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Abstract. Let G = X ≀H be the wreath product of a nontrivial finite group X
with k conjugacy classes and a transitive permutation group H of degree n acting
on the set of n direct factors of Xn. If H is semiprimitive, then k(G) ≤ kn for
every sufficiently large n or k. This result solves a case of the non-coprime k(GV )
problem and provides an affirmative answer to a question of Garzoni and Gill for
semiprimitive permutation groups. The proof does not require the classification of
finite simple groups.

1. Introduction

Let G be a finite group. Let k(G) be the number of conjugacy classes of G. This is
equal to the number of complex irreducible representations of G. Bounding k(G) is a
classical problem with numerous applications in both group theory and representation
theory. There are many results providing upper bounds for k(G). The most notable
one is the k(GV ) theorem, which states that k(GV ) ≤ |V |, where V is a finite and
faithful G-module for a finite group G of order coprime to |V | (see [17]).

In [9, Problem 1.1], Guralnick and Tiep put forward the non-coprime k(GV ) prob-
lem: without assuming the coprime condition, can one show that k(GV ) ≤ |V |?
More precisely, can one characterize all finite groups GV such that k(GV ) > |V |?
There are many works on this problem. See [9], [13], [17, Chapter 13], [14], [8], [16],
[5].

In case V is a (finite, faithful and) irreducible G-module for a finite group G (not
necessarily of coprime order to |V |) the semidirect product GV is an affine primitive
permutation group with socle V and degree |V |. On the other hand, when H is a
primitive permutation group with non-abelian socle and of degree n, Garzoni and
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Gill [7] proved that either k(H) < n/2 and k(H) = o(n) as n → ∞, or H belongs to
explicit families of examples.

In this paper we are interested in bounding k(G) for G = X ≀ H, the wreath
product of a finite group X and a permutation group H of degree n acting on the
set of direct factors of Xn. This is a case of the non-coprime k(GV ) problem when
X is an elementary abelian group or, more generally, when X = KW for some finite
K-module W of a finite group K. The problem of bounding k(X ≀H) is also related
to [7] as described below.

Let k := k(X). Schmid [17, Proposition 8.5d] proved that if H is a cyclic group
of order n (acting regularly), then k(G) = (kn − k)/n + kn when n is a prime and
k(G) ≤ kn−k+kn in general. More recently, Garzoni and Gill [7, Lemma 4.3] showed
that if H is a regular permutation group, then k(G) = kn

n
+O(nkn/2). Moreover, they

asked [7, Question 2] whether k(G) = O(kn) for any transitive permutation group H
of degree n.

We provide an affirmative answer to this question in the case whereH is a primitive
permutation group. In fact, our result extends to the broader class of transitive groups
called semiprimitive permutation groups, defined as those permutation groups in
which every normal subgroup is transitive or semiregular. (A permutation group is
called semiregular if the stabilizer of any point is trivial.)

Theorem 1.1. Let G = X ≀H where X is a nontrivial finite group with k conjugacy
classes and H is a transitive permutation group of degree n acting on the set of n
direct factors of Xn. If H is semiprimitive, then k(G) ≤ kn for every sufficiently
large n or k.

Our proof of Theorem 1.1 does not use the classification of finite simple groups.
In several cases we obtain an asymptotic formula for k(G). For example, when H is

an arbitrary transitive group of order at most 2
√
n/4 (see Theorem 2.3) or when H is

primitive with known exceptions (see Theorem 2.4), then k(G) = (1 + o(1))(kn/|H|)
as n → ∞ or k → ∞. It is not true in general that k(G) = O(kn/|H|). On the other
hand, k(G) ≥ kn/|H| even for an arbitrary permutation group H (see Lemma 2.1).

An important class of primitive permutation groups relevant to our proof is the so-
called large base groups (see Definition 4.1). In Section 2, we establish the asymptotic
formula for the case where H is not one of these large base groups. The specific cases
H ∈ {An, Sn} are addressed in Section 3, while the remaining large base groups are
treated in Sections 4 and 5 using a different approach. This completes the proof
of Theorem 1.1 for primitive H. Finally, in Section 6, we extend the machinery
developed in the earlier sections to prove the result for all semiprimitive groups.

