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Abstract

In this dissertation, we prove three results in the analytic theory of automorphic forms over arbitrary
number fields. First we establish the spectral decomposition of shifted convolution sums of two irreducible
cuspidal representations π1, π2 over GL2. Secondly, as an application of the previous one, we prove
a Burgess type subconvex bound for twisted GL2 L-functions. Thirdly, we work out a semi-adelic
Kuznetsov formula.
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Chapter 1

Introduction

1.1 Overview of the dissertation

Automorphic theory plays an important role in mathematics. The early origins of automorphic forms
date back to the first half of the nineteenth century. These special funcions are present in many branches
of number theory, for example, in the investigation of representation numbers of quadratic forms. Also,
automorphic L-functions are the natural generalizations of Dirichlet L-functions. Automorphic forms
also appear in several other areas of mathematics, among others, in algebraic geometry, representation
theory, partial differential equations and combinatorics. This dissertation is a contribution to the analytic
theory of automorphic forms.

The first results on the asymptotic of the additive divisor sum
∑
n≤x τ(n)τ(n+ a) (with a 6= 0 fixed

and τ(n) standing for the number of divisors of n) were obtained by Ingham [35] and Estermann [23].
The main motivation was the investigation of the fourth moment of the Riemann zeta function, see
the works of Ingham [34] and Heath-Brown [31]. Later Motohashi [50], [51] decomposed spectrally the
additive divisor sum in order to obtain a better error term. Up to normalization, τ(n) is the Fourier
coefficient of the derivative (∂/∂s)E(z, s)|s=1/2 of the weight 0 Eisenstein series E(z, s) for the full
modular group SL2(Z) (see [38, Chapter 3]). The automorphic spectrum over GL2 consists of such
Eisenstein series and the arithmetically more interesting cusp forms. The Fourier coefficients of cusp
forms are proportional to Hecke eigenvalues λ(n), so it is natural to ask for a spectral decomposition
of the sum

∑
m−n=aW (m,n)λ(m)λ(n), where W is a reasonable weight function. This was established

by Blomer and Harcos in [4] and [5] for totally real fields. In Chapter 6, we prove a similar spectral
decomposition over arbitrary number fields.

L-functions are among the most interesting and most mysterious objects in mathematics. Their
importance is further confirmed by the fact that two of the seven Millenium Prize Problems stated by
the Clay Institute concerns L-functions, namely, the Birch and Swinnerton-Dyer conjecture and the
Riemann hypothesis. Although most mathematicians strongly believe that the Riemann hypothesis
is true, according to leading experts of analytic number theory, there is very little hope that it will
be proved in our lifetime. For automorphic L-functions, the Riemann hypothesis implies the Lindelöf
hypothesis. For GL1(Q) L-functions (that is, Dirichlet L-funtions) in the conductor aspect, this means
that L(1/2, χ)�ε q

ε holds for every Dirichlet character χ of conductor q, the implied constant depends
only on ε. This is also largely open. By the Phragmén-Lindelöf principle, we have the convexity bound
L(1/2, χ) �ε q1/4+ε and any bound of the form L(1/2, χ) �ε qδ+ε with δ < 1/4 is a subconvex
bound. The famous Burgess bound is the above with δ = 3/16 and was proved in 1963 [17]. Over
GL2(Q), let π be an automorphic cuspidal representation with conductor C(π). The Lindelöf hypothesis
L(1/2, π) �ε C(π)ε is again implied by the Riemann hypothesis. On the other hand, there are several
unconditional results, see for example [21]. It makes sense to investigate this question over general number
fields. The general subconvex bound L(1/2, π) �ε C(π)δ+ε was proved (with an unspecified δ < 1/4)
by Michel and Venkatesh [47]. Fixing π, we may twist it by GL1 characters χ of conductor q. Then
the conductor is multiplied by essentially q2, so Phragmén-Lindelöf gives L(1/2, π ⊗ χ)�π,ε,χ∞ q1/2+ε.
Of course, this is again interesting in the number field case. A Burgess type subconvex bound in this
q-aspect is proved in [5] over totally real fields. In Chapter 7, we extend that result to arbitrary number
fields. We note that this has been proved recently by Wu [61], using a different method.

In the theory of automorphic forms, Kuznetsov’s formula is among the most important and most
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frequently used tools. Briefly speaking, it matches a certain weighted sum of products of Fourier coef-
ficients (or equivalently, Hecke eigenvalues) of an orthogonal basis in the cuspidal space with a sum of
Kloosterman sums, weighted by a Bessel transform. Kuznetsov [44] originally proved his formula for the
modular group over the rational field Q, which was an extension of the Petersson trace formula (which
refers to holomorphic forms) to weight 0 Maass forms (we note that similar results were independently
proved by Bruggeman [8]). Since then, many generalizations and reformulations were born. For totally
real number fields, see the work of Bruggeman and Miatello [10], which includes the principal series
representations and the discrete series representations in a single formula. For general number fields, the
thesis of Venkatesh [56] gives a treatment to spherical vectors with references to [9]. In Chapter 8, we
work out a formula to the more general case: non-spherical vectors are also included. In the derivation,
we follow [56], borrowing the archimedean investigations from [10], [13] and [45]. We note that the
content of this last chapter is more or less the same as of [46].

Now we introduce the notations we shall use later. We advise the reader to consult [59] for the arising
notions.

1.2 The number field

Let F be a number field, a finite algebraic extension of Q. Assume F has r real and s complex places,
we will throughout denote the corresponding archimedean completions by F1, . . . , Fr+s, where F1, . . . , Fr
are all isomorphic to R and Fr+1, . . . , Fr+s are all isomorphic to C as topological fields. Let F∞ stand
for the direct sum of these fields (as rings), F×∞ for its multiplicative group, F×∞,+ for the totally positive

elements (which are positive at each real place), and F diag
∞,+ for {(a1, . . . , ar+s) ∈ F×∞,+ : a1 = . . . = ar+s}.

Denote by o the ring of integers of F . The ideals and fractional ideals will be denoted by gothic
characters a, b, c, . . ., the prime ideals by p and we keep d for the different and DF for the discriminant
of F . Each prime ideal p determines a non-archimedean place and a corresponding completion Fp. At
such a place, we denote by op the maximal compact subring.

Write A for the adele ring of F . Given an adele a, aj denotes its projection to Fj for 1 ≤ j ≤ r + s,
and ap the same to Fp for a prime ideal p. We will also use the subscripts j, p for the projections of
other adelic objects to the place corresponding to j, p, respectively. The subscripts ∞ and fin stand for
the projections to F∞ and

∏
p Fp.

The absolute norm (module) of adeles will be denoted by |·|, while |·|j and |·|p will stand for the norm
(module) at single places. Sometimes we will need | · |∞, which is the product of the archimedean norms.
(At this point, we call the reader’s attention to the notational ambiguity that for a real or complex
number y, we keep the conventional |y| for its ordinary absolute value. We hope this will not lead to
confusion. Note that at real places, |y|j = |y|, while at complex places, |y|j = |y|2.) For a fractional
ideal a, N (a) will denote its absolute norm, defined as N (a) = |a|−1, where a is any finite representing
idele for a. When a is a finite idele, we may also write N (a) for |a|−1.

We define an additive character ψ on A: it is required to be trivial on F (embedded diagonally); on
F∞: ψ∞(x) = exp(2πiTr(x)) = exp(2πi(x1 + . . .+ xr + xr+1 + xr+1 + . . .+ xr+s + xr+s)); while on Fp:
it is trivial on d−1

p but not on d−1
p p−1.

1.3 Matrix groups

Given a ring R, we define the following subgroups of GL2(R):

Z(R) =

{(
a 0
0 a

)
: a ∈ R×

}
, B(R) =

{(
a b
0 d

)
: a, d ∈ R×, b ∈ R

}
, N(R) =

{(
1 b
0 1

)
: b ∈ R

}
.

Assume 0 6= np, cp ⊆ op. Then let

Kp(np, cp) =

{(
a b
c d

)
: a, d ∈ op, b ∈ (npdp)−1, c ∈ npdpcp, ad− bc ∈ o×p

}
,

moreover in the special case np = op, we simply write Kp(cp) instead of Kp(op, cp). For ideals 0 6= n, c ⊆
op, let

K(n, c) =
∏
p

Kp(np, cp), K(c) =
∏
p

Kp(cp),
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and taking the archimedean places into account, let

K = K∞ ×K(o) ⊆ GL2(A),

where

K∞ =

r∏
j=1

SO2(R)×
r+s∏
j=r+1

SU2(C).

Finally, for 0 6= n, c ⊆ o, let

Γ(n, c) =

{
g∞ ∈ GL2(F∞) : ∃gfin ∈

∏
p

Kp(np, cp) such that g∞gfin ∈ GL2(F )

}
.

We note that the choice of the subgroups K is not canonical (they can be conjugated arbitrarily), our
normalization follows [5].

1.3.1 Archimedean matrix coefficients

On K∞, we define the matrix coefficients (see [16, p.8]). Again, it is more convenient to give them on
the factors. At a real place, on SO2(R), for a given even integer q, set

Φq

((
cos θ sin θ
− sin θ cos θ

))
= exp(iqθ).

