik a paritás, ez páratlan szám.

8.2. Megjegyzés. Ha i ̸= j, akkor [i, j] ∈ Sym([n]) az a permutáció, amely i-t és
j-t felcseréli, a többi elemet változatlanul hagyja:(

1 2 . . . i− 1 i i+ 1 . . . j − 1 j j + 1 . . . n
1 2 . . . i− 1 j i+ 1 . . . j − 1 i j + 1 . . . n

)
.

A 2 elemet felcserélő, többi elemet fixen hagyó permutációkat transzpoźıcióknak
is nevezik. A 8.1 Tételben azt láttuk be, hogy ha π ∈ Sym([n]), akkor inv(π) és
inv(π◦ [i, j]) eltérő paritású, itt π◦ [i, j] az a permutáció, amit a függvénykompoźıció
ad: π-ben π(i)-t és π(j)-t felcseréljük.

8.1. A determináns geometriai jelentése, létezése, egyértelműsége

Vektortereinkben szeretnénk bizonyos halmazok térfogatát értelmezni, vagyis
szeretnénk olyan függvényeket megadni, melyek vektortereink (bizonyos) részhal-
mazaihoz az alaptest elemeit rendeli – amennyire csak lehet – hasonlóan ahhoz,
ahogy pl. R2 illetve R3 (egyes) részhalmazainak területét, térfogatát értelmeztük.
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A térfogat-fogalom ilyen általánośıtásának szándéka a következő kih́ıvásokat ve-
ti fel: tetszőleges test felett szeretnénk dolgozni, eredményeink olyan testekben is
érvényesek lesznek, amiket jelenleg el sem b́ırunk képzelni. Emiatt mégkevésbé lehet
intúıciónk arról, hogy (jelenlegi tudásunk alapján) ismeretlen testek feletti vektor-
terekben hogyan lenne érdemes definiálni a térfogatot. De hasonló nehézségekbe
ütközünk akkor, ha egy jól ismert test (pl. R) felett egy – mondjuk – 17-dimenziós
vektortérben próbáljuk a térfogatot értelmezni. Ha a vektortér dimenziója elég
nagy, még jól ismert test feletti, véges dimenziós vektorterek esetében sincs jól mo-
tiválható elképzelésünk a sokdimenziós halmazok térfogatairól, mely kizárólag a
vektorterek algebrai szerkezetére alapoz. További probléma, hogy azok a halma-
zok, melyeknek térfogatot szeretnénk tulajdońıtani, meglehetősen bonyolult szer-
kezetűek lehetnek (sokdimenziós görbe felületek határolhatják őket, de akár még
ennél is szabálytalanabbak lehetnek). Ezért a következő szempontok szerint egy
picit kevésbé amb́ıciózus célt tűzünk ki:

� ebben a kurzusban végig véges dimenziós (de tetszőleges, (0 karakterisztikájú)
test feletti) vektorterekben fogunk dolgozni;

� csak szögletes testek térfogatát akarjuk értelmezni, ezek közül is csak a para-
lelepipedonokét (ezek defińıciója alább lesz);

� ugyanakkor térfogat-fogalmunk előjeles lesz, ez később hasznosnak fog bizo-
nyulni (pl. egyes alkalmazásokban, ha az a kérdés, hogy adott felületen
időegység alatt mennyi folyadék áramlik át, akkor a térfogat előjelébe kódoltan
meg fogjuk tudni különböztetni, hogy a kakaó felénk áramlik-e, vagy a másik
irányban);

� intúıció hiányában a térfogatot axiomatikusan próbáljuk definiálni, valahogy
ı́gy: azt ugyan (jelenleg még) nem tudjuk, mi a 17-dimenziós paralelepipedo-
nok előjeles térfogata, de bármi is legyen ez, azt azért térfogat-fogalmunknak
tudnia kell, hogy ... és itt felsorolunk néhány plauzibilis tulajdonságot, amit
minden

”
valamirevaló” térfogat-fogalomnak tudnia kellene. Ezek mind könnyen

motiválható, szemléletünk számára természetes tulajdonságok lesznek.
� Végül a 8.5 Tételben igazoljuk majd, hogy pontosan 1 darab olyan függvény

van, mely sokdimenziós paralelepipedonokhoz az alaptest elemeit rendeli úgy,
hogy az előző pontban emĺıtett elő́ırásaink teljesülnek. Ezek után azt mond-
hatjuk majd, hogy a sokdimenziós (előjeles) térfogat az az egyetlen függvény,
amely eleget tesz a térfogat-fogalommal kapcsolatos természetes elő́ırásainknak.
Ezt követően módszereket adunk majd térfogat-függvényünk kiszámı́tásához.

A sokdimenziós (de véges-dimenziós) paralelepipedonok defińıciójával folytatjuk.

8.3. Defińıció (Paralelepipedonok). Legyen K tetszőleges test, n ∈ N+. Az a1, ..., an ∈
Kn vektorok által kifesźıtett n-dimenziós paralelepipedon csúcsai:

ε1a1 + ε2a2 + · · · + εnan,

ahol ε1, . . . , εn ∈ {0, 1}.
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8.4. Defińıció (Determináns függvény). D : (Kn)n → K determináns függvény, ha
∀a1, . . . , an ∈ Kn (sorvektorok), ∀c ∈ K, ∀b ∈ Kn:

1. D(a1, . . . , cai, . . . , an) = cD(a1, . . . , ai, . . . , an);
2. D(a1, . . . , ai + b, . . . , an) = D(a1, . . . , ai, . . . , an) +D(a1, . . . , b, . . . , an);
3. Ha i ̸= j, akkor D(a1, . . . , ai . . . aj, . . . an) = −D(a1, . . . , aj . . . ai, . . . an);
4. D(In) = 1 ahol In az n× n-es egységmátrix.

A determináns függvény adja majd a sokdimenziós előjeles térfogat fogalmát.
Mielőtt folytatnánk, végigmegyünk az előző defińıcióban szereplő pontokon, és össze-
vetjük a térfogat-fogalommal kapcsolatos intúıciónkkal.

� Az (1) pont szerint, ha egy paralelepipedon egyetlen élét c-szeresére nyújtjuk,
de a többi élét változatlanul hagyjuk, akkor a térfogat c-szeresre változik. Ez
elég plauzibilis: ha pl. két egybevágó kockát egymásra teszünk úgy, hogy egy-
egy lapjuk pontosan fedje egymást, akkor egyrészt olyan téglatestet kapunk,
melynek egyik éle a kockák élhosszának duplája lesz, többi éle változatlan ma-
rad; másrészt a 2 kockából álló téglatest térfogata valóban duplája az eredeti
kockák térfogatának.

� A (2) pont is hasonlóan intuit́ıv, javaslom, hogy rajzold le 2-dimenzióban.
� (3) a térfogat előjelével van kapcsolatban. A paralelepipedonok iránýıtását

azzal lehet kódolni, hogy milyen sorrendben adjuk meg az oldaléleit.
� Végül (4)-nek csak skálázási,

”
mértékegység-választási” szerepe van: azt rögźıt́ı,

hogy az egységnyi élhosszúságú kocka térfogata egységnyi.

8.5. Tétel (Determináns létezése és egyértelműsége). Véges n-re pontosan 1 db
determináns függvény van.

Bizonýıtás. (1) Unicitás: Tegyük fel, hogy D determináns függvény.
Legyenek a1 . . . an ∈ Kn, vegyük fel ezeket a vektorokat koordinátásan is: ai =∑n

j=1 aijej.
Ekkor:

D(a1, . . . , an) = D

(
n∑

i1=1

a1i1ei1 , . . . ,

n∑
in=1

aninein

)
8.4 (1),(2)

=

n∑
i1=1

· · ·
n∑

in=1

a1i1 · · · aninD(ei1 , . . . , ein) = (∗).

Vizsgáljuk meg az utolsó összegben előforduló D(ei1 , . . . , ein) mennyiségeket.
1. eset: van j ̸= k: ij = ik. Ekkor D(ei1 , . . . , ein)-ben a j-edik és k-adik sort
felcserélve egyrészt nem történik változás (mert eij = eik), másrészt cserekor 8.4 (3)
miatt kifejezésünk előjelet vált. Ez csak úgy lehet, hogy D(ei1 , . . . , ein) = 0. Ezért
(∗)-ban minden olyan összeadandó nulla (tehát elhagyható), melyek az 1. esethez
tartoznak.
2. eset: az i1, i2, . . . , in értékek páronként különbözők, azaz (i1, . . . , in) permutációja
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[n]-nek; jelöljük ezt a permutációt π-vel. Ez azt jelenti, hogy az az F mátrix,
melynek sorai ei1 , ei2 , . . . , ein az egységmátrix sorainak permutálásával áll elő. Az
egységmátrixból F megkapható úgy, hogy az egységmátrixban pontosan annyi sort
cserélünk fel, mint amennyi π inverziószáma4. Ezért ebben a 2. esetben (8.4 (3)-at
és a 8.1 Tételt is figyelembe véve)

D(ei1 , . . . , ein) = (−1)inv(π)D(e1, . . . , en)
8.4 (4)

= (−1)inv(π).

Az előző 2 eset szerint

(∗) =
∑

π∈Sym([n])

(−1)inv(π)a1π(1)a2π(2) · · · anπ(n).

Azt kaptuk, hogy ha létezik egyáltalán D deremináns függvény, akkor az csak

D(a1, . . . , an) =
∑

π∈Sym([n])

(−1)inv(π)a1π(1)a2π(2) · · · anπ(n)

lehet.
(2) Egzisztencia: Legyen

J(a1, . . . an) =
∑

π∈Sym([n])

(−1)inv(π)a1π(1)a2π(2) · · · anπ(n).

Megmutatjuk, hogy ez determináns függvény (azaz teljesülnek rá a 8.4 Defińıcióban
megadott tulajdonságok).

� 8.4 (1) teljesül, mert:

J(a1, . . . , cai, . . . , an) =
∑

π∈Sym([n])

(−1)inv(π)a1π(1) · · · caiπ(i) · · · anπ(n) =

c ·
∑

π∈Sym([n])

(−1)inv(π)a1π(1)a2π(2) · · · anπ(n) = cJ(a1, . . . , ai, . . . , an).

� 8.4 (2) teljesül, mert:

J(a1, . . . , ai+b, . . . , an) =
∑

π∈Sym([n])

(−1)inv(π)a1π(1) · · · (aiπ(i)+bπ(i)) · · · anπ(n) =

∑
π∈Sym([n])

(−1)inv(π)a1π(1) · · · aiπ(i) · · · anπ(n)+
∑

π∈Sym([n])

(−1)inv(π)aπ(1) · · · bπ(i) · · · anπ(n) =

J(a1, . . . , ai, . . . , an) + J(a1, . . . , b, . . . , an).

4Nyilván megkaphatjuk F -t másképp is: pl. először feleslegesen oda-vissza cserélgetjük a so-
rokat, és miután visszakaptuk az egységmátrixot, előálĺıtjuk F -t... De az, hogy páros sok, vagy
páratlan sok csere kellett-e F előálĺıtásához, az minden esetben ugyanúgy lesz.
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� 8.4 (3) teljesül a következők miatt. Ha π ∈ Sym([n]) tetszőleges permutáció,
akkor legyen π′ az a permutáció, melyet π-ből π(i) és π(j) felcserélésével ka-
punk (azaz π′ = π ◦ [i, j]). Figyeljük meg, hogy ekkor ajπ(i)aiπ(j) = aiπ′(i)ajπ′(j).
A 8.1 Tétel szerint π és π′ inverziószáma eltérő paritású. Ezeket fejben tartva
(a legutolsó előtti lépést a számolás után magyarázva):

J(a1, . . . , aj, . . . , ai, . . . , an) =
∑

π∈Sym([n])

(−1)inv(π)a1π(1) · · · ajπ(i) · · · aiπ(j) · · · anπ(n) =

−
∑

π∈Sym([n])

(−1)inv(π
′)a1π(1) · · · ajπ(i) · · · aiπ(j) · · · anπ(n) =

−
∑

π∈Sym([n])

(−1)inv(π
′)a1π′(1) · · · aiπ′(i) · · · ajπ′(j) · · · anπ′(n) =

−
∑

π′∈Sym([n])

(−1)inv(π
′)a1π′(1) · · · aiπ′(i) · · · ajπ′(j) · · · anπ′(n) = −J(a1, . . . , an).