2. An asymptotic formula for k(G)

Let G, X, H, k, and n be as in the statement of Theorem 1.1. For the moment
assume that H is an arbitrary permutation group of degree n. This group H has a
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natural action on Irr(Xn) = Irr(X)n, the set of complex irreducible characters of Xn.
Let χ1, . . . , χf be a list of representatives of the distinct orbits of H on Irr(Xn). Let
IH(χ) denote the inertia group in H of a character χ in Irr(Xn).

Lemma 2.1. We have k(G) =
∑f

i=1 k(IH(χi)).

Proof. Fix an index i. The character χi of X
n may be extended to its inertia group

IG(χi) = X ≀ IH(χi) in G by [12, p. 154]. Thus the number of irreducible characters
of IG(χi) lying above χi is k(IH(χ1)), by Gallagher’s theorem [11, Corollary 6.17].
The identity now follows from Clifford’s correspondence [11, Theorem 6.11]. □

For an element h of H ≤ Sn, let σ(h) be the number of cycles in the disjoint cycle
decomposition of h. For a finite group L acting on a finite set Ω, we denote the
number of orbits of L on Ω by n(L,Ω).

Lemma 2.2. We have

n(H, Irr(Xn)) =
1

|H|
∑
h∈H

kσ(h).

Proof. Let h be an arbitrary element of H. The number of characters in Irr(Xn)
fixed by h is kσ(h). The statement follows from the orbit-counting lemma. □

Let α(H) := max1 ̸=h∈H σ(h)/n. The number of characters in Irr(Xn) not lying in
a regular orbit of H is at most∑

h∈H\{1}

kα(H)n ≤ (|H| − 1)kα(H)n.

By applying the orbit-counting lemma to the union of all non-regular orbits, the
number of non-regular orbits is at most

(|H| − 1)kα(H)n + (|H| − 1)kα(H)n

|H|
< 2kα(H)n.

We obtain

(2.1) k(G) <
kn

|H|
+ 2ekα(H)n

by Lemma 2.1 where e denotes the maximum of k(T ) over all the subgroups T of H.
If H is regular (or more generally semiregular), then α(H) ≤ 1/2, e ≤ n and so

k(G) = kn

n
+ O(nkn/2) by (2.1). This is the bound obtained by Garzoni and Gill

mentioned above.
For any permutation group H, as e ≤ 5n/3 by [6], we have k(G) = O(kn), provided

that 51/3 < k1−α(H), again by (2.1).
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Let α(H)n ≤ n− logk(2kn|H|2). In this case (1−α(H))n ≥ logk(2kn|H|2) and so

2kne ≤ 2kn|H| ≤ k(1−α(H))n

|H|
.

This and (2.1) give

(2.2) k(G) <
(
1 +

1

kn

) kn

|H|
.

If n is bounded, k → ∞ and H does not contain a transposition, then

α(H)n ≤ n− 2 ≤ n− logk(2kn|H|2)
and so (2.2) holds. Note that if a primitive permutation group of degree n contains
a transposition then it is Sn.

Let H be a transitive permutation group of degree n. Let µ(H) be the minimal
degree of H. This is the minimal number of points moved by any nonidentity element
of H. Let b(H) be the minimal base size of H. This is the smallest number of points
whose joint stabilizer in H is the identity. We have µ(H)b(H) ≥ n by [2, p. 80].
Since b(H) ≤ log2 |H|, we obtain µ(H) ≥ n/ log2 |H|.

For h ∈ H, let fix(h) denote the set of fixed points of h and let fpr(h) := | fix(h)|/n
be the fixed point ratio of h. It follows that

(2.3) fpr(h) ≤ 1− 1

log2 |H|
for any nonidentity element h in H. We have

(2.4) σ(h) ≤ | fix(h)|+ n− | fix(h)|
2

=
n+ | fix(h)|

2
=

n

2
(1 + fpr(h))

for every h ∈ H. We get

α(H)n ≤ n− n

2 log2 |H|
by (2.3) and (2.4).

The following theorem provides an affirmative answer to [7, Question 2] when H
has small order.

Theorem 2.3. If |H| ≤ 2
√
n/4, then k(G) < (1 + 1

kn
)(kn/|H|).

Proof. Let H be transitive of order at most 2
√
n/4. Observe that if

(2.5) n− n

2 log2 |H|
≤ n− logk

(
2kn|H|2

)
,

then (2.2) holds, which would establish the statement of the theorem. The latter
inequality is equivalent to the inequality n ≥ 2(log2 |H|)(logk(2kn|H|2)). Since the
right-hand side is at most 10(log2 |H|)2 and |H| ≤ 2

√
n/4, inequality (2.5) is satisfied,

finishing the proof of the theorem. □
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We finish this section with the following.