At a complex place, on SU2(C), we introduce the parametrization

SU2(C) =

{
k[α, β] =

(
α β

−β α

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
.

Assume now that the integers p, q, l satisfy |p|, |q| ≤ l. Then the matrix coefficient Φlp,q is defined via∑
|p|≤l

Φlp,q(k[α, β])xl−p = (αx− β)l−q(βx+ α)l+q,

where this equation is understood in the polynomial ring C[x]. See [13, (3.18)] and [45, (2.28)]. Note
that

||Φlp,q||SU2(C) =

(∫
SU2(C)

|Φlp,q(k)|2dk

)1/2

=
1√

2l + 1

(
2l

l − p

)1/2(
2l

l − q

)−1/2

by [45, (2.35)], where the Haar measure on SU2(C) is the probability measure.

1.4 Measures

On F∞, we use the Haar measure |DF |−1/2dx1 · · · dxr|dxr+1 ∧ dxr+1| · · · |dxr+s ∧ dxr+s|. On Fp, we
normalize the Haar measure such that op has measure 1. On A, we use the Haar measure dx, the product
of these measures, this induces a Haar probability measure on F\A (see [59, Chapter V, Proposition 7]).

On R×, we use the Haar measure d×Ry = dy/|y|, this gives rise to a Haar measure on C× as d×Cy =
d×R|y|dθ/2π, where exp(iθ) = y/|y|. On F×∞, we use the product d×∞y of these measures. On F×p , we
normalize the Haar measure such that o×p has measure 1. The product d×y of these measures is a Haar
measure on A×, inducing some Haar measure on F×\A×.

On K and its factors, we use the Haar probability measures. On Z(F∞)\GL2(F∞), we use the Haar
measure which satisfies∫

Z(F∞)\GL2(F∞)

f(g)dg =

∫
(R×)r×(R×+)s

∫
F∞

∫
K∞

f

((
y x
0 1

)
k

)
dkdx

d×∞y∏r+s
j=1 |yj |

.

Observing further |y|∞ =
∏r
j=1 |yj |

∏r+s
j=r+1 |yj |2, it follows that on F×∞, d×∞y = const.dy/|y|∞.
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On GL2(Fp) we normalize the Haar measure such that K(op) has measure 1. On Z(F∞)\GL2(A) we
use the product of these measures, which, on the factor Z(A)\GL2(A), restricts as∫

Z(A)\GL2(A)

f(g)dg =

∫
A×

∫
A

∫
K

f

((
y x
0 1

)
k

)
dkdx

d×y

|y|
.

Compare this with [5, p.6] and [28, (3.10)]. The seeming difference of the last two displays (i.e. the
factor

∏r+s
j=r+1 |yj |) is explained by the nontrivial intersection

{(
eiθ 0
0 1

)
: θ ∈ R

}
of
{(

y 0
0 1

)
: y ∈ C×

}
and

Z(C)SU2(C).
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Chapter 2

Background on automorphic theory

We review some basic facts about the automorphic theory of GL2 that we shall use later. In the setup,
we follow the work of Blomer and Harcos [5, Sections 2.2-7], even when it is not emphasized. Since our
aim is to extend the main results of [5] from totally real number fields to all number fields, we will always
pay special attention to the complex places.

2.1 Spectral decomposition and Eisenstein series

In this section, following [5, Section 2.2] closely, we give a short exposition of the spectral decomposition
of the Hilbert space L2(Z(A)GL2(F )\GL2(A)). For a detailed discussion, consult [28, Sections 2-5].

First of all, φ ∈ L2(Z(A)GL2(F )\GL2(A)) is called cuspidal if for almost every g ∈ GL2(A),∫
F\A

φ

((
1 x
0 1

)
g

)
dx = 0.

The closed subspace generated by cuspidal functions is an invariant subspace Lcusp decomposing into
a countable sum of irreducible representations Vπ, each π occuring with finite multiplicity (see [28,
Section 2]). This multiplicity is in fact one, as it follows from Shalika’s multiplicity-one theorem, see [39,
Proposition 11.1.1] for the case GL2. Therefore, denoting the set of cuspidal representations by C, we
may write

Lcusp =
⊕
π∈C

Vπ,

where the irredicble representations on the right-hand side are distinct.

Remark 1. More generally, for a Hecke character ω (referred as the central character), the Hilbert space
L2(GL2(F )\GL2(A), ω) consists of those functions φ : GL2(A) → C that are square-integrable on the
coset space Z(A)GL2(F )\GL2(A) and satisfy

φ

((
z 0
0 z

)
γg

)
= ω(z)φ(g)

for all z ∈ A×, γ ∈ GL2(F ). Cuspidal functions and cuspidal representations are defined as above. The
results presented below hold for arbitrary unitary central character and can be proved essentially the
same way. However, in order to keep the exposition as simple as possible, we will work throughout with
trivial central character.

To any Hecke character χ with χ2 = 1, we can associate a one-dimensional representation Vχ generated
by g 7→ χ(det g), these sum up to

Lsp =
⊕
χ2=1

Vχ.

For details, see [28, Sections 3-4].
Now

L2(Z(A)GL2(F )\GL2(A)) = Lcusp ⊕ Lsp ⊕ Lcont,

5



where Lcont can be described in terms of Eisenstein series.
Take a Hecke quasicharacter χ : F×\A× → C×. Denote by H(χ) the space of functions ϕ :

GL2(A)→ C satisfying ∫
K

|ϕ(k)|2dk <∞

and

ϕ

((
a x
0 b

)
g

)
= χ(a)χ−1(b)

∣∣∣a
b

∣∣∣1/2 ϕ(g), x ∈ A, a, b ∈ A×. (2.1)

In particular, H(χ) can be identified with the set of functions ϕ ∈ L2(K) satisfying

ϕ

((
a x
0 b

)
g

)
= χ(a)χ−1(b)ϕ(g),

(
a x
0 b

)
∈ K.

There is a unique s ∈ C such that χ(a) = |a|s∞ for a ∈ F diag
∞,+ and introduce

H(s) =
⊕

χ2=|·|2s∞ on Fdiag
∞,+

H(χ).

Now regard the space H =
∫
s∈CH(s)ds as a holomorphic fibre bundle over base C. Given a section

ϕ ∈ H, ϕ(s) ∈ H(s) and ϕ(s, g) ∈ C. The bundle H is trivial, since any ϕ(0) ∈ H(0) extends to a
section ϕ ∈ H satisfying ϕ(s, g) = ϕ(0, g)H(g)s, where H(g) is the height function defined at [28, p.219].
(One may think of this as a deformation of the function ϕ such that it is invariant on K under the
deformation.)

Define

L′cont =

∫ ∞
0

H(iy)dy,

and equip it with the inner product

〈φ1, φ2〉 =
2

π

∫ ∞
0

〈φ1(iy), φ2(iy)〉dy

=
2

π

∫ ∞
0

∫
F×\A1

∫
K

φ1

(
iy,

(
a 0
0 1

)
k

)
φ2

(
iy,

(
a 0
0 1

)
k

)
dkdady,

where A1 stands for the group of ideles of norm 1 (see [28, (3.15)]). Then there is an intertwining
operator S : Lcont → L′cont given by [28, (4.23)] on a dense subspace. Now combining this with the
theory of Eisenstein series [28, Section 5], we obtain the spectral decomposition of Lcont.

For ϕ ∈ H, and for <s > 1/2, define the Eisenstein series

E(ϕ(s), g) =
∑

γ∈B(F )\GL2(F )

ϕ(s, γg) (2.2)

on GL2(A). This is a holomorphic function which continues meromorphically to s ∈ C, with no poles
on the line <s = 0. Now for y ∈ R×, consider the complex vector space

V (iy) = {E(ϕ(iy)) : ϕ(iy) ∈ H(iy)}

with the inner product

〈E(ϕ1(iy)), E(ϕ2(iy))〉 = 〈ϕ1(iy), ϕ2(iy)〉.

As above,

V (iy) =
⊕

χ2=|·|2iy∞ on Fdiag
∞,+

Vχ,χ−1 ,

with

Vχ,χ−1 = {E(ϕ(iy)) : ϕ(iy) ∈ H(χ)}.
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Here, V (iy) = V (−iy) by [28, (4.3), (4.24), (5.15)]. Therefore, we have a GL2(A)-invariant decomposition

Lcont =

∫ ∞
0

V (iy)dy =

∫ ∞
0

⊕
χ2=|·|2iy∞ on Fdiag

∞,+

Vχ,χ−1dy.

In fact, [28, (4.24), (5.15-18)] implies that for φ ∈ Lcont, taking Sφ = ϕ ∈ L′cont,

φ(g) =
1

π

∫ ∞
0

E(ϕ(iy), g)dy,

and also Plancherel holds, that is,

〈φ1, φ2〉 =
1

π

∫ ∞
0

〈E(ϕ(iy), g), φ2〉dy =
2

π

∫ ∞
0

〈ϕ1(iy), ϕ2(iy)〉dy =
2

π

∫ ∞
0

〈E(ϕ1(iy)), E(ϕ2(iy))〉dy.