Az utolsó előtti lépésben annyi történt, hogy π helyett π′-re összegeztünk.
Mivel a π 7→ π′ függvény bijekció Sym([n])-ről sajátmagába, ezért a két sorban
a szummák belsejében pontosan ugyanazok az összeadandók jelennek meg,
csak más sorrendben. Ezért az összegük tényleg egyenlő; az utolsó előtti lépés
is helyes.

� 8.4 (4) teljesül, mert:

J(e1, . . . , en) =
∑

π∈Sym([n])

(−1)inv(π)e1π(1) · · · enπ(n).

De tetszőleges i-re az ei egységvektornak csak egyetlen koordinátája (éppen
az i-edik koordinátája) különbözik nullától. Ha tehát π(1) ̸= 1 vagy π(2) ̸= 2
vagy . . . vagy π(n) ̸= n, akkor e1π(1) · · · enπ(n) mindig nulla lesz. Egyetlen
permutáció esetén nem lesz nulla ez a szorzat: akkor, ha π(1) = 1, π(2) =
2, . . . , π(n) = n, és ekkor a kérdéses szorzat minden tényezője 1 lesz. Ezért
J(e1, . . . , en) = 1.

8.6. Defińıció (Determináns). Adott n ∈ N-re a 8.5 Tétel szerint egyértelműen
létező determináns függvényt det-tel jelöljük:

det(A) =
∑

π∈Sym([n])

(−1)inv(π)a1π(1)a2π(2) · · · anπ(n).
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8.2. A determináns kiszámı́tása

8.7. Tétel. ∀A ∈ Kn×n: det(A) = det(AT ).

Bizonýıtás. Vegyük észre: ha π ∈ Sym([n]) egy permutáció, akkor

inv(π) = inv(π−1)

mert tetszőleges i, j ≤ n-re

i, j inverzióban van π-ben, ⇔
i < j, de π(i) > π(j) ⇔
π(j) < π(i), de π−1(π(i)) < π−1(π(j)), ⇔
π(j), π(i) inverzióban van π−1-ben.

Legyen A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

. Figyeljük meg, hogy tetszőleges π ∈ Sym([n])-re

a1π(1)a2π(2) · · · anπ(n) = aπ−1(1)1aπ−1(2)2 · · · aπ−1(n)n

(hiszen ugyanazokat a tényezőket szorozzuk, csak más sorrendben). Ekkor

det(A) =
∑

π∈Sym([n]

(−1)inv(π)a1π(1)a2π(2) · · · anπ(n) =

∑
π∈Sym([n]

(−1)inv(π
−1)aπ−1(1)1aπ−1(2)2 · · · aπ−1(n)n =

∑
π−1∈Sym([n]

(−1)inv(π
−1)aπ(1)1aπ(2)2 · · · aπ(n)n = det(AT ).

Ha n értéke kicsi, akkor [n] összes permutációit könnyen át tudjuk tekinte-
ni. Ennek seǵıtségével n kicsi értékeire képleteket fogunk megadni a determináns
kiszámı́tására.

� n = 1: det(a) = a, hiszen [1]-nek egyetlen permutációja van, melyben nincs
inverzió. Ennek megfelelően, a 8.6 Defińıcióban szereplő szumma 1-tagú. A
det(a) = a képlet összhangban van a geometriai szemléletünkkel is: az 1-
dimenziós paralelepipedonok szakaszok; oldalélük hossza (vagyis a) egyúttal
az 1-dimenziós térfogatuk is.

� n = 2: det

(
a b
c d

)
= ad − bc, hiszen [2]-nek két permutációja van: (0, 1) és

(1, 0). Az elsőben nincs inverzió, a második inverziószáma pedig 1. Ezért, az
n = 2 esetben a 8.6 Defińıcióban szereplő szumma két összeadandóból áll, és
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értéke ad− bc. A 2025 nov. 21.-i előadáson mutattam geometriai bizonýıtást
arra, hogy a śıkon az (origóból induló) (a, b) és (c, d) pontokba mutató vektorok
által kifesźıtett parallelogramma területe (azaz 2-dimenziós térfogata) valóban
ad− bc (erről a hallgatóktól elektronikus anyagot nem kaptam; nem nagy baj,
a vizsgára e területképlet geometriai biznýıtását úgysem kell tudni).

A Sarrus-szabály egy módszer 3 × 3-as mátrixok determinánsának kiszámı́tására.
Ez is azon múlik, hogy a [3] halmaz 6 darab permutációját még mindig viszonylag
könnyű áttekinteni. A Sarrus-szabály 3 × 3-asnál nagyobb mátrixokra nem
marad érvényben, illetve hasonló, könnyen megjegyezhető, egyszerű módszerek
nincsenek. Tehát a Sarrus-szabály:

1. Írjuk le a mátrixot, majd az első két oszlopot ismételjük meg jobb oldalon;
2. A pozit́ıv tagok a főátlóval párhuzamosan balról jobbra haladó nyilak mentén;
3. A negat́ıv tagok a mellékátlóval párhuzamosan jobbról balra haladó nyilak

mentén.

det(A) = (a11a22a33 + a12a23a31 + a13a21a32) − (a13a22a31 + a11a23a32 + a12a21a33).

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

A =

+ + +- - -

8.8. Példa. Számı́tsuk ki a következő mátrix determinánsát:

A =

2 1 3
4 0 5
1 2 1

 .

2 1 3 2 1

4 0 5 4 0

1 2 1 1 2

A =

det(A) = (2 · 0 · 1 + 1 · 5 · 1 + 3 · 4 · 2) − (3 · 0 · 1 + 2 · 5 · 2 + 1 · 4 · 1)

= (0 + 5 + 24) − (0 + 20 + 4) = 29 − 24 = 5.
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Sorátalaḱıtások és determináns

3 × 3-asnál nagyobb mátrixok determinánsait úgy is meghatározhatjuk, hogy
speciális alakúra hozzuk őket. Az átalaḱıtások (pl. elemi sor- és oszlopátalaḱıtások)
során kontrolláljuk, hogyan változik a determináns, és bizonyos speciális alakú (pl.
az alább definiált alsó- vagy felső-háromszög) mátrixok determinánsait könnyen meg
fogjuk tudni határozni.

8.9. Tétel (Elemi sorátalaḱıtások hatása).

1. Ha az i-edik sort c-vel szorozzuk: a determináns c-szeresére változik;
2. Ha az i-edik és j-edik sort felcseréljük: a determináns −1-szeresére változik;
3. Ha van 2 egyenlő sor, akkor a determináns értéke 0;
4. Ha egyik sor c-szeresét a másikhoz adjuk: a determináns értéke nem változik.

Bizonýıtás. (1) és (2) azonnal következik a 8.4 Defińıcióból, azért illesztettük ezeket
is álĺıtásaink közé, hogy minden elemi sorátalaḱıtás hatását megadjuk.

(3)-at (picit kevésbé általános formában) megfigyeltük már a 8.5 Tétel unicitásra
vonatkozó részének 1. esetében. A teljesség (és a teljes áltánosság) kedvéért meg-
ismételjük ugyanazt a gondolatot: tegyük fel, hogy valamilyen i ̸= j-re mátrixunk
i-edik és j-edik sora egyenlő. Ekkor egyrészt, az i-edik és j-edik sort felcserélve nem
történik változás, másrészt 8.4 (3) miatt a determináns értéke −1-szeresére változik.
Mátrixunk determinánsa tehát egyenlő sajátmaga (−1)-szeresével; ez csak úgy lehet,
ha a determináns érétke 0.

(4): det



...
ai + caj

...
aj
...


8.4 (1),(2)

= det



...
ai
...
aj
...

+ c det



...
aj
...
aj
...


(3)
= det



...
ai
...
aj
...

+ 0.

8.10. Megjegyzés. Az elemi oszlopműveletekre ugyanúgy változik a determináns,
mint a megfelelő sorműveletekre, mert a 8.7 Tétel szerint tetszőleges (négyzetes)
mátrixnak és transzponáltjának ugyanannyi a determinánsa.

8.11. Defińıció (Háromszögmátrix).
A ∈ Kn×n felső háromszögmátrix, ha a főátló alatti elemek 0-k.
Hasonlóan, A alsó háromszögmátrix, ha a főátló feletti elemek 0-k.

8.12. Tétel (Háromszögmátrix determinánsa). Ha A ∈ Kn×n felső (vagy alsó)
háromszögmátrix, akkor a determinánsa a főátló elemeinek szorzata:

det(A) = a11a22 · · · ann.

Bizonýıtás. Jelöljük id-el az (1, 2, 3, . . . , n) permutációt (id az
”
identitás”-t rövid́ıti

arra utalva, hogy ez a permutáció minden elemet fixen hagy (nem csinál semmit)).
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Felső háromszögre: ha π ∈ Sym([n]), π ̸= id, akkor van i, melyre π(i) < i. Egy
ilyen i-re aiπ(i) = 0, mert A felső háromszög. Egyrészt

det(A) =
∑

π∈Sym([n])

(−1)inv(π)a1π(1)a2π(2) · · · anπ(n),

másrészt a bizonýıtás eleje szerint, ha π ̸= id, akkor az a1π(1)a2π(2) · · · anπ(n) szor-
zatban valamelyik tényező nulla, ezért a szorzat is nulla. Tehát det(A) szummás
alakjában mindegyik, π ̸= id-hez tartozó összeadandó nulla, ı́gy csak π = id marad:
det(A) = a11a22 · · · ann.

8.13. Példa.

det

2 1 3
0 4 5
0 0 6

 = 2 · 4 · 6 = 48.

8.3. A determináns kiszámı́tása kifejtéssel

8.14. Defińıció (Aldetermináns). Ha A ∈ Kn×n és 1 ≤ i, j ≤ n, akkor Aij ∈
K(n−1)×(n−1) az a mátrix, melyet A-ból úgy kapunk, hogy A-ból kitöröljük az i-edik
sort és j-edik oszlopot.

8.15. Defińıció (Kifejtések).

� A i-edik sor szerinti kifejtése:

SKi(A) =
n∑

j=1

(−1)i+jaij det(Aij);

� A j-edik oszlop szerinti kifejtése:

OKj(A) =
n∑

i=1

(−1)i+jaij det(Aij).

Az előbbi összegekben megjelenő (−1)i+j előjeleket a sakktábla-szabály seǵıt
memorizálni: a mátrix első sorának első elemét pozit́ıv előjellel látjuk el, a többi
elemet pedig úgy, hogy előjele különbözzön a tőle balra, illetve a felette elhelyezkedő
elemhez tárśıtott előjeltől.

8.16. Tétel (Kifejtési tétel). ∀i, j: det(A) = SKi(A) = OKj(A).

Bizonýıtás. SKi(A) = det(A) a következők miatt: A i-edik sorát feĺırhatjuk
∑n

j=1 aijej
alakban, ahol aijej = [0, . . . , 0, aij, 0, . . . , 0], tehát a jobboldali összeadandó vektorok
mind olyanok, hogy legfeljebb 1 koordinátájuk nem nulla. Ezt figyelembe véve

det(A)
8.4 (2)

= det

a11 · · · a1n
...

. . .
...

an1 · · · ann

 = det


a11 · · · a1n
...

. . .
...

ai1 0 · · · 0 0
...

. . .
...

an1 · · · ann

+· · ·+det


a11 · · · a1n
...

. . .
...

0 0 · · · 0 ain
...

. . .
...

an1 · · · ann


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ezért elég belátni, hogy tetszőleges j-re

det


a11 · · · a1j · · · a1n
...

. . .
...

0 · · · aij · · · 0
...

. . .
...

an1 · · · anj · · · ann

 = (−1)i+jaij det(Aij).

