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1 Problem description

A hypergraph H = (V,E) is a generalization of graphs, where E(H) ⊆ 2V \ ∅, that is, a
hyperedge is a non-empty subset of the vertices. Clearly, a simple graph is a hypergraph where
each hyperedge is a subset of vertices of size 2. A hypergraph is a t-uniform hypergraph if each
hyperedge is a subset of size t (that is, simple graphs are 2-uniform hypergraphs). The degree
of a vertex is the number of hyperedges incident with it. A degree sequence D is a finite series
of non-negative integers. A hypergraph H is a realization of D if the degrees of the vertices
of H equal the numbers in D. If a realization of D exists, we say that D is hypergraphic or
simply graphic. A degree sequence may have many different hypergraph realizations. A natural
question is whether these realizations are isolated objects, or whether they can be transformed
into one another by simple local operations.

A switch operation on a 3-uniform hypergraph H = (V,E) removes two hyperedges
(a1, b1, c1), (a2, b2, c2) ∈ E(H) and adds two hyperedges (a2, b1, c1) and (a1, b2, c2) that were
not in H before the switch operation. It is easy to see that switches do not change the degrees
of H. We are interested in degree sequence classes for which any realization of a degree sequence
D in that class can be transformed into any other realization of D with a finite series of switch
operations. In such a case, we say that the switches are irreducible on the space of realiza-
tions. Such sufficient transformations are crucial for sampling realizations of a degree sequence.
Sampling hypergraph realizations of a degree sequence is a key task in modern statistics [5].

It is well-known that (the analogous) switch operations are irreducible on the space of simple
graph (that is, 2-uniform hypergraph) realizations of any degree sequence [4, 3]. However, it is
also known that switches are not irreducible on the space of 3-uniform hypergraph realizations
of some degree sequences [5]. This raises the natural question of characterizing those degree
sequences for which the space of t-uniform hypergraph realizations is connected under suit-
ably defined local operations, and to identify minimal sets of transformations that guarantee
irreducibility.

Somewhat paradoxically, even deciding whether a 3-uniform hypergraph realization of a
degree sequence exists is already an NP-complete problem in general [1]. This makes it far
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from obvious that the space of realizations should admit simple transformation rules. However,
there are special degree classes for which it is easy to decide if a 3-uniform hypergraph exists
with those given degrees. Even more notably, we can give degree sequence classes which are
fully graphic, that is, any degree sequence in that class is graphic. The main result of the
2024 Spring reseach class was to characterize those (c1, c2) pairs for which each degree sequence
of length n with sum of degrees divisible by 3 and all degrees between c1

(
n−1
2

)
and c2

(
n−1
2

)
is graphic (technical remark: there might be finite number of exceptions). Furthermore, the
bounds obtained are strict in the sense that out of these bounds the degree sequence problem
becomes NP-complete [8]. To conclude, the parametric 3-uniform hypergraphic degree sequence
problem is either extremely easy (one just has to check if the sum of the degrees can be divided
by 3) or hopelessly hard (NP-complete).

In a follow-up research, we also proved a strict dichotomy theorem for sparse t-uniform
hypergraphs [9]. Observe that

(
n−1
t−1

)
= Ω(nt−1). Therefore, a degree sequence is considered

sparse if its maximal degree is o(nt−1) (for those who are unfamiliar with the o() notation, it
roughly means much smaller than nt−1). We considered degree sequences between nα′

and 6nα,
0 ≤ α′ ≤ α < t−1. It turns out that the hypergraphicality problem with this parameterization
either can be solved in linear time or it is NP-complete. Again, the parametric regime where
the realization problem can be solved in linear time is a fully graphic degree sequence class.

These results naturally suggest that the dichotomy observed for the existence of realiza-
tions may also manifest itself at the level of reconfiguration. In particular, it is tempting to
conjecture that fully graphic degree sequence classes – especially those parameterized by lower
and upper bounds on the degrees – admit irreducible switch operations on their space of real-
izations. In other words, whenever realizability is guaranteed based on purely minimum and
maximum degrees, the corresponding realization space may also be connected under simple
local transformations. Establishing irreducibility in such parametric regimes, or identifying
precise obstructions to it, is a central motivation of the proposed research.

The suggested research problems for the 2026 Spring semester are the following:

1. Transforming realizations into each other. The primary goal of the project is to
study the connectivity of the space of 3-uniform hypergraph realizations of a fixed degree
sequence under switch operations. Given a degree sequence D, we ask whether any two
realizations of D can be transformed into each other by a finite sequence of switches, and
if not, to identify explicit obstructions to such transformations.