To summarize,

L2(Z(A)GL2(F )\GL2(A)) =
⊕
π∈C

Vπ ⊕
⊕
χ2=1

Vχ ⊕
∫ ∞

0

⊕
χ2=|·|2iy∞ on Fdiag

∞,+

Vχ,χ−1dy, (2.3)

a function on the left-hand side decomposes into a convergent sum and integral of functions from the
spaces appearing on the right-hand side, and also Plancherel holds.

For the Eisenstein spectrum, we introduce the notation
∫
E V$d$, where E is a set of Hecke characters

which are nontrivial on F diag
∞,+, such that for each Hecke character χ, exactly one of χ and χ−1 appears

in E .
We also note that while representations in Lsp are one-dimensional, those occuring in Lcusp and Lcont

are infinite-dimensional.

2.2 Derivations and weights

We review the action of the Lie algebra of GL2(F∞) on the space L2(GL2(F )Z(A)\GL2(A)), following
[5, Sections 2.3 and 2.10] at real places, [13, Section 3] and [45, Chapter 2] at complex places.

Since the central character we are dealing with is trivial, we can restrict ourselves to the Lie algebra
sl2(F∞). First we give a real basis such that each basis element is 0 for all but one place Fj . At this
exceptional place, we use the following elements. For a real place (j ≤ r), let

Hj =

(
1 0
0 −1

)
, Rj =

(
0 1
0 0

)
, Lj =

(
0 0
1 0

)
, (2.4)

while for a complex place (j > r), let

H1,j =
1

2

(
1 0
0 −1

)
, V1,j =

1

2

(
0 1
1 0

)
, W1,j =

1

2

(
0 1
−1 0

)
,

H2,j =
1

2

(
i 0
0 −i

)
, V2,j =

1

2

(
0 i
−i 0

)
, W2,j =

1

2

(
0 i
i 0

)
.

(2.5)

An element X ∈ sl2(F∞) acts as a right-differentiation on a function φ : GL2(A)→ C via

(Xφ)(g) =
d

dt
φ(g exp(tX))

∣∣∣∣
t=0

.

Let g = sl2(F∞)⊗R C be the complexified Lie algebra and set U(g) for its universal enveloping algebra,
consisting of higher-order right-differentiations with complex coefficients.

The above-defined first-order differentiations give rise to local Casimir elements

Ωj = −1

4

(
H2
j − 2Hj + 4RjLj

)
, Ω±,j =

1

8

(
(H1,j ∓H2,j)

2 + (V1,j ∓W2,j)
2 − (W1,j ∓V2,j)

2
)

(2.6)
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at real and complex places, respectively.

On an irreducible unitary representation (π, Vπ), these local Casimir elements act as scalars, that is,
for φ ∈ V∞π , Ωjφ = λjφ, Ω+,jφ = λ+,jφ, Ω−,jφ = λ−,jφ with

λj =
1

4
− ν2

j , λ±,j =
1

8

(
(νj ∓ pj)2 − 1

)
, (2.7)

where νj ∈ iR, pj ∈ Z for principal series representations, |νj | ≤ θ deg[Fj : R], pj = 0 for complementary
series representations and νj ∈ 1/2 + Z for discrete series representations (which may occur only if Fj is
real). Here, θ is a constant towards the Ramanujan-Petersson conjecture, according to the current state
of art (see [3]), θ = 7/64 is admissible.

For some D ∈ U(g) and a smooth vector φ ∈ L2(GL2(F )Z(A)\GL2(A)), recalling the spectral
decomposition (2.3),

φ =
∑
π∈C

φπ +
∑
χ2=1

φχ +

∫
E
φ$d$,

we have

||Dφ||2 =
∑
π∈C
||Dφπ||2 +

∑
χ2=1

||Dφχ||2 +

∫
E
||Dφ$||2d$, (2.8)

see [19, Sections 1.2-4] with references to [20]. Compare (2.8) also with [4, (33)] and [5, (84)].

The local maximal connected compact subgroups are SO2(R) (for j ≤ r) and SU2(C) (for j > r).
The corresponding Lie algebras are so2(R) and su2(C), and define

Ωk,j = Rj − Lj , Ωk,j = −1

2
(H2

2,j + W2
1,j + W2

2,j), (2.9)

at real and complex places, respectively. At a complex place, Ωk,j is the Casimir element (see [55,
Definition 9 on p.72]).

We now define the weight set W (π). For j ≤ r, let qj be any even integer with the only restriction
|qj | ≥ 2|νj |+1 in the discrete series. For j > r, let (lj , qj) be any pair of integers satisfying |qj | ≤ lj ≥ |pj |.
Now set

w = (q1, . . . , qr, (lr+1, qr+1), . . . , (lr+s, qr+s)) (2.10)

and denote by W (π) the set of w’s satisfying the above condition.

For a given w ∈W (π), we say that φ : GL2(A)→ C is of weight w, if for j ≤ r,

Ωk,jφ = iqjφ (2.11)

and for j > r,

H2,jφ = −iqjφ, Ωk,jφ =
1

2
(l2j + lj)φ, (2.12)

for the action of Ωk,j at complex places, see [55, Chapter II, Proposition 5.15].

Note that W (π), through (q1, . . . , qr, lr+1, . . . , lr+s), lists all irreducible representations of K∞ occur-
ing in π, while (qr+1, . . . , qr+s) is to single out a one-dimensional space from each such representation.

Similarly, introduce the notation

r = (ν1 . . . , νr, (νr+1, pr+1), . . . , (νr+s, pr+s)) , (2.13)

and also its norm

N (r) =

r∏
j=1

(1 + |νj |)
r+s∏
j=r+1

(1 + |νj |+ |pj |)2, (2.14)

compare this with [47, Section 3.1.8].
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2.3 Cuspidal spectrum

2.3.1 Analytic conductor, newforms and oldforms

Let Vπ be a cuspidal representation occuring in L2(Z(A)GL2(F )\GL2(A)). By the tensor product
theorem (see [15, Section 3.4] or [24]),

Vπ =
⊗
v

Vπv (2.15)

as a restricted tensor product with respect to the family {Kp(op)} (by [15, Theorem 3.3.4], irreducible
cuspidal representations are admissible).

For an ideal c ⊆ o, let

Vπ(c) =

{
φ ∈ Vπ : φ

(
g

(
a b
c d

))
= φ(g), if g ∈ GL2(A),

(
a b
c d

)
∈ K(c)

}
.

Obviously, c′ ⊆ c implies Vπ(c′) ⊇ Vπ(c).
By [48, Corollary 2(a) of Theorem 2], there is a nonzero ideal cπ such that Vπ(c) is nontrivial if and

only if c ⊆ cπ. Now the analytic conductor of the representation is defined as

C(π) = N (cπ)N (r). (2.16)

Introducing also
Vπ,w(c) = {φ ∈ Vπ(c) : φ is of weight w}

for w ∈ W (π), [48, Corollary 2(b) of Theorem 2] states that for any w ∈ W (π), Vπ,w(cπ) is one-
dimensional, that is, restricting Vπ(cπ) to K∞, each irreducible representation of K∞ listed in W (π)
appears with multiplicity one. A nontrivial element of Vπ,w(cπ) is called a newform of weight w.

Now consider an ideal c ⊆ cπ, and take any ideal t such that tcπ ⊇ c. Fixing some finite idele t ∈ A×fin

representing t, we obtain an isometric embedding

Rt : Vπ(cπ) ↪→ Vπ(c), (Rtφ)(g) = φ

(
g

(
t−1 0
0 1

))
. (2.17)

Then combining [48, Corollary 2(c) of Theorem 2] with [18, Corollary on p.306] and (2.15), we see the
decompositions

Vπ(c) =
⊕
t|cc−1

π

RtVπ(cπ), Vπ,w(c) =
⊕
t|cc−1

π

RtVπ,w(cπ),

which are not orthogonal in general. However, in Section 3.2 we will prove that for ideals t1, t2,
〈Rt1φ1, Rt2φ2〉 = 〈φ1, φ2〉C(t1, t2, π), with the constant factor C(t1, t2, π) depending only on t1, t2, π,
but not on w. This allows us to use the Gram-Schmidt method, obtaining complex numbers αt,s (with
αo,o = 1) for any pair of ideals s|t|cc−1

π such that the isometries

Rt =
∑
s|t

αt,sRs : Vπ(cπ) ↪→ Vπ(c), t|cc−1
π , (2.18)

give rise to the orthogonal decompositions

Vπ(c) =
⊕
t|cc−1

π

RtVπ(cπ), Vπ,w(c) =
⊕
t|cc−1

π

RtVπ,w(cπ). (2.19)

2.3.2 Whittaker functions and the Fourier-Whittaker expansion

For a given r,w (recall (2.10) and (2.13)), we define the Whittaker function as the product of Whittaker
functions at archimedean places. The important property of these functions is that they are the expo-
nentially decaying eigenfunctions of the Casimir operators Ω,Ω±, therefore, they emerge in the Fourier
expansion of automorphic forms (see [15, Section 3.5]).