Az i-edik sort mozgassuk az 1. sorba: ez (i− 1) db sorcsere, ezzel a determináns
értéke (−1)i−1-szeresére változik. Ezután a j-edik oszlopot mozgassuk az 1. oszlop-
ba: ez újabb (j − 1) db oszlopcsere, ezzel a determináns előjele tovább változik az
előző (−1)j−1-szeresére, az előjel összesen (−1)i+j−2 = (−1)i+j-szeresére változott.
A sor- és oszlopcserékkel azt kaptuk, hogy

det


a11 · · · a1j · · · a1n
...

. . .
...

0 · · · aij · · · 0
...

. . .
...

an1 · · · anj · · · ann

 = (−1)i+j det


aij 0 · · · 0
a1j a11 · · · a1n
...

. . .
...

...
. . .

...
anj · · · · · · ann

 ,

az előző sor jobboldalán álló mátrixot jelöljük B-vel. B jobb alsó (n−1)×(n−1)-es
része épp Aij. Ekkor

det(B) =
∑

π∈Sym([n])

(−1)inv(π)b1π(1) · · · bnπ(n).

De B első sorában az első elem kivételével minden elem 0, ezért az előbbi összegben
minden olyan összeadandó 0 lesz, melyben π(1) ̸= 1. Ezért elég az (n − 1)-elemű
{2, . . . , n} halmaz permutációira összegezni:

det(B) = aij
∑

π∈Sym([n]−{1})

(−1)inv(π)b2π(2) · · · bnπ(n) = aij det(Aij),

és emiatt valóban

det(A) =
n∑

j=1

(−1)i+jaij det(Aij).

Az OKj(A) = det(A) álĺıtást hasonlóan, vagy akár a transzponált determinánsára
vonatkozó 8.7 Tétellel lehet elintézni.
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9. További tudnivalók, alkalmazások

9.1. Rang, inverz, determináns néhány tulajdonsága

9.1. Tétel (Rang és mátrixműveletek). Legyenek A,B ∈ Km×n.

1. rang(A+B) ≤ rang(A) + rang(B);
2. rang(AB) ≤ min{rang(A), rang(B)}.

Bizonýıtás. (1): Legyen {u1, . . . , urang(A)} bázis O(A)-ban és {v1, . . . , vrang(B)} bázis
O(B)-ben. Ekkor {u1, . . . , arang(A), v1, . . . , vrang(B)} generátorrendszere O(A + B)-
nek, ı́gy:

rang(A+B) = dimO(A+B) ≤ rang(A) + rang(B).

(2): AB j-edik oszlopa:

(AB)∗j =
n∑

k=1

bkjA∗k.

Tehát AB oszlopai A oszlopainak lineáris kombinációi, ezért O(AB) ⊆ O(A) emiatt

rang(AB) = dimO(AB) ≤ dimO(A) = rang(A).

Hasonlóan: AB sorai B sorainak lineáris kombinációi, ezért S(AB) ⊆ S(B) és

rang(AB) = dimS(AB) ≤ dimS(B) = rang(B).

Inverz mátrix tulajdonságai

9.2. Tétel. Legyenek A,B,C,D ∈ Kn×n, és tegyük fel, hogy A és B invertálható
mátrixok. Ekkor:

1. (A−1)−1 = A, továbbá (CT )T = C;
2. (AB)−1 = B−1A−1, továbbá (CD)T = DTCT ;
3. Minden k ∈ N esetén (Ak)−1 = (A−1)k, továbbá (Ck)T = (CT )k.

Bizonýıtás.

1. Mivel
A · A−1 = A−1 · A = In,

ezért A−1 inverze éppen A, azaz (A−1)−1 = A. A transzponálás defińıciójából
közvetlenül következik, hogy (CT )T = C.

2. Vizsgáljuk:
(AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = In.

Hasonlóan:

(B−1A−1)(AB) = B−1(A−1A)B = B−1B = In.
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Tehát B−1A−1 valóban az AB inverze, azaz (AB)−1 = B−1A−1.
Most legyen i, j ≤ n tetszőleges. Ekkor

((CD)T )ij = (CD)ji =
n∑

k=1

CjkDki.

Másrészt:

(DTCT )ij =
n∑

k=1

(DT )ik(CT )kj =
n∑

k=1

DkiCjk.

A két összeg megegyezik, tehát (CD)T = DTCT .
3. Indukcióval bizonýıtjuk (Ak)−1 = (A−1)k-t.

Alaplépés: k = 1 esetén triviális.
Indukciós lépés: Tegyük fel, hogy (Ak)−1 = (A−1)k. Ekkor:

(Ak+1)−1 = (AkA)−1 = A−1(Ak)−1 = A−1(A−1)k = (A−1)k+1.

A transzponálásra vonatkozó álĺıtás hasonló módon igazolható.

Négyzetes mátrixok invertálhatóságának ekvivalens

feltételei

9.3. Tétel. A ∈ Kn×n esetén ekvivalensek:

1. rang(A) = n (maximális rang);
2. dim(O(A)) = n (oszloptér teljes dimenziós);
3. dim(S(A)) = n (sortér teljes dimenziós);
4. A invertálható;
5. det(A) ̸= 0.

Bizonýıtás. (1) ⇔ (2) ⇔ (3): A 7.47 Defińıció szerint rang(A) = dim(O(A)) és a
7.46 Tétel szerint dim(O(A)) = dim(S(A)).

(1) ⇔ (4): Ez a 7.53 Tétel (egy részének) átfogalmazása.

(4) ⇒ (5): Ha A invertálható, akkor A−1A = In, ı́gy a Determinánsok szorzástétele
(alábbi 9.4 Tétel) szerint:

1 = det(In) = det(A−1A) = det(A−1) det(A) ⇒ det(A) ̸= 0.

(5) ⇒ (1): Hozzuk A-t redukált lépcsős alakra elemi sorátalaḱıtásokkal. A 8.9
Tétel szerint mindegyik elemi sorátalaḱıtás nemnulla determinánsú mátrixból nem-
nulla determinánsú mátrixot csinál. Ezért, a redukált lépcsős alakot L-el jelölve,
ha det(A) ̸= 0, akkor det(L) ̸= 0, tehát L főátlójában nincs 0 elem. Így L minden
oszlopában van vezérelem, ezért (a 7.43 Tétel alapján) rang(A) = n.
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Determinánsok szorzástétele

9.4. Tétel (Determinánsok szorzástétele). A,B ∈ Kn×n esetén det(AB) = det(A) det(B).

Bizonýıtás. 1. eset: det(A) = 0. Ekkor rang(A) < n, ezért a 9.1 Tétel miatt
rang(AB) ≤ rang(A) < n, tehát pl. a 9.3 Tétel miatt det(AB) = 0.
2. eset: det(A) ̸= 0. Tekintsük a következő függvényt:

f(B) =
det(AB)

det(A)
.

Ellenőrizhető, hogy f determináns függvény (azaz teljesülnek rá a 8.4 Defińıció

kitételei). Pl. f(In) = det(A)
det(A)

= 1, stb. Mivel a 8.5 Tétel szerint csak egy determináns

függvény van Kn×n-en, ezért f(B) = det(B). Tehát:

det(AB)

det(A)
= det(B) ⇒ det(AB) = det(A) det(B).

9.2. Bázistranszformáció

Ebben az alfejezetben azt vizsgáljuk, hogy ha egy (véges dimenziós) vektortérben
adott két bázis, és ismerjük egy vektor koordinátáit az egyik bázisban, akkor ho-
gyan határozhatjuk meg ugyanannak a vektornak a koordinátáit a másik bázisban,
vagyis hogyan térhetünk át egyik bázisból a másikba. Könnyű meggondolni (de az
alábbi, 9.5 Tételben mindjárt be is látjuk), hogy az a függvény, amely a vektorok
egyik bázisban adott koordinátáihoz a másik bázisbeli koordinátáit rendeli, lineáris.
Ezért a koordináták bázisok közti átszámolása mátrixszorzással megoldható; a meg-
felelő mátrixot meg is adjuk a 9.5 tételben.

9.5. Tétel. Mint eddig is, legyen V vektortér a K test felett. Tegyük fel, hogy
B = {b1, . . . , bn} ⊆ V és D = {d1, . . . , dn} ⊆ V bázisok V -ben.

1. A B-ről D-re való áttérés mátrixa

TD←B =
(
[b1]D . . . [bn]D

)
,

azaz az oszlopvektorok a bj vektorok D-beli koordinátái. Ez azt jelenti, hogy
Minden v ∈ V esetén:

[v]D = TD←B [v]B.

2. T−1D←B = TB←D.

Bizonýıtás.
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1. Legyen

v = [v1 . . . vn]B, TD←B =

t11 . . . t1n
...

...
tn1 . . . tnn

 .

Ekkor a mátrix j-edik oszlopa:

(TD←B)∗j =

t1j...
tnj

 = [bj]D.

Mivel

v =
n∑

j=1

vjbj és bj =
n∑

k=1

tkjdk,

ezért

v =
n∑

j=1

vj

n∑
k=1

tkjdk =
n∑

k=1

(
n∑

j=1

vjtkj

)
dk.

Így

[v]D =

t11 . . . t1n
...

...
tn1 . . . tnn


v1...
vn

 = TD←B [v]B.

2. Elég belátni, hogy
TB←D TD←B = In.

Legyen E = {e1, . . . , en} a sztenderd bázis, ahol

ej =


0
...
1
...
0

 .

Ekkor:

(TB←D TD←B)ej = TB←D(TD←Bej) = TB←D[bj]D = [bj]B = ej.

Mivel ez minden j-re teljesül, ezért

TB←D TD←B = In,

tehát T−1D←B = TB←D.
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9.6. Tétel (Lineáris leképezés mátrixának megváltozása bázisváltáskor).
Legyen φ : V → V lineáris leképezés, és A ∈ Kn×n a φ mátrixa a sztenderd bázisban.
Legyen B = {b1, . . . , bn} ⊆ V egy bázis, E = {e1, . . . , en} a sztenderd bázis, és
T = TE←B. Ekkor minden v ∈ V esetén:

[φ(v)]B = (T−1AT ) [v]B.

Bizonýıtás.

[T−1AT ] [v]B = T−1A[T [v]B] = T−1A[v]E = T−1[φ(v)]E = [φ(v)]B.

9.7. Példa. Legyen B = {b1,b2} egy bázis R2-ben, ahol b1 =

[
1
0

]
és b2 =

[
1
1

]
.

Adjuk meg a TB←E mátrixot, ahol E a sztenderd bázis.

1. Megoldás. A bázisváltás mátrix oszlopai a régi bázis (E) vektorainak az új bázis
(B) szerinti koordinátái.

e1 = 1 · b1 + 0 · b2 ⇒ [e1]B =

[
1
0

]
,

e2 =

[
0
1

]
= (−1) ·

[
1
0

]
+ 1 ·

[
1
1

]
= (−1)b1 + 1b2 ⇒ [e2]B =

[
−1
1

]
.

Tehát:

TB←E =
[
[e1]B [e2]B

]
=

[
1 −1
0 1

]
.

9.3. Polinom-interpoláció

9.8. Defińıció (Interpolációs feladat). Adottak a páronként különböző alappontok:
a0, a1, . . . , an ∈ K és a hozzájuk tartozó értékek: b0, b1, . . . , bn ∈ K. Az interpolációs
feladat: Keressünk olyan f ∈ K[x] polinomot, amelyre:

f(a0) = b0, f(a1) = b1, . . . , f(an) = bn.

9.9. Defińıció (Vandermonde-mátrix). Legyenek a0, a1, . . . , an ∈ K skalárok. A
hozzájuk tartozó Vandermonde-mátrix:

V (a0, a1, . . . , an) =


1 a0 a20 . . . an0
1 a1 a21 . . . an1
...

...
...

. . .
...

1 an a2n . . . ann

 ∈ K(n+1)×(n+1).

9.10. Tétel (Vandermonde-mátrix determinánsa).
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1. A V (a0, a1, . . . , an) Vandermonde-mátrix determinánsa akkor és csak akkor 0,
ha generáló-elemei között vannak egyenlők (azaz van i ̸= j : ai = aj).

2. Sőt, a Vandermonde-mátrix determinánsára érvényes:

det
(
V (a0, a1, . . . , an)

)
=

∏
0≤i<j≤n

(aj − ai).