Theorem 2.4. If H is primitive and not isomorphic to any of the groups

(i) An, Sn,
(ii) Am, Sm acting on the set of 2-element subsets of {1, . . .m} with n =

(
m
2

)
,

(iii) a group H satisfying (Am)
2 ≤ H ≤ Sm ≀ S2 where n = m2,

then
kn

|H|
≤ k(G) <

(
1 +

1

kn

) kn

|H|
for every sufficiently large n or k.

Proof. The lower bound follows from Lemma 2.1. Sun and Wilmes [18, Corollary 1.6]
proved that

(2.6) |H| ≤ exp
(
O(n1/3 log7/3 n)

)
,

unlessH is a family of primitive groups appearing in (i), (ii) or (iii) of the statement of
the theorem. Since the right-hand side of (2.6) is less than 2

√
n/4 for every sufficiently

large n, the result follows from Theorem 2.3 for every sufficiently large n. When n is
bounded and k → ∞, the statement follows from the paragraph after (2.2). □

3. Bounding k(X ≀ Sn) and k(X ≀ An)

The goal of this section is to prove the main result in the case H ∈ {Sn,An}. This
is the first exception singled out in Theorem 2.4.

Theorem 3.1. Assume the hypothesis and notation of Theorem 1.1. If H ∈ {Sn,An},
then k(G) ≤ kn for every sufficiently large n or k.

Proof. Let n be bounded by an absolute constant. For every sufficiently large k and
for any n at least 3, we have

k(G) ≤ 2 · k(X ≀ An) ≤ 2 ·
(
1 +

1

kn

) kn

|An|
< kn

by (2.2) and the paragraph that follows it. When n = 2 (and H = S2) the action is
regular and this case was treated earlier (see [17, Proposition 8.5d], [7, Lemma 4.3]
or Section 2). Let n ≥ 5. Observe that

n(Sn, Irr(X)n) =

(
n+ k − 1

k − 1

)
≤ min

{
(n+ 1)k−1, k ·

(k + 1

2

)n−1}
.

If k is bounded by an absolute constant, then

k(G) ≤ 5n/3 · 2 · n(Sn, Irr(X)n) ≤ 5n/3 · 2 · (n+ 1)k−1 < kn,
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for every sufficiently large n, by Lemma 2.1 and [6]. Let k ≥ 100. We have

k(G) ≤ 5n/3 · 2 · k ·
(k + 1

2

)n−1

≤ kn,

and the proof is complete. □

We shall need a variation of [3, Lemma 2.1] in the next section.

Lemma 3.2. For every ϵ and γ with 0 < ϵ < 1 and 0 < γ < 1, there exists
N = N(ϵ, γ) such that for any n ≥ N whenever x ∈ Sn satisfies (1−(1−ϵ)γ)n ≤ σ(x),
then |xSn| < 2 · n4 · |Sn|γ.

Proof. According to [3, Lemma 2.1], whenever x ∈ An satisfies (1−(1−ϵ)γ)n ≤ σ(x),
then |xSn| ≤ 2 · |xAn| < 2 · |An|γ < 2 · |Sn|γ.
Let x ∈ Sn \ An satisfy the inequality (1− (1− ϵ)γ)n ≤ σ(x). In the disjoint cycle

decomposition of x there is a cycle π of even length, say 2r. Let cr and c2r be the
number of cycles of lengths r and 2r respectively in the disjoint cycle decomposition
of x. We have |CSn(x)| = a · rcr · cr! · (2r)c2r · c2r! for some positive integer a.
Let y ∈ An be the permutation obtained from x by replacing π by π2. We have
|CSn(y)| = a · rcr+2 · (cr + 2)! · (2r)c2r−1 · (c2r − 1)!. It is easy to see that |CSn(y)| ≤
n4 · |CSn(x)| from which it follows that |xSn| ≤ n4 · |ySn|. Since σ(y) = σ(x) + 1,
we have (1 − (1 − ϵ)γ)n ≤ σ(y) by hypothesis and so |ySn| < 2 · |Sn|γ by the first
paragraph. This gives |xSn| < 2 · n4 · |Sn|γ. □

Theorem 3.1 can also be proved using Lemma 3.2, as follows.