2. Irreducibility in parametric degree classes. Motivated by recent dichotomy results
for the existence of realizations, we aim to investigate degree sequence classes parameter-
ized by minimum and maximum degree bounds for which realizability is guaranteed. A
central question is whether these fully graphic classes also admit irreducible switch oper-
ations, or whether additional local transformations are necessary to ensure connectivity.

3. Minimal transformation rules. If standard switch operations are not sufficient to
achieve irreducibility, an important direction is to design and analyze natural extensions



of switch operations. The goal is to determine small and intuitive sets of local moves that
connect all realizations within a given parametric degree class.

4. Transforming linear hypergraphs into each other A hypergraph is linear if any
two hyperedges intersect in at most one point (so the hyperedges have the same property
as lines in geometry). We are interested in when a degree sequence has a linear graph
realization, and further how the realizations can be transformed into each other. There
are some preliminary results. A Latin square is an n × n table filled by numbers from
{1, 2, . . . , n} such that each number is presented in each row and each column exactly once.
Any n×n Latin square can be unequivocally represented by a 3-uniform hypergraph of 3n
vertices, where the vertices are the n rows, the n columns and the first n positive integers,
and there is a hyperedge (a, b, c) if number c is in row a and column b. Such a hypergraph
is a tripartite hypergraph, that is, there are 3 disjoint vertex sets of the vertices such that
each hyperedge contains exactly one vertex from each vertex class. In addition, such a
hypergraph is linear. It is known that any n × n Latin square can be transformed into
any other n×n Latin square via Latin squares by perturbing at most 3 rows in each step
[6]. These transformations create larger perturbations than switches, however, such large
perturbations are necessary for irreducibility. Also, it is worth mentioning that these
larger perturbations not only maintain the underlying degree sequence but also the linear
property of the intermediate tripartite hypergraphs.

2 Qualifying problems

Please, solve the first 3 of the following exercises and at least one of exercises 4 and 5. Solutions
to the remaining exercises will be considered in case of competition. Solving both exercises 4
and 5 is also considered in case of competition.

1. Show that the sum of the degrees in a t-uniform hypergraph must be divisible by t. Give
an example of a degree sequence D of length 5 in which the sum is divisible by 3, each
degree is positive, the maximum degree is at most 6

(
=

(
5−1
3−1

))
, but D does not have a

3-uniform hypergraph realization.

2. A hypergraph as well as its corresponding degree sequence are called regular if all degrees
are the same. Prove that regular tripartite degree sequences on n + n + n vertices are
graphic if the common degree is at most n2.

3. Construct two 5× 5 Latin squares such that the first one cannot be transformed into the
second one by a series of transformations each affecting only two rows or two columns.
Any intermediate object obtained by the transformations must be a Latin square, too.

4. Prove that any realization of a tripartite regular degree sequence D can be transformed
into any other realization of D by a series of switch operations. If you are planning to



solve this exercise, please also read exercise 5. In your proof, highlight where you use the
condition of regularity. Observe that the statement does not hold for an arbitrary degree
sequence (otherwise exercise 5 would not have a solution), so you have to use regularity
somewhere.

5. Find two tripartite hypergraphs H1 and H2 with the same degree sequences such that H1

cannot be transformed into H2 by a series of switch operations.

6. A Latin rectangle is a k×n table, k < n, such that each row contains the numbers from 1
to n, and there is no column that contains the same number twice. It is a known theorem
that any Latin rectangle can be extended into a Latin square. Based on this known
theorem, prove that for each prime p > 3, there are two p × p Latin squares such that
the first one cannot be transformed into the second one by a series of transformations
each affecting only two rows or two columns. Any intermediate object obtained by the
transformations must be a Latin square, too.

7. (Research-level problem) A hinge-flip operation on a 3-uniform hypergraph H =
(V,E) removes a hyperedge (a1, b, c) and adds a hyperedge (a2, b, c) that was not in
E(H) before the hinge-flip operation. Note that a hinge flip decreases the degree of a1
by 1 and increases the degree of a2 by 1. Also, it does not change the degree of any
other vertex. It also does not change the sum of the degrees. Find a class of degree
sequences D with the following properties. Any D = (d1, d2, . . . , dn) ∈ D and any 3-
uniform realizations H1 and H2 of D, H1 can be transformed into H2 with a sequence of
hinge-flips and switch operations such that any intermediate hypergraph H ′ has a degree
sequence D′ = (d′1, d

′
2, . . . , d

′
n) satisfying∑

i

|di − d′i| ≤ 2.

Note that there are multiple solutions to this problem, try to find as nice solution as
possible. Solving this problem is not required for qualification, but strong partial progress
will be considered positively.
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