At real places,

Wq,ν(y) =
isign(y) q2Wsign(y) q2 ,ν

(4π|y|)
(Γ( 1

2 − ν + sign(y) q2 )Γ( 1
2 + ν + sign(y) q2 ))1/2

, (2.20)
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W denoting the classical Whittaker function (see [60, Chapter XVI]). This is taken from [5, (23)].
At complex places, let

W(l,q),(ν,p)(y) =

√
8(2l + 1)

(2π)<ν

(
2l

l − q

) 1
2
(

2l

l − p

)− 1
2

√∣∣∣∣Γ(l + 1 + ν)

Γ(l + 1− ν)

∣∣∣∣
· (−1)l−p(2π)νi−p−qwlq(ν, p; |y|)

(
y

|y|

)−q
,

(2.21)

where

wlq(ν, p; |y|) =

l− 1
2 (|q+p|+|q−p|)∑

k=0

(−1)kξlp(q, k)
(2π|y|)l+1−k

Γ(l + 1 + ν − k)
Kν+l−|q+p|−k(4π|y|), (2.22)

K denoting the K-Bessel function, and

ξlp(q, k) =
k!(2l − k)!

(l − p)!(l + p)!

(
l − 1

2 (|q + p|+ |q − p|)
k

)(
l − 1

2 (|q + p| − |q − p|)
k

)
. (2.23)

This definition is borrowed from [13, Section 5] and [45, Section 4.1], apart from the first line, which is
a normalization to gain the right L2-norm.

In both cases, the occuring numbers ν, p, q, l are those given by the representation and weight data,
encoded in the action of the elements Ω,Ω±,Ωk,H2 (recall (2.5), (2.6), (2.7), (2.9), (2.10), (2.13)).

Finally, define the archimedean Whittaker function as

Ww,r(y) =
∏
j≤r

Wqj ,νj (yj)
∏
j>r

W(lj ,qj),(νj ,pj)(yj).

With the given normalization, for a fixed r,∫
F×∞

Ww,r(y)Ww′,r(y)d×∞y = δw,w′ . (2.24)

This can be seen as the product of the analogous results at single places. For real places, see [5, (25)]
and [14, Section 4]. As for complex places, this will be proved in Lemma 8.1 and Lemma 8.2. The
normalization, i.e.

∫
C×
|W(l,q),(ν,p)(y)|2d×Cy = 1 is already proved in [46, Lemma 2], now we need also

that
∫
C×
W(l,q),(ν,p)(y)W(l′,q′),(ν,p)(y)d×Cy = 0, if (l, q) 6= (l′, q′).

Now we extend [5, Section 2.5] to our more general situation.

Proposition 2.1. Let π ∈ C and c ⊆ cπ. Then any function φ ∈ Vπ,w(c) can be expanded into Fourier
series as follows. There exists a character επ : {±1}r → {±1} depending only on π such that

φ

((
y x
0 1

))
=
∑
t∈F×

ρφ(tyfin)επ(sign(ty∞))Ww,r(ty∞)ψ(tx). (2.25)

Proof. From the discussion above, the existence, the uniqueness and the factorization of the Whittaker
model (see [15, Section 3.5]), we have

φ

((
y x
0 1

))
=
∑
t∈F×

ρφ(tyfin)

∏
j≤r

cj(sign(tyj))Wqj ,νj (tyj)
∏
j>r

W(lj ,qj),(νj ,pj)(tyj)

ψ(tx)

=
∑
t∈F×

ρφ(tyfin)

∏
j≤r

cj(sign(yj))

Ww,r(ty∞)ψ(tx).

Now we have to prove that we can take cj(−1) = ±cj(1). Fix some j′ ≤ r. If we are in the discrete
series, Wqj′ ,νj′ (tyj′) is constant 0 either on R+ or R− (recall (2.20)), so in this case, there is nothing to
prove. If we are in the principal or the complementary series, then cj′(±1) 6= 0, and so their quotient is
well-defined. Assume that yj′ > 0 and qj′ ≥ 0. Let X be the matrix, which is

(−1 0
0 1

)
at the place j′, and
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the identity at other places. Define moreover the Maass operators Λk at place j′ and the normalizing
constant δ(ν, k) for each even integer k (again, at other places, let them act trivially)

Λk =
k

2
+ y

(
i
∂

∂x
− ∂

∂y

)
, δ(ν, k) =

Γ
(

1
2 + ν − k

2

)
Γ
(

1
2 + ν + k

2

) .
These are taken from [22, (4.4) and (4.62)]. Now introducing

P = δ(νj′ , qj′)Λ−qj′+2 ◦ Λ−qj′+4 ◦ . . . ◦ Λqj′−2 ◦ Λqj′ , Q = X ◦ P,

by [22, Proposition 4.5], Q is an involution on Vπ,w. By our normalization of Wqj′ ,νj′ , PWqj′ ,νj′ =
W−qj′ ,νj′ (see [22, (4.27) and (4.59)]). Now let φ ∈ Vπ,w, and consider φ′ = Pφ. Then with the

abbreviation W ′(t, y, x) = ρφ(tyfin)
(∏

j′ 6=j≤r cj(sign(tyj))Wqj ,νj (tyj)
∏
j>rW(lj ,qj),(νj ,pj)(tyj)

)
ψ(tx),

φ

((
y x
0 1

))
=
∑
t∈F×

cj′(sign(tyj′))Wqj′ ,νj′ (tyj′)W
′(t, y, x),

Pφ

((
y x
0 1

))
= φ′

((
y x
0 1

))
=
∑
t∈F×

cj′(sign(tyj′))W−qj′ ,νj′ (tyj′)W
′(t, y, x),

Qφ

((
y x
0 1

))
= Xφ′

((
y x
0 1

))
=
∑
t∈F×

cj′(−sign(tyj′))W−qj′ ,νj′ (−tyj′)W
′(t, y, x).

Since Q is an involution, Qφ = ±φ, showing cj′(−1) = ±cj′(1).
We remark that this is the same analysis as in [22, Section 4] or in [41, Sections 1-3]. Note that επ

is not uniquely determined, if we are in the discrete series and that the coefficient %(tyfin) depends only
on the fractional ideal generated by tyfin and it is zero, if this fractional ideal is nonintegral.

Now assume that c = cπ, i.e. φ is a newform of weight w. In this case, the coefficients %π(m) are
proportional to the Hecke eigenvalues λπ(m):

%φ(m) =
λπ(m)√
N (m)

%φ(o).

We record
λπ(m)�ε N (m)θ+ε (2.26)

with θ = 7/64 [3], while according to the Ramanujan-Petersson conjecture, θ = 0 is admissible. Also
note the multiplicativity relation

λπ(m)λπ(n) =
∑

a| gcd(m,n)

λπ(mna−2). (2.27)

Setting
Wφ(y) = %φ(o)επ(sign(y))Ww,r(y), y ∈ F×∞, (2.28)

we obtain

φ

((
y x
0 1

))
=
∑
t∈F×

λπ(tyfin)√
N (tyfin)

Wφ(ty∞)ψ(tx). (2.29)

2.3.3 The archimedean Kirillov model

Now fixing yfin = (1, 1, . . .), we can single out the term corresponding to t = 1:

Wφ(y) =

∫
F\A

φ

((
y x
0 1

))
ψ(−x)dx. (2.30)

In the case of arbitrary (i.e. non-necessarily pure weight) smooth functions in Vπ(cπ), this latter formula
can be considered as the definition of the mapping φ 7→Wφ, the image is a subspace in L2(F×∞, d

×
∞y).
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Proposition 2.2. The image in fact is a dense subspace in L2(F×∞, d
×
∞y). Moreover, there is a positive

constant Cπ depending only on π such that

〈φ1, φ2〉 = Cπ〈Wφ1 ,Wφ2〉, (2.31)

where the scalar product on the left-hand side is the scalar product in L2(Z(A)GL2(F )\GL2(A)), while
on the right-hand side, it is the scalar product in L2(F×∞, d

×
∞y). The map φ 7→Wφ is therefore surjective

from Vπ(cπ) to L2(F×∞, d
×
∞y).

Proof. On the space L2(F×∞, d
×
∞y), the Borel subgroup B(F∞) acts through the Kirillov model action((

y′ x′

0 1

)
Wφ

)
(y) = ψ∞(x′y)Wφ(y′y). (2.32)

This action is irreducible on a single L2(R×, d×Ry) or L2(C×, d×Cy). Indeed, by [43, Propositions 2.6 and
2.7], the Borel subgroup B(R) or B(C) has a unitary, infinite-dimensional irreducible representation,
then by [42, p.197], it must be equivalent to the representation induced from the unipotent subgroup
N(R) or N(C), which can be computed to be (2.32). Therefore the action (2.32) is irreducible on the
tensor product

L2(F×∞, d
×
∞y) =

r+s⊗
j=1

L2(F×j , d
×
Fj
yj).