Second proof of Theorem 3.1. Let ϵ and γ be such that 0 < ϵ < 1 and 0 < γ < 1 such
that δ := 1− (1− ϵ)γ < 1− log2(5)/3. Let β be such that γ < β < 1. There exists
by Lemma 3.2 an integer N such that whenever n ≥ N the inequality δn ≤ σ(x) (for
x ∈ Sn) implies |xSn| < |Sn|β. It follows that the number of elements x ∈ Sn such
that σ(x) ≥ δn is less than |Sn|βp(n) where p(n) denotes the number of partitions of
n.

By Lemma 2.2 we have

n(Sn, Irr(X)n) =
1

|Sn|
∑
h∈Sn

kσ(h) =
1

|Sn|
∑
h∈Sn

σ(h)<δn

kσ(h) +
1

|Sn|
∑
h∈Sn

σ(h)≥δn

kσ(h)

< kδn +
1

|Sn|
kn + |Sn|β−1p(n)kn−1.

Since p(n) < 13.01
√
n by [4], it follows that

n(Sn, Irr(X)n) <
kn

2 · 5n/3



WREATH PRODUCTS AND THE NON-COPRIME k(GV ) PROBLEM 7

for every sufficiently large n or k. By Lemma 2.1 and [6], it follows that

k(G) = k(X ≀H) ≤ 2 · 5n/3n (Sn, Irr(X)n) < 2 · 5n/3 kn

2 · 5n/3
= kn

for every sufficiently large n or k, as wanted. □

In order to finish the proof of Theorem 1.1 for primitive groups, we may assume
that n → ∞. This follows from Theorem 3.1 and the paragraph following (2.2).

4. Bounding the number of orbits of Sm on Irr(X(mℓ ))

To complete the proof of Theorem 1.1 for primitive groups, it remains to address
the families of groups listed in (ii) and (iii) of Theorem 2.4. These exceptional
primitive permutation groups, together with the groups in (i), fall into a broader
class of groups, which we will analyze collectively. We remark that tackling each
specific family individually does not significantly simplify the proof.

Definition 4.1. We say that H is a large base permutation group of degree n if
(Am)

t ≤ H ≤ Sm ≀ St with t ≥ 1 and m ≥ 5, where the action of Sm is on ℓ-element
subsets of {1, . . . ,m} with 1 ≤ ℓ < m/2 and the wreath product has the product

action of degree n =
(
m
ℓ

)t
.

Notation 4.2. We will fix the following notation when working with large base
groups:

(i) Ω is the set of ℓ-subsets of {1, . . . ,m},
(ii) Bt := Irr(X)(

m
ℓ )

t

,

(iii) B := B1 = Irr(X)(
m
ℓ ).

The goal of this section is to obtain an asymptotic bound for n(Sm, B). From this
point on we change notation. For a permutation π in Sm, we denote the number
of cycles in the disjoint cycle decomposition of π by σ(π), while σ′(π) will denote
the number of cycles in the disjoint cycle decomposition of π acting on the set of
ℓ-element subsets of {1, . . . ,m}.

Given j ∈ {1, . . . ,m}, we write

S(j,m) := |{π ∈ Sm|σ(π) = j}|.
This number S(j,m) is often referred to as the Stirling number of the first kind.

Lemma 4.3. S(j,m) < (m!)0.41 for every sufficiently large m and j > 3m/4.

Proof. In Lemma 3.2, let us take γ = 2/5 and 1− (1− ϵ)γ = 3/4 (that is, ϵ = 3/8).
Assume that m ≥ N(ϵ, γ) and j > 3m/4. The set {π ∈ Sm|σ(π) = j} is a union
of conjugacy classes of Sm. Since all elements in {π ∈ Sm|σ(π) = j} satisfy that
σ(π) = j > 3m/4 = (1− (1− ϵ)γ)m, we deduce that

S(j,m) ≤ 2m4p(m)|Sm|γ < 2m413.01
√
m|Sm|2/5,
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and the lemma follows. □

Lemma 4.4. For π ∈ Sm, let fix(π) denote the set of ℓ-subsets of {1, . . .m} that are
fixed under π. There exists a positive integer N such that

| fix(π)| < 3

4

(
m

ℓ

)
for every m ≥ N , 1 ≤ ℓ < m/2, and σ(π) ≤ 3m/4.