Ebből is adódik: det(V (a0, a1, . . . , an)) = 0 pontosan akkor, ha létezik i ̸= j
indexpár úgy, hogy ai = aj.

Előadáson én 1.-et bizonýıtottam be (aminek van egy viszonylag rövid és csinos
bizonýıtása), 2.-t a 12. heti gyakorlat 1. feladataként tűztem ki. A hallgatók által
küldött anyagban ki volt mondva 2. is, ezért benne hagytam. Vizsgán elég 1.-et
tudni...

Bizonýıtás. (1) rövid bizonýıtása a következő. ⇐: ha valamely i ̸= j-re ai = aj,
akkor V (a0, a1, . . . , an)-nak van két egyenlő sora, ezért det

(
V (a0, a1, . . . , an)

)
= 0

(pl. a 8.9 Tétel 3. pontja miatt).

⇒: Tegyük fel: det
(
V (a0, a1, . . . , an)

)
= 0. Ekkor a 9.3 Tétel miatt V (a0, a1, . . . , an)

oszlopai lineárisan összefüggők: van nem csupa-nulla λ0, . . . λn ∈ K:

(∗) 0 = λ0


a00
a01
...
a0n

+ λ1


a10
a11
...
a1n

+ · · ·λn


an0
an1
...
ann

 .

Legyen f(x) = λ0 + λ0x + . . . λnx
n, ez nem a konstans-0 polinom, mert valamelyik

λk ̸= 0. Továbbá, (∗) első sora szerint a0 gyöke az f polinomnak, (∗) második sora
szerint a1 is gyöke f -nek, . . . (∗) utolsó sora szerint an is gyöke f -nek. Ez összesen
összesen n+1 db gyök, de f legfeljebb n-edfokú. Mivel a 6.21 Következmény szerint
egy legfeljebb n-edfokú polinomnak legfeljebb n különböző gyöke lehet, ezért az
a0, a1, . . . an gyökök között vannak egyenlők.

Lagrange-interpoláció

9.11. Tétel (Lagrange Interpolációs Tétele). Ha az (a0, . . . , an) alappontok páronként
különbözők, akkor pontosan 1 darab n-edfokú f ∈ K[x] van, amely megoldja az in-
terpolációs feladatot.

Bizonýıtás. Legyen adott még b0, b1, . . . , bn ∈ K, olyan f polinomot kell találnunk,
melyre f(a0) = b0, . . . f(an) = bn. Vegyük fel f -et határozatlan (egyelőre ismeretlen)
együtthatókkal:

f(x) = c0 + c1x+ · · · + cnx
n.
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Mivel

f(a0) = b0 ⇔ c0 + c1a0 + · · · + cna
n
0 = b0,

f(a1) = b1 ⇔ c0 + c1a1 + · · · + cna
n
1 = b1,

· · ·
f(an) = bn ⇔ c0 + c1an + · · · + cna

n
n = bn,

ezért f akkor és csak akkor megoldása az interpolációs feladatnak, ha együtthatói ki-
eléǵıtik az előző lineáris egyenletrendszert. Ezt az egyenletrendszert mátrix-alakban
ı́rva:

(∗)


1 a0 a20 . . . an0
1 a1 a21 . . . an1
...

...
...

. . .
...

1 an a2n . . . ann

 ·


c0
c1
...
cn

 =


b0
b1
...
bn

 .
Az egyenletrendszer mátrixa a V (a0, a1, . . . , an) Vandermonde-mátrix. Továbbá,
mivel feltettük, hogy az (a0, . . . , an) alappontok páronként különbözők, ezért a 9.10
Tétel miatt det

(
V (a0, a1, . . . , an)

)
̸= 0. Ezért pl. a 9.3 Tétel miatt V (a0, a1, . . . , an)

invertálható és emiatt (∗) egyetlen megoldása

(
V (a0, a1, . . . , an)

)−1 ·

b0
b1
...
bn

 .
Azt kaptuk, hogy egy legfeljebb n-edfokú polinom együtthatóit pontosan egyféleképpen
választhatjuk meg, ha a polinom megoldása az interpolációs feladatunknak.

9.12. Példa. Keressünk másodfokú g ∈ R[x] polinomot, amelyre g(0) = 2, g(1) = 4
és g(2) = 8.

2. Megoldás. Legyen g(x) = µ0 + µ1x+ µ2x
2. Feĺırjuk az egyenletrendszert:

g(0) = µ0 = 2,

g(1) = µ0 + µ1 + µ2 = 4,

g(2) = µ0 + 2µ1 + 4µ2 = 8.

Mátrix alakban: 1 0 0
1 1 1
1 2 4

µ0

µ1

µ2

 =

2
4
8

 .
Ennek megoldása: µ0 = 2, µ1 = 1, µ2 = 1. Tehát a keresett polinom:

g(x) = 2 + x+ x2.
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Alkalmazás: Titokmegosztás

Tekintsük a következő feladatot: adott egy s titok (pl. egy szám, vagy egy
rögźıtett K test egy eleme). Van n titokgazda. A rendszer úgy működjön, hogy leg-
alább k darab titokgazdának (k ≤ n) együtt kell működnie a titok visszanyeréséhez,
de kevesebb, mint k titokgazda ne tudjon semmit a titokról, akkor sem, ha össze-
játszanak.

3. Megoldás (Shamir k-küszöbös titokmegosztási módszere). Legyen s ∈ K a titok.

1. Válasszunk véletlenszerűen egy f ∈ K[x] polinomot, melyre deg(f) ≤ k− 1 és
f(0) = s. (Ezt megtehetjük, ha véletlenül választjuk a b1, . . . , bk−1 értékeket,
majd megoldjuk a (0, s), (1, b1), (2, b2), . . . , (k − 1, bk−1) interpolációs felada-
tot).

2. (i = 1, . . . , n)-re az i-edik titokgazdával közöljük az (i, f(i)) párt (vagyis egy
x = i pontbeli függvényértéket).

3. Titok visszanyerése: Mivel Lagrange interpolációs tétele (9.11 Tétel) miatt
k pont egyértelműen meghatároz egy legfeljebb (k−1)-edfokú polinomot, ezért
ha legalább k titokgazda összejön, az ő (i, f(i)) pontjaik alapján interpolációval
rekonstruálhatják f -et, majd kiolvashatják a titkot: s = f(0).

4. Biztonság: Kevesebb, mint k titokgazda birtokában az f polinomra sok le-
hetőség marad mert bármelyik s′-re megoldható a (0, s′), (i1, bi1), (i2, bi2), . . . ,
(ik−1, bik−1

) interpolációs feladat is, ezek a megoldások a k−1 darab konspiráló
titokgazda számára megkülönböztethetetlenek. Ezért számukra a titok (vagyis
f(0)) teljesen bizonytalan.

Másik konstrukció az interpolációs polinomra

Az interpolációs feladat megoldására adunk egy másik módszert it.

9.13. Defińıció (Lagrange-féle alappolinomok). Legyenek a1, . . . , an ∈ K páronként
különböző alappontok. Ha i ≤ n, akkor az i-edik Lagrange-féle alappolinom az a
legfeljebb n− 1-edfokú ℓi ∈ K[x], melyre

ℓi(a0) = 0, . . . ℓi(ai) = 1, . . . ℓi(an) = 0

(ℓi(ai) = 1, és ha i ̸= j, akkor ℓi(aj) = 0). Ilyen ℓi van:

ℓi(x) =
(x− a1) · · · (x− ai−1)(x− ai+1) · · · (x− an)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
∈ K[x].

9.14. Tétel (Interpolációs polinom Lagrange-alakja). A g(ai) = bi (i = 1, . . . , n)
interpolációs feltételeket kieléǵıtő, legfeljebb (n − 1)-edfokú polinom egyértelműen
megadható a Lagrange-alappolinomok lineáris kombinációjaként:

g(x) =
n∑

i=1

bi ℓi(x).
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Bizonýıtás. Ez valóban megoldás, mert g(aj) =
∑n

i=1 biℓi(aj) = bj.

Mivel n adott alappont esetén az interpolációs feladatot pontosan 1 legfeljebb
n−1-edfokú f polinom oldja meg, ezért a 9.11 Tételben megadott polinom ugyanaz,
mint amit a 9.14 Tételben konstruáltunk. Valójában– megelőlegezve a 9.15 Tételt –
arról van szó, hogy f együtthatóit a legfeljebb n−1-edfokú polinomok vektorterében
más és más bázisban ı́rtuk fel. A 9.11 Tétel bizonýıtásában a hatványfüggvények
alkotta szokásos

{1, x, x2, . . . , xn−1}

bázist használtuk és f együtthatóit egy egyenletrendszer megoldásának árán tudtuk
meghatározni. A 9.14 Tételben az {ℓ1, . . . ℓn} bázist használtuk. Ebben a bázisban
f koordinátái villámgyorsan leolvashatók; ha f együtthatóit (vagyis koordinátáit
a hatványfüggvények alkotta bázisban) is meg akarjuk határozni, akkor az f -re
kapott kifejezést x hatványai szerint rendeznünk kell (illetve át kell térnünk az egyik
bázisból a másikba). Azzal folytatjuk, hogy az imént emĺıtett polinomhalmazok
valóban bázisok a megfelelő vektortérben.

A Lagrange-alappolinomok bázist alkotnak

9.15. Tétel. Legyen V = {f ∈ K[x] | deg(f) < n}. Ekkor V n-dimenziós vektortér
K felett, és a következő halmazok mind bázisai V -nek:

1. B1 = {ℓ1, ℓ2, . . . , ℓn} (Lagrange-alappolinomok),
2. B2 = {1, x, x2, . . . , xn−1} (sztenderd bázis).

Bizonýıtás.

1. Linearitás függetlenség: Tegyük fel, hogy
∑n

i=1 ciℓi(x) = 0. Helyetteśıtsünk
x = aj-t:

0 =
n∑

i=1

ciℓi(aj) = cj minden j = 1, . . . , n-re.

Tehát c1 = · · · = cn = 0, a Lagrange-alappolinomok lineárisan függetlenek.
Mivel dimV = n, ezért bázist alkotnak.

2. Sztenderd bázis: A {1, x, . . . , xn−1} halmaz nyilván generálja V -t. Lineáris
függetlenségüket ı́gy láthatjuk be: legyen c0, . . . . , cn−1 ∈ K tetszőleges, és
vegyük {1, x, . . . , xn−1}-nek a c0, . . . . , cn−1 súlyokkal képzett lineáris kombiná-
cióját. Ha erre

n−1∑
k=0

ckx
k = 0,

de a ck együtthatók nem lennének mind nullák, akkor a baloldalon egy nem
azonosan nulla polinom lenne, a jobboldalon viszont a 0 polinom; ez ellentmon-
dást adna. Azt kaptuk, hogy {1, x, . . . , xn−1}-nek csak a csupa-nulla lineáris
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kombinációja lehet 0 (= konstans-0 polinom), ezért {1, x, . . . , xn−1} lineárisan
független.

Newton-interpoláció (rekurźıv megközeĺıtés)

9.16. Tétel (Newton-interpoláció). Legyenek a1, . . . , an ∈ K páronként különböző
alappontok, b1, . . . , bn ∈ K tetszőleges értékek. Ekkor van olyan f ∈ K[x], deg(f) <
n, amelyre f(ai) = bi minden i = 1, . . . , n esetén.

Bizonýıtás. Teljes indukciót alkalmazunk n-re.
Alaplépés (n = 1): Az f(x) = b1 konstans polinom nyilván megfelel (és nyilván ez
az egyetlen jó nulladfokú polinom).
Indukciós lépés: Tegyük fel, hogy n − 1 ponthoz már tudunk konstruálni in-
terpolációs polinomot. Legyen g ∈ K[x] olyan polinom, hogy deg(g) < n − 1 és
g(ai) = bi minden i = 1, . . . , n − 1 esetén (ez az indukciós feltevés szerint létezik).
Legyen f(x) = g(x) + (bn − g(an))ℓn, ahol ℓn a 9.13 Defińıció szerinti n-edik alap-
polinom. Ekkor deg(ℓn) = n − 1, és ℓn(ai) = 0 minden i = 1, . . . , n − 1-re. Ezért,
ha i < n, akkor

f(ai) = g(ai) + (bn − g(an))ℓn(ai) = g(ai) = bi.

