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This note is a sequel to [1]. First let us recall some of the notations. Denote by
G{n, m) a graph with n vertices and m edges. Let Kd(ru ..., rd) be the complete d-
partite graph with r{ vertices in its i-th class and put Kd(t) = Kd(t, ..., t), Kd = Kd(\).

Given integers n ̂  d(^ 2), let md(n) be the minimal integer with the property
that every G(n, m), where m ^ md(ri), contains a Kd. The function md(n) was deter-
mined by Turan [5]. It is easily seen that

d-2
md(n) = n 4- obi).

2(d-\)

In this note we are interested in the maximal value of /, depending on the integers
n, d (2 ^ d ^ n) and on a positive number c, such that every G(n, m) contains a
Kd{t) provided

/ d-2 \
+c\ n2.

\ 2 ( d - l ) /m

We denote this maximal value by g(n, d, c). Naturally, we may and will always
suppose that c < l/(2(d—1)). Erdos and Stone [3] proved the rather surprising fact
that if n is large enough then g(n, d, c) ̂  (/d_ j («))*, where ls denotes the s times iterated
logarithm. However, this estimate turns out to be rather far from best possible. For
fixed d and c (c < l/(2(d— l))j the correct order of g(n,d, c) was determined by
Bollobas and Erdos [1], who proved that there are constants c2 > ci > 0 such that

Ci log n ^ g{n, d, c) < c2 log n.

More precisely, they showed that there are positive constants yd, yd*, depending on
d, such that

logn
ydclogn^g(n,d,c)^yd*— . (1)

-logc

The main aim of the paper is to show that, for a fixed value of d, the upper bound in
(1) gives the correct order of g(n, d, c) for all c < l/(2(d— 1)) and sufficiently large
values of n.

Denote by [x] the integer part of x.

THEOREM, (a) There is an absolute constant a > 0 such that ifO<c<l/d and

m> II
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then every G(n, m) contains aKd+l(/), where

[ cc log n 1
/ = . (2)

Ulog(l/c)J

(b) Given an integer d ^ 1 there exists a constant ed > 0 such that if 0 < c < ed

and n ^ n(d, c) is an integer then there exists a graph G(n, m) satisfying (2) which does
not contain aKd+i (t) with

log(l/c)

Remarks. 1. The ratio of the upper and lower bounds of g(n, d + l, c) given by
the theorem does not depend on c. However, it does depend on d. We conjecture that
the upper bound gives the correct order, i.e. [—log/z/4d log c] can be replaced by
[y log n/log c], where y (< 0) is an absolute constant.

2. The following result can be proved analogously to the theorem.
There exist constants <5 = 5(d) > 0 and e = e(d) > 0 such that if (2) holds and

n> n(d, c) then every G(n, m) contains a Kd+1(a,..., a, b) for every a < elogw and
b < n 2~da. This is sharp in the sense that it fails if <5 is sufficiently small.

3. Our final remark concerns r-graphs for r > 2. Denote by Gr(n, m) an r-graph
with n vertices and m r-tuples. Let Kp

r(t) be the complete /?-partite r-graph whose
classes consist of t vertices. (An r-tuple is in this graph if and only if its elements
belong to different classes.) P u t K / = K/( l ) .

The following problem was posed by Turan about thirty years ago. Given an
integer p > r, determine the minimal positive number cr< p such that for every e > 0
and sufficiently large n every graph Gr(n, m) contains a Kp

r provided

V

None of these values cr p is known and the problem seems to be very difficult. However,
it is possible that without actually determining cr> p one can prove a result analogous
to the theorem.

Conjecture. Let 2 < r < p and e > 0. Then there exists a constant y > 0 such that
if

m> (cr>j

and n is sufficiently large then every Gr(n, m) contains a Kp(t) where

/ =

It can be deduced from the results in [2] that this assertion holds with

t -
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Proof of the Theorem. As (b) can be proved as Theorem 2 in [1], we prove only (a).
The cardinality of a set X is denoted by \X\. In the proof we shall make use of the

following relations that follow from Stirling's formula:

nk /en\k 1 / en\k

ld* Vk) J(2nk) < \~k) '

To simplify the calculations we shall not choose a > 0 immediately but we shall
show that if a > 0 is a sufficiently small absolute constant then the result holds.

Let G = G(n, m) be a graph satisfying (2). As in the proof of Theorem 1 of [1],
it is easily seen that G contains a subgraph H with n' ^ (dc/4)* n vertices whose every
vertex has degree at least (1 — lfd + c/2) n' in H. So with a slight change of notation
it suffices to prove the following proposition.

PROPOSITION. / / 0 < /? < 1 is a sufficiently small absolute constant and every
vertex of a graph G with n vertices has degree at least

(1 - l/d + c)n (0 < c < l/d) (4)

then G contains a Kd+l(M) where

M =
d\og(l/e) •]•

Proof of the proposition. The proposition is obvious if M < 1; so we can assume
without loss of generality that M ^ 1, i.e.

n > (1/c)^. (5)

To prove the result we use induction on d. For d = 1 a stronger result is proved in
[1] (and it also follows from [4]). Suppose now that d ^ 2 and the proposition is
already proved for smaller values of d.