Then taking some φ ∈ V∞π (cπ) such thatWφ is not identically zero, a closed, invariant subspace containing
Wφ must equal L2(F×∞, d

×
∞y), because of irreducibility (the existence of such a φ follows from the Fourier-

Whittaker expansion, which includes harmonics with nonzero coefficients).
As for the existence of Cπ, we refer to Section 3.2. We will prove there that if φ1, φ2 ∈ Vπ,w(cπ), then

〈φ1, φ2〉 = Cπ〈Wφ1
,Wφ2

〉. (2.33)

If moreover φ1, φ2 are of different weights w1 6= w2, then both sides are 0, since for pure weight forms,
the associated Kirillov vectors are proportional toWr,w1,2

(recall (2.28)), which are orthogonal by (2.24).
Then the orthogonal decomposition

Vπ(cπ) =
⊕

w∈W (π)

Vπ,w(cπ)

completes the proof.

Now turn to the general case c ⊆ cπ. Using the isometries Rt, (2.29) gives rise to, for every φ ∈
RtVπ(cπ),

φ

((
y x
0 1

))
=
∑
t∈F×

λtπ(tyfin)√
N (tyfin)

Wφ(ty∞)ψ(tx), (2.34)

with
Wφ = W(Rt)−1φ, λtπ(m) =

∑
s|gcd(t,m)

αt,sN (s)1/2λπ(ms−1). (2.35)

2.4 Eisenstein spectrum

In this section, we develop the theory of Eisenstein series. From now on, let χ ∈ E be a Hecke character
which is nontrivial on F diag

∞,+.

2.4.1 Analytic conductor, newforms and oldforms

Similarly to the cuspidal case, for any ideal c ⊆ o, define

Vχ,χ−1(c) =

{
φ ∈ Vχ,χ−1 : φ

(
g

(
a b
c d

))
= φ(g), if g ∈ GL2(A),

(
a b
c d

)
∈ K(c)

}
.
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Using that Vχ,χ−1 and H(χ) are isomorphic as GL2(A)-representations, we have

Vχ,χ−1(c) = {E(ϕ(iy), ·) ∈ Vχ,χ−1 : ϕ ∈ H(χ, c)}

with

H(χ, c) =

{
ϕ ∈ H(χ) : ϕ

(
g

(
a b
c d

))
= ϕ(g), if g ∈ GL2(A),

(
a b
c d

)
∈ K(c)

}
.

Analogously to (2.15), we have

H(χ) =
⊗
v

Hv(χ),

a restricted tensor product with respect to the family {Kp(op)} again, the admissibility of H(χ) is
straight-forward.

Assume χ has conductor cχ. The following is taken from [5, Section 2.6].

Proposition 2.3. For any non-archimedean place p, set d = vp(d) and m = vp(cχ), and fix some $
such that vp($) = 1. Then for any integer n ≥ 0, the complex vector space Hp(χ, pn) has dimension
max(0, n − 2m + 1). For n ≥ 2m, an orthogonal basis is {ϕp,j : 0 ≤ j ≤ n − 2m} with functions ϕp,j

defined as follows.

If m = 0 and k =

(
∗ ∗
b$d ∗

)
∈ Kp(op), let

ϕp,0(k) = 1; ϕp,1(k) =

{
N (p)−1/2, if vp(b) = 0,
−N (p)1/2, if vp(b) ≥ 1;

while for j ≥ 2,

ϕp,j(k) =


0, vp(b) ≤ j − 2,
−N (p)j/2−1, if vp(b) = j − 1,

N (p)j/2
(

1− 1
N (p)

)
, ifvp(b) ≥ j.

If m > 0 and k =
( a ∗
b$d ∗

)
∈ Kp(op), let

ϕp,j(k) =

{
N (p)(m+j)/2χp(ab−1), if vp(b) = m+ j,
0, if vp(b) 6= m+ j.

Moreover,

1− 1

N (p)
≤ ||ϕp,j || ≤ 1.

Proof. See [5, Lemma 1 and Remark 7].

This shows that cχ,χ−1 = (cχ)2 is the maximal ideal c such that Vχ,χ−1(c) and H(χ, c) are nontrivial.
Now we turn our attention to the archimedean quasifactors Hj(χ). They are always principal series

representations and their parameter r is the following. At real places, νj ∈ iR of (2.7) is the one
satisfying χj(a) = aνj for a ∈ R+ (see [14, p.83]). At complex places, νj ∈ iR and pj ∈ Z of (2.7)
are those satisfying χj(ae

iθ) = aνje−ipjθ for a ∈ R+, θ ∈ R (see [13, Section 3] or [45, Section 2.3]).
Now these give rise to the set W (χ, χ−1) of weights (those occuring in Hj(χ)): the only condition is
|qj | ≤ lj ≥ |pj | at complex places.

The analytic conductor is again defined as

C(χ, χ−1) = N (cχ,χ−1)N (r). (2.36)

We can now give an orthogonal basis of H(χ, c) for any c ⊆ c2χ. Given t|cc−2
χ and any weight

w ∈ W (χ, χ−1), let ϕt,w be the tensor product of the following local functions. At the archimedean

places, let ϕt,w
j = Φqj (k), ϕt,w

j (k) = Φ
lj
pj ,qj (k)/||Φljpj ,qj ||SU2(C) for k ∈ Kj with j ≤ r, j > r, respectively.

At non-archimedean places, let ϕt,w
p = ϕp,vp(t). The global functions form an orthogonal basis of H(χ, c)

and this gives rise to an orthogonal basis in Vχ,χ−1 via the corresponding Eisenstein series φt,w = E(ϕt,w).
Finally, defining Rt : Vχ,χ−1(c2χ) ↪→ Vχ,χ−1(c) as φo,w/||φo,w|| 7→ φt,w/||φt,w|| for all w, we obtain the
orthogonal decomposition

Vχ,χ−1(c) =
⊕
t|cc−2

χ

RtVχ,χ−1(c2χ). (2.37)
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2.4.2 The Fourier-Whittaker expansion and the archimedean Kirillov model

Similarly to cusp forms, Eisenstein series can also be expanded into Fourier-Whittaker series. We may
assume ϕ is one of the pure tensors defined above and φ = E(ϕ), where we dropped t and w from the
notation. We will insert the original definition of Eisenstein series, that is, the formal computation below
is made precise by performing it on the domain <s > 1/2 and using the meromorphic continuation to
<s ≥ 0.

Now the Fourier expansion with respect to the left action of N(A) admits

E

(
ϕ,

(
y x
0 1

))
=
∑
t∈F

∫
F\A

E

(
ϕ,

(
y ξ
0 1

))
ψ(−tξ)dξψ(tx).

It is easy to check that B(F )\GL2(F ) has a complete set of representatives{(
1 0
0 1

)}
∪
{(

0 −1
1 d

)
: d ∈ F

}
.

By (2.1), ϕ is left N(A)-invariant, therefore∑
t∈F

∫
F\A

ϕ

((
y ξ
0 1

))
ψ(−tξ)dξψ(tx) = ϕ

((
y 0
0 1

))
.

Inserting these, we obtain

E

(
ϕ,

(
y x
0 1

))
= ϕ

((
y 0
0 1

))
+
∑
t∈F

∫
F\A

∑
d∈F

ϕ

((
0 −1
y ξ + d

))
ψ(−tξ)dξψ(tx)

= ϕ

((
y 0
0 1

))
+
∑
t∈F

∫
A

ϕ

((
0 −1
y ξ

))
ψ(−tξ)dξψ(tx).

On the right-hand side, the first term together with the term corresponding to t = 0 give the constant
term of E(ϕ),

%E(ϕ),0(y) = ϕ

((
y 0
0 1

))
+

∫
A

ϕ

((
0 −1
y ξ

))
dξ.

Turn to the rest of the sum, and compute a typical term corresponding to t ∈ F×. Fix δ ∈ A× as

δ∞ = (1, . . . , 1) and δp = $
vp(d)
p . By the change of variable ξ 7→ yδ−1ξ, we obtain∫

A

ϕ

((
0 −1
y ξ

))
ψ(−tξ)dξ = χ2(δ)χ−1(ty)|ty|1/2

∫
A

ϕ

((
0 −δ−1

δ ξ

))
ψ(−tyδ−1ξ)dξ,

using (2.1) and the fact that χ(t) = |t| = 1 (as t ∈ F×). Since ϕ is a pure tensor, we may compute the
integral on the right-hand side as the product of the local factors.

For v ∼= R, the local contribution is (see [5, (55)])

χj(sign(tjyj))|tjyj |1/2−νj
∫
R

ϕj

((
0 −1
1 ξ

))
exp(−2πitjyjξ)dξ = ηjχj(sign(tjyj))Wqj ,νj (tjyj),

where ηj ∈ C is a constant (depending on qj and χj) of absolute value π1/2.
For v ∼= C, the local contribution is

arg(tjyj)
pj |tjyj |1−νj

∫
C

ϕj

((
0 −1
1 ξ

))
exp(−2πi(tjyjξ + tjyjξ))dξ.

The computation of [45, Section 4.1] in our normalization means that this equals

1√
2
W(lj ,qj),(νj ,pj)(tjyj).

Altogether, the archimedean contribution is

η∞χ∞(sign(ty∞))Ww,r(ty∞),
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where η∞ = η∞(w, χ∞) ∈ C is a constant of absolute value πr/22−s/2|DF |−1/2.
For a non-archimedean place p, we collect the results of [5, pp.18-20]. Introduce the notations

m = vp(cχ) ≥ 0, n = vp(ty) ≥ 0 and let $ as above.
If m = 0 and vp(t) = 0, then the local factor is

|ty|1/2p χ2
p(δ)

(
1−

χ2
p($)

N (p)

)
n∑
j=0

χp($2j−n).