Végül

f(an) = g(an) + (bn − g(an))ℓn(an) = g(an) + (bn − g(an)) = bn.

Így f(x) kieléǵıti az összes feltételünket (beleértve a fokszámra vonatkozót is).

9.17. Megjegyzés (Lagrange vs. Newton interpoláció).

� A Lagrange-forma akkor előnyös, ha sok különböző (b1, . . . , bn) értékkészlethez
szeretnénk interpolálni ugyanazon (a1, . . . , an) alappontok mellett, mert az ℓi(x)
alappolinomokat (illetve az alappontok által generált Vandermonde-mátrix in-
verzét) csak egyszer kell kiszámı́tani.

� A Newton-forma (és a fenti rekurźıv konstrukció) akkor hatékony, ha az
alappontok száma (n) folyamatosan növekszik (pl. sorban kapjuk az (ai, bi)
párokat), mivel az új pont hozzáadása csak egy új tag hozzáadását igényli a
már meglévő polinomhoz.

Taylor-polinom

Sok esetben szembesülünk a következő feladattal: adott egy bonyolult f függvény,
szeretnénk egy egyszerűbb (ezért könnyebben kezelhető) másik, g függvényre, mond-
juk egy g polinomfüggvényre áttérni úgy, hogy g azért

”
hasonĺıtson” az eredeti f -re.
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Azt, hogy mit éretünk függvények hasonlóságán, további céljaink szerint sok módon
prećızzé lehet tenni. Egy lehetőség az, hogy f és g helyetteśıtési értékei egyezze-
nek meg előre adott véges sok pontban. Ezt a változatot polinom-interpolációval
könnyen meg tudjuk már oldani; és valóban, sok esetben hasznos, ha egy bonyo-
lult (fizikai, közgazdaságtani, stb. jelenséghez tárśıtható) függvényt néhány he-
lyen megmérünk, a mérési eredményeken polinom-interpolációt végzünk, majd az
eredményül kapott polinommal közeĺıtjük (

”
jósoljuk meg”) a bonyolult függvény

helyetteśıtési értékeit olyan pontokban, ahol nem mértük még meg (pl. fizikai, vagy
gazdasági kérdések esetén akár a jövőben).

Azt, hogy az f függvény
”
hasonĺıt” g-re, más módon is értelmezhetjük: megköve-

telhetjük pl. azt, hogy egyetlen előre rögźıtett a pontban f és g első néhány
deriváltjának egyezzen meg a helyetteśıtési értéke (a nulladik dferivált maga a
függvény). A feladat, amit meg akarunk oldani, tehát az, hogy adott f -hez, a-hoz
és n ∈ N-hez találjunk g polinomot, melyre

f(a) = g(a), f ′(a) = g′(a), . . . , f (n)(a) = g(n)(a).

A Taylor-polinomok erre a feladatt́ıpusra adják meg a választ.

9.18. Defińıció (Taylor-polinom). Legyen I ⊆ R nýılt intervallum, a ∈ I, és f :
I → R n-szer differenciálható az a pontban. Az f függvény a pont körüli n-edfokú
Taylor-polinomja az a legfeljebb n-edfokú Tn,a,f ∈ R[x] polinom, amelyre:

T
(k)
n,a,f (a) = f (k)(a) minden k = 0, 1, . . . , n esetén,

ahol f (0) ≡ f , és T
(k)
n,a,f a polinom k-adik deriváltját jelöli. Az f -re vonatkozó de-

riválhatósági feltételek csak arra szolgálnak, hogy értelmes legyen a követelményrend-
szerünk (tudjunk a nem feltétlenül polinomfüggvény f sokadik deriváltjairól beszélni).

9.19. Tétel (Taylor-polinom együtthatói). Minden n ∈ N-re: az n-edfokú Taylor-
polinom létezik, egyértelmű, és a következő alakban ı́rható fel:

Tn,a,f (x) =
n∑

k=0

f (k)(a)

k!
(x− a)k.

Bizonýıtás. Rögźıtsük n-t és keressük Tn,a,f -et az {1, (x− a), (x− a)2, . . . , (x− a)n}
bázisban határozatlan (egyelőre ismeretlen) µ0, ..., µn együtthatókkal:

Tn,a,f (x) = µ0 + µ1(x− a) + µ2(x− a)2 + · · · + µn(x− a)n.

Ugyanúgy, mint az interpolációs feladat megoldása során, a Tn,a,f -re elő́ırt tulaj-
donságokból elő fogunk álĺıtani egy lineáris egyenletrendszert az ismeretlen µ0, ..., µn
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együtthatókra. Ehhez először számı́tsuk ki Tn,a,f (formális) deriváltjait:

Tn,a,f (x) = 0! · µ0 + µ1(x− a) + µ2(x− a)2 + · · · + µn(x− a)n,

T ′n,a,f (x) = 1! · µ1 + 2µ2(x− a)1 + · · · + nµn(x− a)n−1,

T ′′n,a,f (x) = 2! · µ2 + · · · + n(n− 1)µn(x− a)n−2,

T ′′′n,a,f (x) = 3! · µ3 + · · · + n(n− 1)(n− 2)µn(x− a)n−3

...

T
(k)
n,a,f (x) = k! · µk + · · · + n(n− 1)(n− 2) · · · (n− k + 1)µn(x− a)n−k

...

T
(n)
n,a,f (a) = n! · µn.

Ezek seǵıtségével számı́tsuk ki Tn,a,f deriváltjait az x = a helyen:

Tn,a,f (a) = 0! · µ0,

T ′n,a,f (a) = 1! · µ1,

T ′′n,a,f (a) = 2! · µ2,

T ′′′n,a,f (a) = 3! · µ3,

...

T
(k)
n,a,f (a) = k! · µk,

...

T
(n)
n,a,f (a) = n! · µn.

A defińıció szerint T
(k)
n,a,f (a) = f (k)(a), tehát:

µk =
f (k)(a)

k!
minden k = 0, 1, . . . , n esetén.

Ezzel az együtthatók egyértelműen meghatározottak, és a polinom a fenti összeg
alakot ölti.

Felmerül a kérdés, hogy egy (elegendően sokszor deriválható) f és a hozzá
tartozó n-edik Tn,a,f Taylor-polinom helyetteśıtési értékei mennyire maradnak közel
egymáshoz. Az a pontban persze megegyeznek a helyetteśıtési értékeik, de mi van,
ha a-ból arrébb megyünk? Vajon közel marad-e, milyen h-ra marad közel Tn,a,f (a+
h) és f(a + h)? Bevezetve az Rn = f(a + h) − Tn,a,f (a + h) jelölést, a kérdés az,
hogy mit mondhatunk az Rn eltérésről,

”
maradéktagról”. Ezt a kérdést tisztázzák

a Taylor-formulák, melyeknek sok változata van.
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9.20. Tétel (Taylor-formula Lagrange-féle maradéktaggal). Legyen f : [a, a+ h] →
R (h > 0) (n+1)-szer folytonosan differenciálható. Ekkor létezik olyan ξ ∈ (a, a+h),
hogy

f(a+ h) = Tn,a,f (a+ h) +Rn,

ahol a Lagrange-féle maradéktag

Rn =
f (n+1)(ξ)

(n+ 1)!
hn+1.

Azaz pontosan:

f(a+ h) =
n∑

k=0

f (k)(a)

k!
hk +

f (n+1)(ξ)

(n+ 1)!
hn+1.

Bizonýıtás. Kalkulusból volt (pl. a Cauchy-féle középérték Tétel ismételt alkal-
mazásával).

Ez a tétel tehát azt mondja ki, hogy ha a-tól h távolságra elmozdulunk, akkor
van olyan ξ ∈ (a, a+ h), hogy az f(a+ h) − Tn,a,f (a+ h) eltérés éppen

f (n+1)(ξ)

(n+ 1)!
hn+1.

Ez utóbbi kifejezés hasonĺıt a Taylor-polinomok együtthatóira: olyan, mint az (n+
1)-edik Taylor-polinom főtagja, de az együtthatóban az f függvény (n + 1)-edik
deriváltját nem az a helyen, hanem a ξ helyen vesszük (amiről csak annyit tudunk,
hogy az (a, a+h) intervallumban van), és nem (x−a)n+1-el szorzunk, hanem hn+1-el.
Összefoglalva:

9.21. Megjegyzés.

1. Az interpolációs feladatban sok alappont van, és csak a helyetteśıtési értékekre
(nulladik deriváltakra) van elő́ırás. Ezzel szemben a Taylor-polinomok esetében
egyetlen alappont van, viszont nemcsak a helyetteśıtési értékre, hanem az első
néhány deriváltra van elő́ırás. Későbbi félévekben megvizsgáljuk e két feladat
közös általánośıtását (több alappont van, mindegyik alappontban a helyet-
teśıtési értékek mellett elő van még ı́rva az első néhány derivált értéke is).

2. Tudatośıtsuk, hogy a Taylor-polinom, Taylor-formula és Taylor-sor három
különböző dolog!

(a) A Taylor-polinom a 9.18 Defińıció szerint olyan polinom, melynek első
néhány deriváltja egyetlen előre adott a pontban megegyezik egy adott f
függvény első néhány deriváltjával az a pontban;

(b) A Taylor-formula azt tisztázza, hogy f értékei és az a pontban vett
Taylor-polinomjai értékei mennyire maradnak egymáshoz közel, ha a-ból
arrébb megyünk;
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(c) A Taylor-sor pedig azt a kérdést vizsgálja, hogy ha adott f -re adott a-ban
minden n-re elkésźıtjük a Tn,a,f Taylor-polinomokat, akkor e végtelen sok
polinom együtt mutat-e valamiféle rendezettséget, pl. ha n végtelenbe
tart, akkor ez a polinomsorozat (valamilyen értelemben) visszakonvergál-
e az eredeti f -hez. Ezt a kérdést más kurzusokon még sokat fogjátok
vizsgálni; a válasz az lesz, hogy általában persze nem konvergálnak vissza
a Taylor-polinomok az eredeti f -hez, de ha f

”
szép” függvény, akkor

mégis visszakonvergálnak.

3. Tehát a 9.20 Tétel azt mondja ki, hogy a függvény értéke mindegyik (a +
h) pontban feĺırható a Taylor-polinom (közeĺıtés) és egy maradéktag (hiba)
összegeként.

4. A maradéktag pontos formája (itt Lagrange-féle) lehetővé teszi a közeĺıtés
hibájának becslését, ha tudjuk korlátozni az (n+1)-edik deriváltat az interval-
lumon. Ennek egy alkalmazása az, ahogy a zsebszámológépek kiszámı́tják pl. a
sin függvényt: valójában nem a sin függvényt számolják ki, hanem valamilyen
előre rögźıtett jó nagy n-re a Tn,0,sin Taylor-polinomot (ez az alapműveletek
ismételgetésével elvi nehézségek nélkül bármelyik pontban kiszámolható). A
zsebszámológépek tervezésekor n-et előre rögźıtik úgy, hogy a kapott közeĺıtés
előre adott (mondjuk 8 tizedesjegy) pontossággal megegyezzen a sin függvény
értékeivel. Ez megtehető, mert a sin függvény összes deriváltja az összes
pontban közös korlát alatt marad, ezért a maradéktag abszolútértéke előre
felülbecsülhető.

5. Ha f maga is polinom, és n ≥ deg(f), akkor Rn = 0, hiszen f (n+1) ≡ 0. Ez
persze abból is látszik, hogy ha n ≥ deg(f), akkor a 9.18 Defińıció értelmében
f sajátmagának n-edik Taylor-polinomja (minden a-ra), ezért a 9.19 Tétel
egyértelműségre vonatkozó része miatt f = Tn,a,f .

9.22. Példa (Az ex függvény Taylor-polinomja a = 0 körül). Legyen f(x) = ex.
Ekkor f (k)(x) = ex, ı́gy f (k)(0) = 1 minden k ≥ 0 esetén. Az n-edfokú Taylor-
polinom a = 0 körül:

Tn,0,ex(x) =
n∑

k=0

1

k!
xk = 1 + x+

x2

2!
+
x3

3!
+ · · · +

xn

n!
.