Put

1 1 f log/i
c' = h c and \B

d-\ d

f log/i "1

L (c-l)log(l/c') J

As the minimal degree in H is greater than (1 — l/(d— \) + c')n, by the induction
hypothesis G contains a Kd(p0).

In the sequel we shall make use of the following simple lemma.

LEMMA. Let X be a set of vertices of G. Put x = \X\/d. Denote by Y the set of
those vertices ofG — X that are joined to at least (—lfd + c/2) dx vertices of X. Then

d(cn-2x)^2\Y\. (6)

Proof. Denote by S the number of edges connecting G — X to X. S clearly satisfies
the following inequalities:

dx{(\ - l/d + c)n - dx} ^ \S\ ̂  \ Y\ dx + (n-dx - \ Y\)(l - l/d + c/2)dx.
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Consequently

\c dxn - dx2 + \cd2 x2 ^ \ Y\ (l/d - \c)dx,

and this implies (6).

Let us go on with the proof of the proposition. Put P = (2/c) M.

(a) Let us assume that G contains aK = Kd(pu ...,pd) such that

Pi^p + M, l ^ i ^ d , (7)
where

1 V
d i

and
P^p^P+1. (8)

If fi is sufficiently small then
(9)

so by the lemma we can suppose that if Z is the set of vertices of G — K that are joined
to at least p(d— 1) + cpd/2 vertices of K, then \Z\ ^ den/A. A vertex of Z is joined to
at least

p(d-1) + (cpd/2)-(d-1) (p+M) ^ (cPd/2)-(d-l)M = M

vertices of each class of K, so it is joined to a subgraph Ka(M) of K. By (3) the number
of Kd(M) subgraphs of K is at most

( P + 1 + M ) < i - ) < ( - )
\ M / \ M 1 \ c I\M ) < \ c j

- (7)
/?(logn/log(l/c))

W / l ( 1 / ) ) < np n2" = n3p. (10)

If j8 is sufficiently small then

,„ en end2 log(l/c) den \Z\

/Hogn 4j?log« AM M

Thus Z contains a set Z' of M vertices and K contains a Kd(M) subgraph K' such that
every vertex of Z' is joined to every vertex of K'. Consequently G contains a Kd+l(M).

(b) By (a) we can assume without loss of generality that whenever a subgraph
d

Kd(pu ...,pd)ofG satisfies (7)thenp = ( l / ^ ^ P , - < P>

Let K = Kd{px, ...,pd) be a subgraph for which p attains its maximum under the
conditions (7). As G contains a Kd(p0), M < p0 ^ p < P. Let U be the set of those
vertices that are joined to at least M vertices of each class of K. If U is large, say
\U\ ̂  «*, then G contains a Kd+1(M), just as in case (a). For by (10) the number of
Kd(M) subgraphs of K is at most

<

provided /? is sufficiently small.

/p+M\* I P+l+M y „ n* \U\

\ M / \ M J MM
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Thus we can suppose that \U\ ^ «*. Let W be the set of vertices of G-K that are
joined to at least (1 - \/d + c/2)dp vertices of K. Put V = W- U. By the lemma,
(9) and (5), for sufficiently small fl we have

I V\ ^ i end — /z* ^ \cnd.

Let us define an equivalence relation on V by putting x ~ y (x, y e F) if x and y are
joined to exactly the same vertices of K. Let C, denote the i-th class of K. If x e K
there exists an i0, 1 < i0 < d, such that x is joined to less than M vertices of C,o.
As x is joined to more than (d— \)p vertices of K, the number of vertices of 1J
not joined to x is less than

Hence the number of equivalence classes in V is less than

(2p_\M I
[Ml V

M

M

, r(iog/2)2

\c )

Thus (5) implies that if jS is sufficiently small, the number of equivalence classes is
less than cndf(Sp + SM), so there exists a set Vx of [p + M] equivalent vertices.

We shall show that there is a K' = Kd(qu ...,qd) subgraph in G that contradicts
the maximality of K = Kd{pu ..., pd). Let xeVx and let C; denote the set of those
vertices of Ct which are joined to x. We may suppose without loss of generality that
x is joined to less than M vertices of Clt i.e. ICJ ^ M. Assume furthermore that
|C2| ^ \Cj\, j = 3, ...,d. We shall give different constructions for K' according as

If \C2\ ^ p let the classes C,* of a Kd{qx, ..., qd) be defined as follows:

d * = Vu C2* = C , u C 2 and C / = Cp j = 3, ..., n.
Since

d

1

d

1

Furthermore, | C , | ^ p + M. Thus this subgraph Kd(qu ...,qd) satisfies (7) and
contradicts the maximality of K.

If \C2\ > p, select q = [p+l] vertices from each Cj, j = 2, ...,d and from Vx.
These vertices determine a Kd(q) in G, contradicting the maximality of K.

This completes the proof of the proposition and so the proof of the theorem is also
complete.
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