If m = 0 and vp(t) = 1, then in the case χ2
p($) 6= −1, the local factor has absolute value equal to

|1 + χ2
p($)|N (p)−1/2 for n = 0 and not exceeding (n + 1)N (p)(1−n)/2 in general. For χ2

p($) = −1, the
local factor is

|ty|1/2p χ2
p(δ)χ−1

p ($)N (p)1/2

(
1−

χ2
p($)

N (p)

)
n−1∑
j=0

χp($2j−n+1).

If m = 0 and vp(t) ≥ 2, then the local factor vanishes for n ≤ vp(t)− 3, has absolute value equal to
N (p)−1 for n = vp(t)− 2 and not exceeding (n− vp(t) + 3)N (p)(vp(t)−n)/2 for n ≥ vp(t)− 1.

If m > 0, then the local factor vanishes for vp(ty) 6= vp(t) and has absolute value 1 for vp(ty) = vp(t).
Altogether, in the Fourier expansion

E

(
ϕ,

(
y x
0 1

))
= %E(ϕ),0(y) +

∑
t∈F×

%E(ϕ)(tyfin)χ∞(ty∞)Ww,r(ty∞)ψ(tx),

we see that %E(ϕ)(m) is supported on ideals divisible by

tχ =
∏

p|t,p-cχ,vp(t)=1,χ2
p($p)=−1

p
∏

p|t,p-cχ,vp(t)≥3

pvp(t)−2
∏

p|t,p|cχ

pvp(t),

noting that

tt−1
χ =

∏
p|t,p-cχ,vp(t)=1,χ2

p($p) 6=−1

p
∏

p|t,p-cχ,vp(t)≥2

p2.

With the notation
Fχ,t =

∏
p|t,p-cχ,vp(t)=1,χ2

p($p)6=−1

|1 + χ2
p($p)|−1,

we may write

|%E(ϕ)(tχ)| = πr/22−s/2|DF |−1/2

|Ltt−1
χ (1, χ2)|N (tt−1

χ )1/2Fχ,t
,

where Ltt−1
χ (·, χ2) stands for a partial Hecke L-function, which is holomorphic and nonzero at s = 1

(since χ2 is a nontrivial Hecke character).
Normalize the coefficients as

%E(ϕ)(mtχ) =
λχ,t(m)√
N (m)

%E(ϕ)(tχ).

Then (see [5, (65) and the display above it]) λχ,t is a multiplicative function on nonzero ideals
satisfying

λχ,t(m) =

{ ∑
ab=m χ(ab−1), gcd(m, tt−1

χ cχ) = o,
0, gcd(m, cχ) 6= o,

and
|λχ,t(m)| ≤ τ(t)Fχ,tN (tt−1

χ )1/2N (gcd(tt−1
χ ,m))τ(m),

where τ(n) stands for the number of ideals dividing n.
Defining

εχ,χ−1(sign(y)) = χ∞(sign(y)),

λtχ,χ−1(m) =

{
τ(t)−1F−1

χ,tN (t)−1/2N (tχ)λχ,t(mt−1
χ ), tχ|m,

0, otherwise,
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and finally
WE(ϕ)(y) = τ(t)Fχ,tN (tt−1

χ )1/2%E(ϕ)(tχ)εχ,χ−1(sign(y))Ww,r(y)

for y ∈ F×∞, we obtain the Fourier-Whittaker expansion of Eisenstein series

φ

((
y x
0 1

))
= %E(ϕ),0(y) +

∑
t∈F×

λtχ,χ−1(tyfin)√
N (tyfin)

WE(ϕ)(ty∞)ψ(tx). (2.38)

We also obtain
λtχ,χ−1(m)�F,ε N (gcd(t,m))N (m)ε, (2.39)

for all m ⊆ o and
||WE(ϕ)|| �F,ε N (t)εC(χ, χ−1)ε||ϕ||, (2.40)

where the norms are understood in the spaces L2(F×∞, d
×
∞y) and L2(K) (recall also (2.36)). Compare

these with [5, (48-50)].
We also see that E(ϕ) 7→ WE(ϕ) has similar properties as in the cuspidal spectrum. In the special

case c = c2χ, t = tχ = o, E(ϕ) spans the space Vχ,χ−1,w(c2χ) of newforms of weight w. In this case, we
have the alternative definition

WE(ϕ)(y) =

∫
F\A

E(ϕ)

((
y x
0 1

))
ψ(−x)dx, (2.41)

where yfin = (1, 1, . . .). Also, λχ,χ−1 specialize to Hecke eigenvalues. Finally, for φ1, φ2 ∈ Vχ,χ−1(c2χ), we
have

〈φ1, φ2〉 = Cχ,χ−1〈Wφ1 ,Wφ2〉 (2.42)

with some positive constant Cχ,χ−1 �F,ε C(χ, χ−1)−ε depending only on χ.
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Chapter 3

L-functions

3.1 The constant term of an Eisenstein series

In this section, we follow [5, Section 2.8]. Again, we pay special attention to the complex places, which
is not covered there.

For some s ∈ C, consider the Hecke quasicharacter χ(y) = |y|s for y ∈ A×. Taking also some nonzero
ideal c ⊆ o, define the function ϕ(s) ∈ H(χ) as

ϕ

(
s,

(
a x
0 b

)
k

)
=

{
|a/b|1/2+s, k ∈ K∞ ×K(c),
0, k ∈ K \ (K∞ ×K(c)).

The constant term [28, p.220] of the corresponding Eisenstein series E(ϕ(s), g) is

E0(ϕ(s), g) = ϕ(s, g) +

∫
A

ϕ

(
s,

(
0 −1
1 ξ

)
g

)
dξ. (3.1)

Proposition 3.1. ∫
A

ϕ

(
s,

(
0 −1
1 ξ

)
g

)
dξ =

ΛF (2s)

ΛF (2s+ 1)
H(s, g),

where
ΛF (s) = |DF |s/2

∏
v∼=R

(
π−s/2Γ(s/2)

) ∏
v∼=C

(
2(2π)−sΓ(s)

)∏
p

(1−N (p)−s)−1

for <s > 1, and H(s, g) is a meromorphic function of s, its zeros lie on <s = 0, its poles on <s = −1/2
and it is constant at s = 1/2:

H(1/2, g) = |δ|N (c)−1
∏
p|c

(1 +N (p)−1)−1 = |DF |−1[K(o) : K(c)]−1.

Proof. We may write

g =

(
a x
0 b

)
h, x ∈ A, a, b ∈ A×, h ∈ GL2(A),

where h∞ ∈ K∞, hp ∈ K(op) for p - c and for p|c, hp ∈ GL2(Fp) is of the form
(

1 0
0 1

)
or
( 0 −δ−1

p

δp ηp

)
.

Then our integral becomes ∣∣∣a
b

∣∣∣1/2−s |δ|2s ∫
A

ϕ

(
s,

(
0 −δ−1

δ ξ

)
h

)
dξ,

which can be computed as the product of the corresponding local integrals. These are given at [5,
pp.22-24] for real and non-archimedean places.

First assume p is a non-archimedean place. If p - c, then the local integral is∫
Fp

ϕp

(
s,

(
0 −δ−1

p

δp ξ

)
hp

)
dξ =

1−N (p)−1−2s

1−N (p)−2s
.
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If p|c, then we have two cases:∫
Fp

ϕp

(
s,

(
0 −δ−1

p

δp ξ

))
dξ = N (p)−2svp(c) 1−N (p)−1

1−N (p)−2s
,

and ∫
Fp

ϕp

(
s,

(
0 −δ−1

p

δp ξ

)(
0 −δ−1

p

δp ηp

))
dξ = N (p)−vp(c).

Now assume v is a real place, then the local integral is∫
R

ϕj

(
s,

(
0 −1
1 ξ

)
hj

)
dξ =

Γ(1/2)Γ(s)

Γ(1/2 + s)
.

Finally, assume v ∼= C. Using the Iwasawa decomposition

(
0 −1
1 ξ

)
=

(
1√
|ξ|2+1

−ξ√
|ξ|2+1

0
√
|ξ|2 + 1

) ξ√
|ξ|2+1

−1√
|ξ|2+1

1√
|ξ|2+1

ξ√
|ξ|2+1

 ,

we see that the local integral is∫
C

1

(1 + |ξ|2)1+2s
dξ = 2

∫
C

1

(1 + |ξ|2)1+2s
d<ξd=ξ = 2

∫ 2π

0

∫ ∞
0

r

(1 + r2)1+2s
drdθ

=
π

s
= 2π

Γ(1)Γ(2s)

Γ(1 + 2s)
.

As for

N (c)−1
∏
p|c

(1 +N (p)−1)−1 = [K(o) : K(c)]−1, (3.2)

consult [37, Proposition 2.5]. Collecting these, the proof is complete.