A Taylor-formula szerint tetszőleges x-re:

ex = 1 + x+
x2

2!
+ · · · +

xn

n!
+

eξ

(n+ 1)!
xn+1, valamely ξ ∈ (0, x)-re.

9.4. LU-felbontás

Ebben az alfejezetben elégséges feltételt adunk arra, hogy egy (négyzetes)
mátrix előálljon egy alsó háromszógmátrix és egy felső háromszögmátrix szorza-
taként. Ehhez megvizsgáljuk, hogy az elemi sorátalaḱıtások hogyan végezhetők el
mátrix-szorzásokkal. Emlékeztetőül, az elemi sorátalaḱıtások a következők voltak.
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(α) Az i-edik sort szorozzuk egy nem nulla c ∈ K skalárral.
(β) Az i-edik és j-edik sort felcseréljük.
(γ) Az i-edik sor c-szeresét hozzáadjuk a j-edik sorhoz (i ̸= j).

9.23. Tétel. Minden elemi sorátalaḱıtás előáll úgy, hogy az A ∈ Kn×n mátrixot
balról megszorozzuk azzal a mátrixszal, amelyet az In egységmátrixból az adott sor-
átalaḱıtással kapunk. Az α t́ıpusú és i < j esetén a γ t́ıpusú sorátalaḱıtásokhoz
tartozó mátrixok alsó háromszögmátrixok.

Bizonýıtás. Szisztematikusan megvizsgáljuk az elemi sorátalaḱıtások t́ıpusait.

� (α) t́ıpus: Az i-edik sor megszorzása nemnulla skalárral. Ez megfelel az alábbi
diagonális, ı́gy alsó háromszögmátrixszal való szorzásnak.

1 0 · · · · · · 0
0 1 · · · · · · 0
...

...
...

. . .
...

0 · · · c · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


.

� (β) t́ıpus: Az i-edik és j-edik sor felcserélése. Könnyű ellenőrizni, hogy ez is
előáll egy invertálható elemi mátrixszal való balról szorzással:

1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

0 · · · 0 · · · 1 · · · 0
...

...
...

...
...

0 · · · 1 · · · 0 · · · 0
...

...
...

...
0 · · · 0 · · · 0 · · · 1


.

� (γij) t́ıpus: Az i-edik sor c-szeresét hozzáadjuk a j-edik sorhoz. Könnyen
ellenőrizhető, hogy ez az átalaḱıtás végrehajtható az alábbi mátrixal való balról
szorzással (az i-edik és a j-edik sort ı́rjuk ki, és az i < j esetet szemléltettük):

1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

0 · · · 1 · · · 0 · · · 0
...

...
...

...
...

0 · · · c · · · 1 · · · 0
...

...
...

...
0 · · · 0 · · · 0 · · · 1


.

Ez szintén alsó háromszögmátrix, ha i < j.
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9.24. Tétel (LU-felbontás létezése). Ha B ∈ Kn×n olyan, hogy Gauss-eliminációval
sorcsere nélkül lépcsős alakra hozható, akkor léteznek

L alsó háromszögmátrix, U felső háromszögmátrix,

melyekre
B = LU.

9.25. Megjegyzés. A 9.24 Tétel elégséges feltételt ad arra, hogy egy B ∈ Kn×n

mátrix előálĺıtható legyen B = LU alakban, ahol:

� L alsó háromszögmátrix (lower triangular)
� U felső háromszögmátrix (upper triangular).

Bizonýıtás. A tétel feltételei miatt B lépcsős alakra hozásánál a Gauss-elimináció
során elég α t́ıpusú és olyan γ t́ıpusú sorátalaḱıtásokat végezni, melyekre i < j.
A 9.23 Tétel miatt ezek az átalaḱıtások alsó háromszögmátrixokkal való balról
szorzásnak felelnek meg. Ezért léteznek L1, . . . , Lk alsó háromszögmátrixok úgy,
hogy

Lk · · ·L1B = U,

ahol U felső háromszögmátrix (hiszen lépcsős alakú).
Mivel minden elemi sorátalaḱıtás visszacsinálható elemi sorátalaḱıtásokkal, ezért

mindegyik Li invertálható és L−1i is alsó háromszögmátrix (mert L−1i is α, vagy
megfelelő alakú γ t́ıpusú sorátalaḱıtásnak felel meg). Ezért

B = (L1 · · ·Lk)−1U = (L−1k · · ·L−11 )U.

De alsó háromszögmátrixok szorzata ismét alsó háromszögmátrix ⇒ készen vagyunk.

9.5. Ferde kifejtés, determináns és inverz, Cramer-szabály

Emlékeztetünk rá, hogy a 8.14 Defińıció szerint ha A ∈ Kn×n és 1 ≤ i, j ≤
n, akkor Aij ∈ K(n−1)×(n−1) az a mátrix, melyet A-ból úgy kapunk, hogy A-ból
elhagyjuk az i-edik sort és j-edik oszlopot. Az Aij jelölés összekeverhető azzal, ahogy
az A mátrix i-edik sorának j-edik elemét is jelöltük, ezért ebben az alfejezetben
A(i, j)-vel fogjuk jelölni az A-ból i-edik sora és j-edik oszlopa kitörlésével előálló
(n− 1) × (n− 1)-es mátrixot.

9.26. Tétel (Ferde kifejtés és Cramer-szabály).
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1. Ferde kifejtés5: ha j ̸= i, akkor

n∑
k=1

(−1)j+kaik det(A(j, k)) = 0.

2. Legyen A∗ az a mátrix, melyet A-ból úgy kapunk, hogy A-ban minden ele-
met kicserélünk a hozzá tartozó előjelezett aldeterminánsra, majd az ı́gy kapott
mátrixot transzponáljuk:

(A∗)ij = (−1)i+j det(A(j, i)).

Ekkor

AA∗ =

det(A) 0
. . .

0 det(A)

 = det(A) In.

3. Cramer-szabály: Ha A invertálható, akkor az

Ax = b

egyenlet egyetlen megoldása
x = A−1b.

Sőt, minden i-re

xi =
det(A∗1, . . . , A∗i−1, b, A∗i+1, . . . , A∗n)

det(A)
,

ahol a számlálóban A i-edik oszlopát b-re cseréljük.

Bizonýıtás. (1) igazolásával kezdünk. Legyen A′ az a mátrix, amelyet A-ból úgy
kapunk, hogy a j-edik sort az i-edik sorra cseréljük (de minden másik sort, az i-
ediket is, változatlan formában megtartunk; ezáltal A′-ben az i-edik és j-edik sor
egyenlő lesz). Egyrészt,

det(A′) = 0,

mivel van neki két egyenlő sora. Másrészt fejtsük ki det(A′)-t a j-edik sor szerint:

0 = det(A′) =
n∑

k=1

(−1)j+ka′jk det(A′(j, k)) =
n∑

k=1

(−1)j+kaik det(A(j, k)),

és itt a sor elején 0, a sor végén pedig a ferde kifejtés szerepel.

5Az alábbi összeg hasonĺıt arra, mintha A-t az i-edik sora szerint kifejtenénk, azonban az i-edik
sor aik elemeit nem a saját előjelezett aldeterminánsával szorozzuk, hanem a j-edik sor megfelelő
ajk eleméhez tartozó előjelezett aldeterminánssal. Erre utal a

”
ferde” kifejezés.
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(2) igazolása a következő. Tetszőleges i, j-re:

(AA∗)ij =
n∑

k=1

aik(A∗)kj =
n∑

k=1

aik(−1)k+j det(A(j, k)).

Ha i ̸= j, akkor ez 0 a ferde kifejtés (előbb igazolt (1) ) miatt. Ha i = j, akkor

(AA∗)ii =
n∑

k=1

(−1)i+kaik det(A(i, k)) = det(A),

az i-edik sor szerinti kifejtés miatt.
Tehát

AA∗ = det(A)In,

vagyis

(∗) A−1 =
1

det(A)
A∗.

Végül (3) bizonýıtása a következő. Az nyilvánvaló, hogy ha A invertálható, akkor
Ax = b egyetlen megoldása

x = A−1b,

ezt kombinálva a (2)-ben (néhány sorral feljebb) igazolt (∗)-al, tetszőleges i-re:

xi = (A−1b)i =
n∑

k=1

(A−1)ikbk =
1

det(A)

n∑
k=1

(−1)i+k det(A(k, i))bk,

és a sor végén álló összeg det(A∗1, . . . , A∗i−1, b, A∗i+1, . . . , A∗n) kifejtése az az i-edik
oszlopa szerint.

A Cramer-szabály egy elméleti jelentőségű megoldóképlet. Megoldóképlet abban
az értelemben, hogy (egy meglehetősen speciális esetben) a lineáris egyenletrendszer
megoldását egy áttekinthető képlet formájában adja meg; ez hasznos lesz későbbi
félévekben, amikor erre alapozva fogunk tételeket igazolni. Ugyanakkor a jelentősége
inkább elméleti, semmint gyakorlati a következők miatt.

1. Ha az egyenletrendszer mátrixa nem négyzetes, akkor fel sem merül, hogy
a Cramer-szabályt alkalmazzuk, mert csak négyzetes mátrixnak van deter-
minánsa;

2. Ha az egyenletrendszer mátrixa négyzetes ugyan, de a determináns nulla (azaz
nem pontosan 1 megoldás van), a Cramer-szabály akkor sem alkalmazható
(mert 0-val kéne osztani);

3. Ha az egyenletrendszer mátrixa négyzetes, és determinánsa nem 0, akkor
a Cramer-szabály alkalmazható ugyan, de nagyon művelet-igényes: n isme-
retlen esetében n + 1 darab n × n-es determinánst kellene kiszámolni, mı́g
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a Gauss-elimináció műveletigénye nagyjából 1 darab n × n-es determináns
kiszámitásával arányos (hiszen a gyakorlatban a determinánsokat sem kifejtéssel,
hanem pl. elemi sorátalaḱıtásokat használva háromszög-alakra hozással érdemes
kiszámolni).

9.6. Skaláris szorzás Kn-ben

A 7.55 Tételben láttuk, hogy a K test feletti minden véges dimenziós vek-
tortérhez van n ∈ N, hogy V izomorf Kn-el. Továbbá, Kn szerkezete elég konkrét
ahhoz, hogy egyszerűen be lehessen vezetni rajta a skaláris szorzás műveletét,
melyet az R2-ben és R3-ban középiskolában megismert skaláris szorzás motivál.
Nem véges dimenziós terekben a skaláris szorzás bevezetése további előkészületeket
igényelne, ezt későbbi félévekre halasztjuk. Ebben a kurzusban a véges dimenziós
esettel ismerkedünk meg, és egy alkalmazást is be fogunk mutatni: meg fogunk ol-
dani megoldhatatlan egyenletrendszereket (pontos megoldás helyett nyilván csak –
valamilyen egészen világosan definiált értelemben – optimális közeĺıtő megoldásokat
fogunk tudni találni).

9.27. Defińıció. Ha a, b ∈ Kn, akkor

⟨a, b⟩ =
n∑

k=1

akbk

az a és b skaláris szorzata.

Hangsúlyozzuk, hogy Kn-ben az előbbi módon definiáltuk a skaláris szorzást.
R2-ben és R3-ban másképp, geometriai megfontolásokkal szokás definiálni a skaláris
szorzást, abban a feléṕıtésben az tétel, hogy két vektor skaláris szorzata a koor-
dinátáikból úgy számolható ki, ahogy azt az előző defińıció körüĺırja.

9.28. Defińıció. Az a, b ∈ Kn vektorok merőlegesek (=ortogonálisak) egymásra
(jelölés a ⊥ b), ha skaláris szorzatuk 0:

a ⊥ b ⇐⇒ ⟨a, b⟩ = 0.

9.29. Tétel (A skaláris szorzás tulajdonságai). Minden a, b, c ∈ Kn és λ ∈ K
esetén:

1. ⟨a, b⟩ = ⟨b, a⟩,
2. ⟨a, λb⟩ = λ⟨a, b⟩,
3. ⟨a, b+ c⟩ = ⟨a, b⟩ + ⟨a, c⟩.