Proof. For each i with 1 ≤ i ≤ m, let αi be the number of cycles in π of length i.
We have σ(π) =

∑
i αi and m =

∑
i iαi. Let P(ℓ) denote the set of partitions of the

integer ℓ. For each λ ∈ P(ℓ), let λi denote the number of parts of λ equal to i. Then

| fix(π)| =
∑

λ∈P(ℓ)

(
α1

λ1

)
·
(
α2

λ2

)
· · ·

Using the well-known estimate
(
a
b

)
·
(
c
d

)
≤
(
a+c
b+d

)
, we obtain

(4.1) | fix(π)| ≤
∑

λ∈P(ℓ)

(∑
αi∑
λi

)
=
∑

λ∈P(ℓ)

(
σ(π)

l(λ)

)
,

where l(λ) is the number of parts of λ.

I. Assume first that ℓ ≤ σ(π)/2. Then
(
σ(π)
l(λ)

)
≤
(
σ(π)
ℓ

)
for every λ ∈ P(ℓ). It follows

from (4.1) that

| fix(π)| ≤ p(ℓ) ·
(
σ(π)

ℓ

)
.

Assume furthermore that m > ℓ+ σ(π). We then have(
m

ℓ

)
=

m(m− 1) · · · (σ(π) + 1)

(m− ℓ)(m− 1− ℓ) · · · (σ(π) + 1− ℓ)
·
(
σ(π)

ℓ

)
=

m(m− 1) · · · (m− ℓ+ 1)

σ(π)(σ(π)− 1) · · · (σ(π)− ℓ+ 1)
·
(
σ(π)

ℓ

)
≥
(
4

3

)ℓ

·
(
σ(π)

ℓ

)
,

where the last inequality follows from the hypothesis on σ(π). The lemma then
follows if (4/3)ℓ−1 > p(ℓ). This is true when ℓ ≥ 59, by using the bound for the
partition function in [4].

We therefore may assume that ℓ ≤ 58. By (4.1) and the hypothesis,

(4.2) | fix(π)| ≤
∑

λ∈P(ℓ)

(
[3m/4]

l(λ)

)
.
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Thus, we are done if ∑
λ∈P(ℓ)

(
[3m/4]

l(λ)

)
<

3

4

(
m

ℓ

)
.

For each fixed ℓ with ℓ ≤ 58, we observe that the right-hand side is a polynomial
(in m) of degree ℓ, while the left-hand side is a polynomial of degree at most ℓ and
if equal to ℓ then with smaller leading coefficient. Therefore the inequality holds for
every sufficiently large m, and we are done.

Now assume that m ≤ ℓ+ σ(π). Then(
m

ℓ

)
≥
(

m

m− ℓ

)m−σ(π)

·
(
σ(π)

ℓ

)
≥
(

m

m− ℓ

)m/4

·
(
σ(π)

ℓ

)
≥
(
4

3

)m/4

·
(
σ(π)

ℓ

)
.

As above, the desired inequality follows from these bounds for every sufficiently large
m.

II. Next we consider the case ℓ > σ(π)/2. Then
(
σ(π)
l(λ)

)
≤
(

σ(π)
[σ(π)/2]

)
for every λ ∈

P(ℓ). As in the previous case, it follows from (4.1) that

| fix(π)| ≤ p(ℓ) ·
(

σ(π)

[σ(π)/2]

)
.

On the other hand, by the hypothesis on σ(π) and ℓ, we have(
m

ℓ

)
=

(m− [σ(π)/2]) · · · (m− ℓ+ 1)

ℓ(ℓ− 1) · · · ([σ(π)/2] + 1)
·
(

m

[σ(π)/2]

)
≥
(
5

4

)ℓ−[σ(π)/2]

·
(

m

[σ(π)/2]

)
.

The lemma now follows by similar estimates as in the previous case, but for
(

m
[σ(π)/2]

)
instead of

(
m
ℓ

)
. □

Proposition 4.5. Let X be a nontrivial finite group with k conjugacy classes. There
exists a positive integer N (independent of k) such that

n(Sm, B) < 2max
{
k

7
8(

m
ℓ ), (m!)−0.58k(

m
ℓ )
}
.

for every m ≥ N and 1 ≤ ℓ < m/2.