3.2 A Rankin-Selberg convolution

Earlier, we referred to this section twice: in the construction of the isometries Rt (2.18) and in the proof
of Proposition 2.2. Now we borrow the Rankin-Selberg method from [5, pp.25-26] in order to prove the
essential equivalence of the Kirillov model promised earlier (i.e. to complete the proof of Proposition 2.2),
and also to relate the proportionality constant to the residue of a certain GL2×GL2 L-function. We will
also obtain that for φ1, φ2 ∈ Vπ,w(cπ), 〈Rt1φ1, Rt2φ2〉 = 〈φ1, φ2〉C(t1, t2, π) with a constant C(t1, t2, π)
independent of w, this was the fact used in the construction of Rt.

Let φ1, φ2 ∈ Vπ,w be newforms of some weight w ∈ W (π) and let t1, t2 ⊆ o be nonzero ideals. If c is
a nonzero ideal divisible by t1cπ, t2cπ, then ψ1 = Rt1φ1, ψ2 = Rt2φ2 are elements in Vπ,w(c).

Define

F (s) =

∫
GL2(F )Z(A)\GL2(A)

ψ1(g)ψ2(g)E(ϕ(s), g)dg,

where ϕ(s, g) is defined in the previous section. It follows from the theory of Eisenstein series that
this integral is absolutely convergent for all s which is not a pole of E(ϕ(s), g) (see [28, Section 5]),
and also that the possible residue comes from the residue of the constant term (3.1). Now we compute
ress=1/2F (s) in two ways.

On the one hand, using the results of the previous section,

ress=1/2F (s) = CF
〈Rt1φ1, Rt2φ2〉
[K(o) : K(c)]

, CF =
ress=1/2ΛF (2s)

|DF |ΛF (2)
. (3.3)

18



On the other hand, assume first <s > 1/2 for the absolute convergence of (2.2) (see [15, p.372]) and
unfold the integral

F (s) =

∫
B(F )Z(A)\GL2(A)

ψ1(g)ψ2(g)ϕ(s, g)dg

=

∫
F×\A×

∫
F\A

∫
K

ψ1

((
y x
0 1

)
k

)
ψ2

((
y x
0 1

)
k

)
ϕ

(
s,

(
y x
0 1

)
k

)
dkdx

d×y

|y|

=

∫
F×\A×

∫
F\A

∫
K∞×K(c)

ψ1

((
y x
0 1

)
k

)
ψ2

((
y x
0 1

)
k

)
|y|s−1/2dkdxd×y.

Here, the integral over K∞ ×K(c) is [K(o) : K(c)]−1. To see this, observe that ψ1ψ2 is invariant at real
and non-archimedean places, while at complex places, we apply the more general [43, Corollary 1.10(b)].
Therefore,

F (s) =
1

[K(o) : K(c)]

∫
F×\A×

∫
F\A

ψ1ψ2

((
y x
0 1

))
|y|s−1/2dxd×y.

Take now finite representing ideles t1, t2 of the ideals t1, t2, respectively. The Fourier-Whittaker
expansion (2.29), the definition of Rt (2.17) and vol(F\A) = 1 give rise to

F (s) =
N (t1t2)1/2

[K(o) : K(c)]

∫
F×\A×

∑
t∈F×

λπ(tyfint
−1
1 )λπ(tyfint

−1
2 )

N (tyfin)
Wφ1

(ty∞)Wφ2
(ty∞)|y|s−1/2d×y

=
N (t1t2)1/2

[K(o) : K(c)]

∫
A×

λπ(yfint
−1
1 )λπ(yfint

−1
2 )

N (yfin)
Wφ1

(y∞)Wφ2
(y∞)|y|s−1/2d×y

=
N (t1t2)1/2

[K(o) : K(c)]

∫
F×∞

Wφ1
(y∞)Wφ2

(y∞)|y∞|s−1/2d×y∞

∫
A×fin

λπ(yfint
−1
1 )λπ(yfint

−1
2 )

N (yfin)1/2+s
d×yfin.

Let now s→ 1/2 from above, then the first integral is 〈Wφ1
,Wφ2

〉, where the inner product is understood
in L2(F×∞, d

×
∞y). In the second integral, define t′1 = t1 gcd(t1, t2)−1, t′2 = t2 gcd(t1, t2)−1, we obtain

ress=1/2F (s) =
〈Wφ1 ,Wφ2〉

N (t′1t
′
2)1/2[K(o) : K(c)]

ress=1

∑
06=m⊆o

λπ(mt′2)λπ(mt′1)

N (m)s
(3.4)

by a linear change of variable m = yfint1t2 gcd(t1, t2)−1.
For arbitrary ideals t1, t2, this gives

〈Rt1φ1, Rt2φ2〉 = 〈φ1, φ2〉C(t1, t2, π),

where C(t1, t2, π) is a constant not depending on the weight w. This independence of the weight is
essential in the construction of Rt (2.18) as we indicated it earlier.

Using the equations (3.3) and (3.4) about ress=1/2F (s), and taking t1 = t2 = o, we obtain (2.33) with

Cπ =
|DF |ΛF (2)

ress=1/2ΛF (2s)
ress=1

∑
0 6=m⊆o

λπ(m)λπ(m)

N (m)s
.

Here, the first factor |DF |ΛF (2)/ress=1/2ΛF (2s) is a positive constant depending only on F , while

Lcπ (s, π × π)ζF (2s)
∑

06=m⊆o

λπ(m)λπ(m)

N (m)s
= L(s, π × π)

with L(s, π × π) defined in [27, Sections 1-2] and Lcπ (s, π × π) is a finite Euler product over places
dividing cπ, the number of such places is OF,ε(N (cπ)ε). Checking the cases from [27, Section 1] and [39,
Chapter I, §§2-3]), we obtain

N (cπ)−εress=1L(s, π × π)�F,ε Cπ �F,ε N (cπ)εress=1L(s, π × π). (3.5)
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Proposition 3.2. We have

C(π)−ε �F,ε ress=1L(s, π × π)�F,ε C(π)ε,

recall (2.16).

Proof. We repeat the proof of [5, Lemma 3], however, our references differ a little.
First we prove the lower bound. By [33, Lemma b], we have a constant B depending only on F such

that
C(π)−B ≤ C(π × π) ≤ C(π)B (3.6)

holds for the analytic conductors. We also see by [33, Lemma a] that L(s, π × π) has nonnegative
coefficients. Record the factorization

L(s, π × π) = ζF (s)L(s, sym2π), (3.7)

where L(s, sym2π) is the Gelbart-Jacquet lift of π, which is known to exist for all automorphic cuspidal
π (see [27, Section 3, (3.6), (3.7) and Theorem (9.3)]).

Case 1: sym2π is cuspidal. Now [32, Proposition 1.1] gives the statement, as soon as we can prove
that there is no Siegel zero of L(s, π × π) in the sense of [33, p.284] and [1, p.345]. The factors in (3.7)
do not admit any Siegel zero: this is obvious for ζF (s), while it follows from [1, Corollary 4 and Theorem
5] for L(s, sym2π).

Case 2: sym2π is not cuspidal. Then π ∼= π ⊗ χ, where χ is some nontrivial Hecke character on
F×\A× with χ2 = 1 (see [27, Theorem (9.3)]). The conductor of this χ is bounded by �F C(π). In
this case, L(s, sym2π) can be factored as the product of two GL1 L-functions, see [27, (3.7) and Remark
(9.9)]:

L(s, sym2π) = L(s, χ)LF ′(s,Ω),

where F ′ is the quadratic extension of F corresponding to χ and Ω is a Hecke character over F ′, each
conductor is�F C(π). In the first factor, by [25], there is no zero of L(s, χ) on [1−const.(F, ε)C(π)−ε, 1].
As for the second factor, Ω might be quadratic or not. In both cases we apply [25] again, noting also
that the discriminant of F ′ is �F C(π) (see also [7, Theorem 2]). We remark, however, that if Ω is not
quadratic, we can again guarantee a bigger zero-free interval [1 − const.(F, ε)(logC(π))−1, 1] (see [49,
Theorem 11.3], for example). Altogether, we may apply again [32, Proposition 1.1] by noting that in
this case, the known zero-free interval is smaller than before, and we have to replace logC(π) by C(π)ε.

We see that our bound is weaker in the case when π is a lift of a GL1 form. This is analogous to [32,
Main Theorem of Appendix].

As for the upper bound, the method of [36, pp.72-73] goes through (see also [32]). For later references,
we also record ∑

N (m)≤x

|λπ(m)|2

N (m)
�F,ε C(π)B

′
xε (3.8)

with some B′ depending only on F , which follows from the upper bound of (3.6) by a contour integration
similar to the one in [32, Proof of Lemma 2.1].