Bizonýıtás.

1.

⟨a, b⟩ =
n∑

k=1

akbk =
n∑

k=1

bkak = ⟨b, a⟩.
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2.

⟨a, λb⟩ =
n∑

k=1

ak(λbk) = λ
n∑

k=1

akbk = λ⟨a, b⟩.

3.

⟨a, b+ c⟩ =
n∑

k=1

ak(bk + ck) =
n∑

k=1

akbk +
n∑

k=1

akck.

Direkt és ortogonális kiegésźıtés

9.30. Defińıció. Legyen V vektortér, W1,W2 ⊆ V alterek. Azt mondjuk, hogy W1

és W2 egymás direkt kiegésźıtői, ha teljesülnek az alábbi 1. és 2. pontok:

1. W1 ∩W2 = {0},
2. ∀x ∈ V ∃w1 ∈ W1, w2 ∈ W2 : x = w1 + w2.

3. Azt mondjuk, hogyW1 ésW2 merőlegesek (=ortogonálisak) egymásra (jelölés:
W1 ⊥ W2), ha

∀w1 ∈ W1, ∀w2 ∈ W2 : w1 ⊥ w2.

4. Azt mondjuk, hogy W1 és W2 egymás ortogonális kiegésźıtői V -ben, ha az előző
1., 2. és 3. pontok mindegyike teljesül rájuk (tehát 1. és 2. miatt direkt
kiegésźıtők is).

9.31. Megjegyzés. R-ben (1) következik (3)-ból, mert ha x ∈ W1 ∩W2, akkor (3)
miatt x ⊥ x, vagyis

⟨x, x⟩ =
n∑

k=1

x2k = 0,

amiből x = 0 következik. A komplex test (és még sok más test) felett ez a követ-
keztetés nem marad érvényben: tekintsük pl. az [1, i] ∈ C2 vektort. Erre

⟨[1, i], [1, i]⟩ = 1 + i2 = 0,

tehát [1, i] ⊥ [1, i], noha nyilvánvalóan 0 ̸= [1, i].

9.32. Példa. R2-ben:

W1 = {ke1 | k ∈ R}, W2 = {k(1, 1) | k ∈ R}.

Ezek nem ortogonális kiegésźıtők, viszont direkt kiegésźıtők.
W1-nek végtelen sok direkt kiegésźıtője van (W2-ben az (1, 1) vektor használata

esetleges, bármilyen nemnulla α-val az origón átmenő, (1, α) irányvektorú egyenes
direkt kiegésźıtője lenne W1-nek). De W1-nek csak egy ortogonális kiegésźıtője van:
az e2 által kifesźıtett egyenes.
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9.7. Lineáris leképezések magtere és képtere

9.33. Defińıció (Magtér és képter). Legyen V és W vektorterek, φ : V → W
lineáris leképezés.

� ker(φ) = {v ∈ V | φ(v) = 0} ⊆ V a φ magtere.
� im(φ) = {φ(v) | v ∈ V } ⊆ W a φ képtere.

Ha φ : V → V lineáris leképezés, akkor [φ] jelöli φ mátrixát a sztenderd bázisban.

9.34. Tétel. Legyen V véges dimenziós (mondjuk n-dimenziós) vektortér a K test
felett, φ, ψ : V → V lineáris leképezések. Ekkor

1. [φ ◦ ψ] = [φ][ψ] (itt a jobboldalon mátrixszorzás van);
2. ha φ bijekció, akkor [φ−1] = [φ]−1;
3. ker(φ) és im(φ) alterei V -nek;
4. Dimenziótétel: dim(ker(φ)) + dim(im(φ)) = n;
5. Tetszőleges R ∈ Kn×n-re S(A) és N (A) ortogonális kiegésźıtők.

Ebből vizsgára elég tudni az első 4 pont álĺıtását (bizonýıtás nélkül), és az 5.
pontot bizonýıtással.

Bizonýıtás. (1): Legyen b ∈ V tetszőleges vektor, [b] a koordináta-vektora (a szten-
derd bázisban). Ekkor

[φ ◦ ψ][b] = [φ(ψ(b))] = [φ([ψ][b])] = [φ]([ψ][b]) = ([φ][ψ])[b].

Ez minden b vektorra igaz, speciálisan igaz a b = e1, . . . , en sztenderd bázis vekto-
raira is. A b = ej vektorra alkalmazva azt kapjuk, hogy a baloldali [φ ◦ ψ] mátrix
j-edik oszlopa egyenlő a jobboldali [φ][ψ] szorzatmátrix j-edik oszlopával, és ez min-
den j-re igaz. Ezért valóban, [φ ◦ ψ] = [φ][ψ].

(2):

[φ−1][φ]
(1)
= [φ−1 ◦ φ] = In,

ezért [φ−1] = [φ]−1.

(3): Ha v1, v2 ∈ ker(φ) és λ ∈ K, akkor

φ(v1 + v2) = φ(v1) + φ(v2) = 0

és
φ(λv1) = λφ(v1) = 0,

tehát v1 + v2 ∈ ker(φ) és λv1 ∈ ker(φ). Ez mutatja, hogy ker(φ) zárt a vektortér-
műveletekre, ezért altér.

Hasonlóan, ha v1, v2 ∈ im(φ) és λ ∈ K, akkor van w1, w2 ∈ V : φ(w1) = v1 és
φ(w2) = v2. De ekkor

v1 + v2 = φ(w1) + φ(w2) = φ(w1 + w2)
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és
λv1 = λφ(w1) = φ(λw1),

ezért v1 + v2 ∈ im(φ) és λv1 ∈ im(φ), azaz im(φ) is zárt a vektortér műveletekre,
tehát altér.

(4): Emlékeztetünk rá, hogy tételünk kimondásakor rögźıtettük vektorterünk di-
menzióját: dim(V ) = n. Válasszunk egy {b1, . . . , bk} ⊆ ker(φ) bázist a magtérben.
Egésźıtsük ki ezt V egy B bázisává: B = {b1, . . . , bk, bk+1, . . . , bn}. Megmutatjuk,
hogy {φ(bk+1), . . . , φ(bn)} bázisa im(φ)-nek.

� Generálás: Legyen w ∈ im(φ). Ekkor van olyan v ∈ V , hogy φ(v) = w.
Álĺıtsuk elő v-t a B bázisban: v =

∑n
i=1 λibi. Ekkor

w = φ(v) = φ
( n∑

i=1

λibi

)
=

n∑
i=1

λiφ(bi) =
n∑

i=k+1

λiφ(bi),

mert φ(b1) = · · · = φ(bk) = 0, hiszen b1, . . . bk mindegyike φ magterében van.
Tehát {φ(bk+1), . . . , φ(bn)} generátorrendszer im(φ)-ben.

� Lineáris függetlenség: Tegyük fel, hogy
∑n

i=k+1 µiφ(bi) = 0. Ekkor

0 =
n∑

i=k+1

µiφ(bi) = φ

(
n∑

i=k+1

µibi

)
azaz

n∑
i=k+1

µibi ∈ ker(φ).

Mivel {b1, . . . , bk} bázis a magtérben, léteznek α1, . . . , αk skalárok, hogy

n∑
i=k+1

µibi =
k∑

j=1

αjbj.

Átrendezve:
k∑

j=1

(−αj)bj +
n∑

i=k+1

µibi = 0.

Mivel B = {b1, . . . , bn} lineárisan független, ezért α1 = · · · = αk = 0 és
µk+1 = · · · = µn = 0. Tehát {φ(bk+1), . . . , φ(bn)} lineárisan független.

Ezek szerint dim(im(φ)) = n − k = n − dim(ker(φ)), ami épp a dimenziók (4)
szerinti (bizonýıtandó) összefüggését adja.

(5) A 9.30 Defińıció pontjait kell ellenőriznünk. Először azt mutatjuk meg, hogy
S(A) ⊥ N (A). Ehhez legyen b ∈ N (A) és d ∈ S(A) tetszőleges, azt kell belátnunk,
hogy b ⊥ d. De

(∗) b ∈ N (A) ⇔ Ab = 0 ⇔ ∀i : (Ab)i = 0 ⇔ ∀i : ⟨Ai∗, b⟩ = 0.
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Mivel d ∈ S(A), ezért előáll A sorainak lineáris kombinációjaként: vannak olyan
α1, . . . αn ∈ R számok, hogy d =

∑n
i=1 αiAi∗. Viszont ekkor

⟨d, b⟩ = ⟨
n∑

i=1

αiAi∗, b⟩ =
n∑

i=1

αi⟨Ai∗, b⟩
(∗) jobboldala

= 0,

vagyis valóban b ⊥ d.

Az világos, hogy S(A) ∩ N (A) = {0}: tegyük fel, hogy a b = [b1, . . . , bn] vektor
S(A) ∩N (A)-ban van. Ekkor az előbb igazolt rész szerint b ⊥ b, azaz

0 = ⟨b, b⟩ =
n∑

i=1

b2i ,

amiből b1 = b2 = · · · = bn = 0.

Legyenek B = {b1, . . . , bk} ⊆ S(A) és D = {d1, . . . , dm} ⊆ N (A) bázisok A sor-
terében és nullterében. Álĺıtjuk, hogy B∪D lineárisan független. Legyenek ugyanis
λ1, . . . , λk, µ1, . . . , µm ∈ R tetszőlegesek. Ha

0 =
k∑

i=1

λibi +
m∑
j=1

µjdj,

akkor

−
k∑

i=1

λibi =
m∑
j=1

µjdj

adódik, de a baloldal S(A)-ban, a jobboldal N (A)-ban van, vagyis – egyenlőségük
miatt – midkét oldal benne van S(A) ∩ N (A)-ban. Ezért az előző bekezdés szerint
mindkét oldal 0. Viszont B és D bázisok, emiatt

λ1 = · · · = λk = µ1 = · · · = µm = 0;

ez mutatja, hogy B ∪D tényleg lineárisan független.
Az előző bekezdés miatt a bizonýıtás befejezéséhez elég azt meggondolni, hogy

dim(N (A)) + dim(S(A)) = n.

Ehhez legyen φ : Rn → Rn, φ(x) = Ax. Ekkor, mivel N (A) = ker(φ) és O(A) =
im(φ), ezért

dim(N (A)) + dim(S(A))
7.46 Tétel

= dim(N (A)) + dim(O(A)) =

dim(ker(φ)) + dim(im(φ))
(4) (Dimenziótétel)

= n,

és ezzel készen vagyunk.
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9.8. Ellentmondásos (túlhatározott) lineáris egyenletrendsze-
rek optimális közeĺıtő megoldása

Tegyük fel, hogy meg kell oldanunk egy olyan Ax = b lineáris egyenletrendszert,
melyek egyenletei ellentmondanak egymásnak (pl. az egyenletrendszer jobboldala
mérési eredményekből származik, de a mérések pontatlanok). A lineáris egyenlet-
rendszerek megoldhatóságának mátrixrangos jellemzéséből (7.50 Tételből) tudjuk,
hogy az Ax = b egyenletrendszer pontosan akkor ellentmondásos (azaz pontosan ak-
kor nincs neki megoldása), ha b nincs benne A oszlopterében. Mit tehetünk ilyenkor?
Megpróbálhatjuk megkeresni O(A)-ban a b-hez legközelebbi b′ vektort, és az eredeti
egyenletrendszer helyett Ax = b′-t oldjuk meg. Mivel b′-t O(A)-ból választottuk,
ennek az egyenletrendszernek biztosan lesz megoldása. Továbbá b′ választása miatt
igaz lesz, hogy az Ay alakú vektorok közül (vagyis O(A) elemei közül) épp a mi
x megoldásunk lesz az, melyre Ax (vagyis b′) a lehető legközelebb lesz b-hez (spe-
ciálisan, ha b mégis benne van O(A)-ban, akkor b és b′ távolsága 0 lesz, ezért a fenti
közeĺıtő megoldás igazi, pontos megoldás lesz).