Proof. Recall from Notation 4.2 that Ω is the set of ℓ-subsets of {1, . . . ,m}. Let
π ∈ Sm. Let fix(π) denote the set of ℓ-subsets fixed by π, as in Lemma 4.4. Note
that

(4.3) σ′(π) ≤ | fix(π)|+ 1

2

((
m

ℓ

)
− | fix(π)|

)
=

1

2

((
m

ℓ

)
+ | fix(π)|

)
.
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Furthermore, by Lemma 2.2,

n(Sm, B) =
1

|Sm|
∑
π∈Sm

kσ′(π).

We decompose this into two smaller sums, depending on whether σ(π) is smaller or
larger than 3m/4:

n(Sm, B) = n1(Sm, B1) + n2(Sm, B1),

where

n1(Sm, B) =
1

|Sm|
∑

σ(π)≤3m/4

kσ′(π) and n2(Sm, B) =
1

|Sm|
∑

σ(π)>3m/4

kσ′(π).

By using (4.3), we get

n1(Sm, B) ≤ 1

m!

∑
σ(π)≤3m/4

k
1
2((

m
ℓ )+|fix(π)|),

and it follows from Lemma 4.4 that

n1(Sm, B) ≤ k
7
8(

m
ℓ )

for every m ≥ N1 for some positive integer N1.
We now work on n2(Sm, B). Recall that S(j,m) denotes the number of elements

of Sm with precisely j cycles. So

n2(Sm, B) ≤ 1

m!

∑
j>3m/4

S(j,m)k(
m
ℓ ).

Using the bound for S(j,m) in Lemma 4.3, we deduce that

n2(Sm, B) ≤ 1

4
m(m!)−0.59k(

m
ℓ )

for every m ≥ N2 for some positive integer N2. Now taking N3 := max{N1, N2}, we
arrive at

n(Sm, B) ≤ k
7
8(

m
ℓ ) +

1

4
m(m!)−0.59k(

m
ℓ )

for every m ≥ N3, and the result readily follows. □

5. Large base groups

In this section we complete the proof of Theorem 1.1 for primitive permutation
groups by proving the following.

Theorem 5.1. Let X be a non-trivial finite group and let k := k(X). Let t ≥ 1,
m ≥ 5, 1 ≤ ℓ < m/2, and (t, ℓ) ̸= (1, 1). Let H be a large base primitive permutation

group of degree n :=
(
m
ℓ

)t
, as in Definition 4.1. Let G = X ≀H. Then k(G) ≤ kn for

every sufficiently large k or n.
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Recall that Ω denotes the set of ℓ-subsets of {1, ...,m}. For π ∈ Sm, let σ
′(π) be the

number of its cycles as a permutation on Ω. For x ∈ Sm ≀ St, let γ(x) be the number
of its cycles as a permutation on Ωt. (Of course, γ(x) = σ′(x) when t = 1.) Recall

also that (Sm)
t has a natural product action on Bt = Irr(X)(

m
ℓ )

t

and n((Sm)
t, Bt)

denotes the number of its orbits.

Proposition 5.2. Assume the notation and hypothesis of Theorem 5.1. Then

k(G) < 5mt/3
(
2tn((Sm)

t, Bt) + k2n/3
)
.

Proof. Let D := (Sm)
t ∩ H be the ‘diagonal’ subgroup of H. By Lemma 2.2, the

number of orbits of H acting on Bt = Irr(Xn) is

(5.1) n(H,Bt) =
1

|H|
∑
x∈H

kγ(x) =
1

|H|
∑
x∈D

kγ(x) +
1

|H|
∑

x∈H\D

kγ(x).

For x ∈ H, we write fix(x) to denote the set of elements in Ωt fixed by x. By (2.4)
we have

γ(x) ≤ n

2
(1 + fpr(x)),

where fpr(x) = | fix(x)|/n is the fixed point ratio of x. According to [1, Remark 1(c)],
we have fpr(x) ≤ 1/3 for every x ∈ H \ D. Thus, the second term in the far-right-
hand-side sum in (5.1) is bounded by k2n/3.
On the other hand, for the first term, we have

1

|H|
∑
x∈D

kγ(x) ≤ 1

|Am|t
∑
x∈D

kγ(x) ≤ 1

|Am|t
∑

x∈(Sm)t

kγ(x) = 2tn((Sm)
t, Bt).