A fenti ötlet keresztülviteléhez már csak a megfelelő távolságfogalom bevezetése
van hátra, illetve az, hogy adott b-hez megtaláljuk az O(A) altér legközelebbi elemét.
Geometriai ismereteink alapján tudjuk, hogy R2 illetve R3 adott altereiben b-nek -
a szóbanforgó altérre vett - merőleges vetülete van a legközelebb b-hez. Ez adja az
ötletet, hogy sokdimenziós esetben is a merőleges vetülettel próbálkozzunk. Ebben
az alfejezetben tehát

� bevezetjük sokdimenziós vektorok hosszát (és ezzel pontpárok távolságát),
� kidolgozzuk a merőleges vetület megfelelő általánośıtását,
� ellenőrizzük, hogy intúıciónk helyes: adott altérben adott b-hez tényleg b

merőleges vetülete van legközelebb,
� példát adunk egy ellentmondásos lineáris egyenletrendszer közeĺıtő optimális

megoldására.

A következő félévben folytatjuk majd ilyen irányú vizsgálatainkat, lesznek további
(hatékonyabb, szebb módszerek).

9.35. Defińıció. Ha b ∈ Kn, akkor b hossza: |b| =
√

⟨b, b⟩.
Az előző defińıció jelöléseinek megtartásával vegyük fel b-t koordinátás alakban:

b = [b1, . . . , bn]. Ekkor

⟨b, b⟩ =
n∑

i=1

b2i ,

ez – a Pitagorasz-tétel miatt – R2-ben illetve R3-ben a śıkvektorok, illetve térvektorok
szokásos hossz-négyzetét adja. Ennek a természetes általánośıtása szerepel az előző
defińıcióban.

9.36. Defińıció. Legyen W a Kn vektortér altere, és legyen v ∈ Kn. Azt mondjuk,
hogy a v′ ∈ W vektor merőleges vetülete v-nek W -re, ha

v − v′ ⊥ W.
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9.37. Tétel. Legyen n ∈ N és legyen V ⊆ Rn egy altér. Ekkor

1. Pitagorasz-tétel: Ha u, v ∈ Rn és u ⊥ v, akkor |u+ v|2 = |u|2 + |v|2;
2. ∀u ∈ Rn∃u′ ∈ V : u′ merőleges vetülete u-nak V -re;
3. V -ben u merőleges vetülete van legközelebb u-hoz.

Bizonýıtás. (1) igazolása a következő:

|u+v|2 = ⟨u+v, u+v⟩ = ⟨u, u+v⟩+⟨v, u+v⟩ = ⟨u, u⟩+⟨u, v⟩+⟨v, u⟩+⟨v, v⟩ = (∗).

Mivel azonban u ⊥ v, ezért ⟨u, v⟩ = 0 és ⟨v, u⟩ = 0. Ezért

(∗) = ⟨u, u⟩ + ⟨v, v⟩ = |u|2 + |v|2,
ahogy álĺıtottuk.

(2) Igazolásához vegyünk fel egy B = {b1, . . . , bk} ⊆ V bázist V -ben. Legyen
A az a mátrix, melynek a {b1, . . . , bk} vektorok a sorai. Vegyünk fel egy D =
{bk+1, . . . , bn} ⊆ N (A) bázist N (A)-ban. A 9.34 Tétel 5. pontja miatt B ∪D bázis
Rn-ben. Ezért vannak α1, . . . , αn ∈ R számok, melyekkel

u =
n∑

i=1

αibi.

Legyen u′ =
∑k

i=1 αibi (tehát u′ előálĺıtásához u koordinátáiból csak a V -be eső
vektorok koordináit használjuk). Azt álĺıtjuk, hogy ez az u′ merőleges vetülete u-
nak. Az világos, hogy u′ ∈ V . Továbbá, mivel

u− u′ =
n∑

i=k+1

αibi,

ezért u − u′ ∈ N (A). Mivel N (A) merőleges S(A) = V -re ezért u − u′ ⊥ V is
teljesül, tehát u′ a 9.36 Defińıció szerint u′ valóban merőleges vetülete u-nak.

A merőleges vetület egyértelműségét és 3.-at egyszerre látjuk be. Legyen v ∈ V
tetszőleges és legyen u′ tetszőleges merőleges vetülete u-nak V -re. Ekkor u−u′ ⊥ V
és nyilván u′−v ∈ V . Ezért u−u′ ⊥ u′−v. Ezt az (1)-ben igazolt Pitagorasz-tétellel
kombinálva azt kapjuk, hogy

(∗) |u− v|2 = |(u− u′) + (u′ − v)|2 (1) Pit.Tétel
= |u− u′|2 + |u′ − v|2.

Ezek szerint |u−v| akkor és csak akkor minimális, ha |u′−v|2 = 0, vagyis ha v = u′.
Ez egyrészt mutatja, hogy V -ben u merőleges vetületei vannak legközelebb u-hoz.
Másrészt, u′-n ḱıvül, u-nak nem lehet másik u′′ merőleges vetülete V -re, mert akkor
ezt a másik u′′-t adva értékül (∗)-ban v-nek, nem a minimális távolság adódna.

9.38. Példa. Legyen W az x-tengely R2-ben: W = {(x, 0) | x ∈ R}, és b = (3, 4).
Ekkor b ortogonális vetülete W -re: (3, 0). Távolság: |b − (3, 0)| = 4. Valóban,
bármely más (x, 0) pontra:

|(3, 4) − (x, 0)|2 = (3 − x)2 + 16 ≥ 16,

és egyenlőség csak x = 3 esetén teljesül.
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Példa: egy ellentmondásos egyenletrendszer meg-

oldása

Ebben az alfejezetben a a következő egyenletrendszert vizsgáljuk.

(∗)


1
2
x− 1

2
y = 5

y = 7

x = −1

Ez nyilvánvalóan ellentmondásos: a két utolsó egyenletből x − y = −8 következik,
ami ellentmond az első egyenletnek. Mielőtt megoldjuk, léırom, milyen geometriai
megfontolások alapján találtam ki ezt az egyenletrendszert. Ez a megoldáshoz nem
lenne szükséges, de talán seǵıthet megérteni a sok számolás mögött rejlő gondolato-
kat.

Találomra választottam egy śıkot:

S : 2x+ y − z = 0.

Egyetlen szempontom az volt, hogy x, y és z együtthatói páronként különbözzenek,
és kicsi egész számok legyenek. Adjuk meg ezt a śıkot paraméteresen: S egyenletében
y és z szabad változók, ezért S egy paraméteres előálĺıtása:−1

2
s+ 1

2
t

s
t

 = s ·

−1
2

1
0

+ t ·

1
2

0
1

 .
Válasszunk egy b′ pontot az S śıkon, mondjuk az s = 4, t = 2 paraméter-értékekhez
tartozó pont legyen b′. Itt megint csak arra figyeltem, hogy s, t értékei különbözze-
nek, párosak legyenek, hogy a menet közben adódó törtek egészekké váljanak, és ne
legyenek túl nagyok. Tehát b′ = [−1, 4, 2].

Legyen e a b′ ponton átmenő, S-re merőleges egyenes. Ennek egy irányvektora
megegyezik S egy normálvektorával: [2, 1,−1]. Ebből az e egyenes paraméteres
egyenletrendszere: −1

4
2

+ u ·

 2
1
−1

 .
Legyen b az e egyenes (mondjuk) az u = 3 paraméter-értékhez tartozó pontja:
b = [5, 7,−1]. Ez nincs benne S-ben, de S-re való merőleges vetülete b′. Az egyen-
letrendszerünk fejezze ki azt, hogy ezt a b-t akarjuk az S paraméterezésében szereplő
két vektor lineáris kombinációjaként előálĺıtani. Vagyis keressünk olyan x, y-nt, me-
lyekre

y ·

−1
2

1
0

+ x ·

1
2

0
1

 =

 5
7
−1

 .
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Ez nyilvánvalóan lehetetlen, mert b nincs az S śıkban. Feltételeinket egyenletrend-
szerré alaḱıtva kapjuk az alfejezet elején megadott (∗) egyenletrendszert.

Ezek után oldjuk meg (∗)-ot a korábbi fejezetek ismeretei alapján (még egyszer
hangsúlyozom, hogy későbbi félévekben lesz hatékonyabb módszer).

9.39. Példa (Megoldás vet́ıtési módszerrel). Az világos, hogy (∗) ellentmondásos.
1. lépés: Mátrix alakba ı́rás

A =

1
2
−1
2

0 1
1 0

 , b =

 5
7
−1

 , Ax = b, x =

[
x
y

]
.

Meg kéne keresnünk az egyenletrendszer jobboldalának (b-nek) merőleges vetületét
A oszlopterére.
2. lépés: Oszloptér (O(A)) bázisának megválasztása Az A mátrix oszlopvektorai:

a1 =

1
2

0
1

 , a2 =

−121
0

 .
Ellenőrizve: a2 nem skalárszorosa a1-nek, tehát lineárisan függetlenek. Így

B = {a1, a2} bázis O(A)-ban.

3. lépés: Ortogonális kiegésźıtő bázisának megválasztása vagyis bázist kell
keresnünk N (AT )-ban: Keressük azokat a d ∈ R3 vektorokat, amelyekre ATd = 0:

AT =

[
1
2

0 1
−1
2

1 0

]
.

Gauss-eliminációval [
1
2

0 1 | 0
−1
2

1 0 | 0

]
→
[
1
2

0 1 | 0
0 1 1 | 0

]
,

ez lépcsős alakú. Megoldása: −2s
−s
s

 = s ·

−2
−1
1

 .
Ezek szerint N (AT ) egy bázisa: [−2,−1, 1] (vegyük észre, hogy ez párhuzamos a
feladat elkésźıtésénél használt e egyenes irányvektorával!) Tehát a megfelelő teljes
bázis R3-ban: {a1, a2,d}.
4. lépés: b feĺırása az előbbi bázisban Keressük λ1, λ2, µ skalárokat úgy, hogy:

b = λ1a1 + λ2a2 + µd
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azaz  5
7
−1

 = λ1

1
2

0
1

+ λ2

−121
0

+ µ

−2
−1
1

 .
Ez lineáris egyenletrendszer, előadáson Gauss-elminációval megoldottuk, a hall-
gatóktól kapott anyag erről az előadásról nagyon eltért attól, ami elhangzott, ezért
újragépeltem. A Gauss-elimináció nem túl érdekes lépéseit nem gépelem be, csak a
megoldást ı́rom ide: λ1 = 2, λ2 = 4, µ = −3. ( visszahelyetteśıtéssel ellenőrizhető,
hogy ez tényleg megoldás, és mivel {a1, a2,d} bázis, ezért több megoldás nincs is).
Tehát:

b = 2a1 + 4a2 + −3d.

5. lépés: Vetület meghatározása. A vetület az O(A)-ba eső rész, azaz a d
irányú komponens elhagyásával:

b′ = λ1a1 + λ2a2

azaz

b′ = 2

1
2

0
1

+ 4

−121
0

 =

−1
4
2

 .
Vegyük észre, hogy ez a b′ pontosan az, amit a feladat kitalálása során az S śıkon
választottunk!
6. lépés: Az Ax = b′ egyenlet megoldása. Az

1
2
x− 1

2
y = −1

y = 4

x = 2

egyenletrendszert kell megoldani. Ez menne pl. Gauss-eliminációval, de most sze-
rencsére rögtön látszik a megoldás: a két utolsó egyenletből x = 2, y = 4, és ez
kieléǵıti az első egyenletet is. Azt kaptuk, hogy az optimális közeĺıtő megoldás
x = 2, y = 4, ami azt is jelenti, hogy az egyenletrendszerünk A mátrixának osz-
lopterében az A · [2, 4]T vektor van az eredeti jobboldalhoz ([5, 7,−1]-hez) a lehető
legközelebb.

Mellesleg, vegyük észre, hogy A · [2, 4]T = [−1, 4, 2] éppen az a b′ vektor, amit
a feladat kitalálásakor választottunk az S śıkon, és az optimális közeĺıtő megoldást
adó [2, 4]T sem véletlenül esik egybe a feladat kitalálása során a b′ megválasztásához
használt s = 4, t = 2 paraméter-értékekkel.
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