We have shown that

n(H,Bt) ≤ 2tn((Sm)
t, Bt) + k2n/3.

Note that H ≤ Sm ≀ St and Sm ≀ St may be viewed as a subgroup of Smt. It follows
that every subgroup of H has at most 5mt/3 classes, by [6]. The desired bound now
follows by using Lemma 2.1. □

The next lemma relates the number of orbits of the product action of (Sm)
t (on

Bt) and that of Sm (on B1). This allows us to use the results in Section 4 on
bounding n(Sm, B1) to obtain similar bounds for n((Sm)

t, Bt), which in turn provides
corresponding bounds for k(G) by using Proposition 5.2.

Lemma 5.3. n((Sm)
t, Bt) = n(Sm, B1)

t.
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Proof. Observe that Bt = (B1)
t and an element x = (x1, . . . , xt) ∈ (Sm)

t fixes
(χ1, . . . , χt) ∈ Bt if and only if each xi ∈ Sm fixes χi ∈ B1 for every i. Now,

n((Sm)
t, Bt) =

1

|Sm|t
∑

x∈(Sm)t

| fix(x,Bt)|

=
1

|Sm|t
∑

x1∈Sm

· · ·
∑

xt∈Sm

| fix(x1, B1)| · · · | fix(xt, B1)|

=
1

|Sm|t

( ∑
x1∈Sm

| fix(x1, B1)|

)t

= n(Sm, B1)
t,

and the lemma follows. □

We are now ready to prove the main result of this section.

Proof of Theorem 5.1. By Proposition 5.2 and Lemma 5.3, we have

(5.2) k(G) < 5mt/3
(
2tn(Sm, B1)

t + k2n/3
)
.

Obviously, n(Sm, B1) ≤ |B1| = k(
m
ℓ ). Hence

k(G) < 5mt/32tk(
m
ℓ )t + 5mt/3k2n/3.

It is straightforward to see that, as (t, ℓ) ̸= (1, 1), both terms on the right-hand side

are less than 1
2
k(

m
ℓ )

t

for every sufficiently large t. We assume from now on that t is
bounded.

Next, using Proposition 4.5 together with (5.2), we have that there exists a positive
integer N such that, for every m ≥ N ,

k(G) < 5mt/34t(max{k
7
8(

m
ℓ ), (m!)−0.58k(

m
ℓ )})t + 5mt/3k2n/3

≤ 5mt/34tk
7t
8 (

m
ℓ )t + 5mt/34t(m!)−0.58tk(

m
ℓ )t + 5mt/3k2n/3.

With t being bounded, each of these three terms is less than 1
3
k(

m
ℓ )

t

, and therefore
k(G) ≤ kn, for every sufficiently large m.

We now assume that both t and m are bounded, or equivalently, that n is bounded.
Given the hypothesis that H is a primitive group that is different from Sn, it follows
that H does not contain a transposition. In this case, the remark following (2.2)
shows that k(G) < kn for all sufficiently large k. This completes the proof. □

For primitive groups H, Theorem 1.1 follows from Theorems 2.4, 3.1 and 5.1.
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6. Semiprimitive groups

In this section we complete the proof of Theorem 1.1 by proving it for semiprimitive
groups which are not primitive.

Proof of Theorem 1.1. Let H be a semiprimitive permutation group. This is a tran-
sitive permutation group all of whose normal subgroups are transitive or semiregular.
We may assume at this point that H is not primitive. The group H acts on the set
Ω of factors of Xn. Let

Y := Xn/r

for some divisor r ≤ n/2 of n such that H acts primitively on the set Ω of factors of
Y r. Let the kernel of this action be K. Since this is an intransitive normal subgroup
of H, it must be semiregular on Ω.

Let h be an element of H. Let the number of cycles of h acting on Ω and Ω be
denoted by σΩ(h) and σΩ(h), respectively. Observe that σΩ(h) ≤ (n/r) · σΩ(h).

We have

α(H) := max
1̸=h∈H

σΩ(h)

n
= max

{
max
1̸=h∈K

σΩ(h)

n
, max
h∈H\K

σΩ(h)

n

}
≤ max

{
1

2
, max
h∈H\K

σΩ(h)

r

}
.

It follows that if r is bounded by an absolute constant, then α(H) is a fixed number
less than 1 and so k(G) ≤ kn for every sufficiently large n or k by (2.1). We may
therefore assume that r → ∞, in particular, n → ∞.

If H/K is not a large base group (see Definition 4.1), then

|H| = |H/K||K| ≤ |H/K| · n = exp(O(n1/3 log7/3 n))

by (2.6). In this case the result follows from Theorem 2.3.
For general H/K, we have

n(H, Irr(Xn)) =
1

|H|
∑
h∈H

kσΩ(h) =
1

|H|

( ∑
h∈H\K

kσΩ(h) +
∑
h∈K

kσΩ(h)
)
≤

≤ 1

|H|

(
|K|

∑
1̸=h∈H/K

kσΩ(h)·(n/r) + kn + (|K| − 1)kn/2
)
<

< n (H/K, Irr(Y r)) +
kn

|H|
+

nkn/2

|H|
.

The number k(G) is equal to the sum of the numbers of conjugacy classes of
n(H, Irr(Xn)) inertia subgroups, by Lemma 2.1. As before, let e be the maximum
of these numbers. Since K is semiregular, at most

∑
1̸=h∈K kσΩ(h) < (n/r)kn/2 of

the inertia subgroups intersect K nontrivially. These numbers contribute less than
e(n/r)kn/2 ≤ (n/r)2 · 5r/3kn/2, by [15] and [6], to k(G). Since r ≤ n/2, we have
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(n/r)2 · 5r/3kn/2 ≤ n2 · 5n/6kn/2 and this is less than kn/16 for every sufficiently large
n. Thus we have

k(G) ≤ eK · n (H, Irr(Xn)) +
kn

16

< eK · n (H/K, Irr(Y r)) +
eK · kn

|H|
+

eK · nkn/2

|H|
+

kn

16
,

where eK denotes the maximum of the numbers of conjugacy classes of those iner-
tia subgroups of H which intersect with K trivially. Note that eK is at most the
maximum of the numbers of classes of subgroups of H/K.

Recall that we are done when H/K is not a large base group, and so we assume
in the remainder of the proof that H/K is a large base group. We shall follow the
notation in Definition 4.1 and Notation 4.2, with Y and r in place of X and n,
respectively. In particular, (Am)

t ≤ H/K ≤ Sm ≀ St for some t ≥ 1 and m ≥ 5. Also,

r =
(
m
ℓ

)t
.

Since H is not abelian, we have eK ≤ (5/8)|H| by [10]. It follows that

eK · kn

|H|
+

eK · nkn/2

|H|
+

kn

16
≤ 3

4
kn

for every sufficiently large n. Note that H/K can be viewed as a subgroup of Smt,
and so eK ≤ 5mt/3, again by [6]. To establish k(G) ≤ kn for sufficiently large n or k,
it is now sufficient to show that

(6.1) n(H/K, Irr (Y r)) ≤ kn

4 · 5mt/3

for every sufficiently large r, or equivalently, every sufficiently large m or t.
First, arguing as in the proof of Proposition 5.2 and using Lemma 5.3, we have

n(H/K, Irr (Y r)) ≤ 2tn
(
(Sm)

t, Bt

)
+ k(Y )2r/3 = 2tn (Sm, B1)

t + k(Y )2r/3.

When t → ∞, one may use the obvious bound n (Sm, B1) ≤ |B1| = k(Y )(
m
ℓ ) to

achieve (6.1). So we assume that t is bounded.
Next, using Proposition 4.5, we deduce that

n(H/K, Irr (Y r)) ≤ 4tk(Y )
7
8(

m
ℓ )t + 4t(m!)−0.58tk(Y )(

m
ℓ )t + k(Y )2r/3.

for every sufficiently large m. As k(Y ) = kn/r, it follows that

n(H/K, Irr (Y r)) ≤ 4tk
7
8r (

m
ℓ )tn + 4t(m!)−0.58tk

1
r (

m
ℓ )tn + k2n/3.

With n ≥ 2r = 2
(
m
ℓ

)t
, m → ∞, and t being bounded, it is straightforward to verify

that this sum is less than the right-hand side of (6.1), and the proof is complete. □
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[4] P. Erdős, On an elementary proof of some asymptotic formulas in the theory of partitions. Ann.
of Math. (2) 43 (1942), 437–450. 6, 8

[5] J. Fulman and R.M. Guralnick, Enumeration of conjugacy classes in affine groups. Algebra
Number Theory 18 (2024), no. 6, 1189–1219. 1
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