3.3 An upper bound on the central value L(1/2, π ⊗ χ)

Proposition 3.3. There is a constant c = c(π, χ∞, ε) > 0 and a smooth function V : (0,∞) → C
supported on [1/2, 2], satisfying V (j)(y)�π,χ∞,j 1 for each nonnegative integer j, such that

L(1/2, π ⊗ χ)�π,χ∞,ε N (q)ε max
Y≤cN (q)1+ε

∣∣∣∣∣∣
∑

06=m⊆o

λπ(m)χ(m)√
N (m)

V

(
N (m)

Y

)∣∣∣∣∣∣ . (3.9)

Proof. This is [5, (75)] (see also [6, Section 5.1]), for completeness, we decided to give the proof.
Our starting point is the approximate functional equation [30, Theorem 2.1]

L(1/2, π ⊗ χ) = Σ + ηΣ, Σ =
∑

06=m⊆o

λπ⊗χ(m)√
N (m)

V0

(
N (m)√
C(π ⊗ χ)

)
,
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where η ∈ C and V0 : (0,∞)→ C depend only on the archimedean parameters of π ⊗ χ and satisfy the
following properties. The smooth function V0 and all its derivatives tend to zero faster then any negative
power of the identity; |η| = 1. Since the possible values of N (m) can be bounded away from 0, we may
assume moreover that V0 vanishes in a neighborhood of 0.

Now

∑
06=m⊆o

λπ⊗χ(m)√
N (m)

V0

(
N (m)√
C(π ⊗ χ)

)
=

∑
c|(cπq)∞

a(c)√
N (c)

∑
06=m⊆o

λπ(m)χ(m)√
N (m)

V0

(
N (cm)√
C(π ⊗ χ)

)
,

where a(c)’s are the coefficients of the Dirichlet series defined via

∑
c|(cπq)∞

a(c)N (c)−s =
∏
p|cπq

1− λπ(p)χ(p)N (p)−s + χ(p2)N (p)−2s

L−1
p (s, π ⊗ χ)

on <s > 1.
Using that λπ(m), λπ⊗χ(m)�ε N (m)θ+ε, this implies that

∑
06=m⊆o

λπ⊗χ(m)√
N (m)

V0

(
N (m)√
C(π ⊗ χ)

)
�ε

∑
c|(cπq)∞

1

N (c)1/2−θ−ε

∣∣∣∣∣∣
∑

0 6=m⊆o

λπ(m)χ(m)√
N (m)

V0

(
N (cm)√
C(π ⊗ χ)

)∣∣∣∣∣∣ .
Since V0 decays rapidly, the contribution of N (cm) > C(π ⊗ χ)1+ε to the inner summation is Oε(1).
For the rest, we apply a smooth dyadic partition of unity: let U : (0,∞) → (0,∞) be a smooth
function (fixed once for all, independently of F, π, χ) supported in the interior of [1/2, 2] satisfying∑
n∈Z U(2nx) = 1 for all x ∈ (0,∞). Writing now V (x) = V0(x)U(x), the inner summation over m

is splitting up according to the magnitude of N (cm) on the logarithmic scale. The number of terms
is O(logC(π ⊗ χ)) = Oπ,χ∞(logN (q)) �π,ε N (q)ε. Also the outer summation over c gives a factor
�π,ε N (q)ε. Altogether, we obtain the statement.
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Chapter 4

Sobolev norms

Assume that we are given a smooth automorphic vector φ appearing in an automorphic representation.
The aim of this chapter is to give a pointwise estimate for the associated Kirillov vector Wφ, and, when
φ is a cuspidal newform, the supremum norm of φ, both in terms of some Sobolev norm of φ.

Let d ≥ 0 be an integer. Assume that φ ∈ L2(GL2(F )Z(A)\GL2(A)) is a function such that
X1 . . . Xdφ exists for every sequence X1 . . . Xd, where each Xk is one of those differential operators given
in (2.4) and (2.5). Then the Sobolev norm ||φ||Sd of φ is defined via

||φ||2Sd =

d∑
k=0

∑
{X1,...,Xk}∈{Hj ,Rj ,Lj ,H1,j ,H2,j ,V1,j ,V2,j ,W1,j ,W2,j}k

||X1 . . . Xkφ||2.

4.1 Bounds on Bessel functions

The first lemma is an estimate on the classical J-Bessel function.

Lemma 4.1. Denote by J the J-Bessel function. Let p ∈ Z. Then

|J2p(x)| ≤ 1 for all x ∈ (0,∞), |J2p(x)| � x−1/2 for all x ∈ (max(1/2, (2p)2),∞). (4.1)

Proof. The first inequality is obvious from [58, 2.2(1)]. The second one follows from [29, 8.451(1)] by
writing ’n = p’ there, the error term is estimated in [29, 8.451(7-8)].

In the next lemma, we define and estimate a function j that later will turn out to be the Bessel
function of a certain representation (after a simple transformation of the argument).

Lemma 4.2. Assume ν ∈ C and p ∈ Z are given such that either <ν = 0 (principal series) or <ν 6= 0,
=ν = 0, |ν| ≤ 2θ = 7/32, p = 0 (complementary series). Define

j(t) = (−1)p4π|t|2
∫ ∞

0

y2ν

(
yt+ y−1t

|yt+ y−1t|

)2p

J2p(2π|yt+ y−1t|)d×Ry. (4.2)

Then j(t) is an even function of t ∈ C× satisfying the bound

j(t)� |t|2(1 + |t|−1/2)(1 + |p|). (4.3)

Proof. It is clear that j(t) = j(−t), so we are left to prove (4.3). Assume first that p 6= 0, which implies
that we are in the principal series. Then trivially

j(t)� |t|2
∫ ∞

0

|J2p(2π|yt+ y−1t|)|d×Ry.

The integral is invariant under y ↔ 1/y, so we have

j(t)� |t|2
∫ ∞

1

|J2p(2π|yt+ y−1t|)|d×Ry.
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Here ∫ 2

1

|J2p(2π|yt+ y−1t|)|d×Ry � 1

and ∫ max
(

4p2

π|t| ,2
)

2

|J2p(2π|yt+ y−1t|)|d×Ry � max

(
log

(
4p2

π|t|

)
, 0

)
by |J2p(x)| ≤ 1 of (4.1). On the remaining domain, y ≥ 2, hence |yt + y−1t| ≥ y|t|/2. Moreover, since
y ≥ 4p2/(π|t|), we have 2π|yt+y−1t| ≥ (2p)2 > 1/2, so we may apply |J2p(x)| � x−1/2 of (4.1), obtaining∫ ∞

max
(

4p2

π|t| ,2
) |J2p(2π|yt+ y−1t|)|d×Ry �

∫ ∞
max

(
4p2

π|t| ,2
)(2π|yt+ y−1t|)−1/2d×Ry

�
∫ ∞

max
(

4p2

π|t| ,2
)(y|t|)−1/2d×Ry

�
∫ ∞

4p2

π|t|

(y|t|)−1/2d×Ry +

∫ ∞
2

(y|t|)−1/2d×Ry

� 1 + |t|−1/2.

Altogether,

j(t)� |t|2
(

1 + |t|−1/2 + max

(
log

(
4p2

π|t|

)
, 0

))
,

which obviously implies
j(t)� |t|2(1 + |t|−1/2)(1 + |p|). (4.4)

If p = 0, in particular, in the complementary series, we have

j(t)� |t|2
∫ ∞

0

y2<ν |J0(2π|yt+ y−1t|)|d×Ry � |t|
2

∫ ∞
1

y2|<ν||J0(2π|yt+ y−1t|)|d×Ry,

since under y ↔ 1/y, J0(2π|yt + y−1t|) and d×Ry are invariant, while y2<ν ≥ (1/y)2<ν if and only if
log y/<ν ≥ 0. Then ∫ 2

1

y2|<ν||J0(2π|yt+ y−1t|)|d×Ry � 1

and ∫ max( 1
|t| ,2)

2

y2|<ν||J0(2π|yt+ y−1t|)|d×Ry � |t|
−4θ,

again by |J2p(x)| ≤ 1 of (4.1) and 2|<ν| ≤ 4θ = 7/16. On the remaining domain, y ≥ 2 implies
|yt+ y−1t| ≥ y|t|/2, so we may apply |J2p(x)| � x−1/2, since y ≥ 1/|t|. Then∫ ∞

max( 1
|t| ,2)

y2|<ν||J0(2π|yt+ y−1t|)|d×Ry �
∫ ∞

max( 1
|t| ,2)

y2|<ν|(2π|yt+ y−1t|)−1/2d×Ry

�
∫ ∞

max( 1
|t| ,2)

y2|<ν|(y|t|)−1/2d×Ry

�
∫ ∞

1
|t|

y2|<ν|(y|t|)−1/2d×Ry +

∫ ∞
2

y2|<ν|(y|t|)−1/2d×Ry

� |t|−2|<ν| + |t|−1/2,

where we used again that 2|<ν| ≤ 7/16. Therefore in this case, we obtain

j(t)� |t|2(1 + |t|−1/2). (4.5)

Collecting the bounds (4.4), (4.5), we arrive at (4.3).
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4.2 Bounds on Whittaker functions

We would like to give estimates on the Whittaker functions defined in (2.20) and (2.21). At real places,
we refer to [4].

Lemma 4.3. For all ν,

Wq,ν(y)� |y|1/2
(

|y|
|q|+ |ν|+ 1

)−1−|<ν|

exp

(
− |y|
|q|+ |ν|+ 1

)
. (4.6)

For ν ∈ (1/2 + Z) ∪ iR and for any 0 < ε < 1/4,

Wq,ν(y)�ε |y|1/2−ε(|q|+ |ν|+ 1). (4.7)

For ν ∈ (−1/2, 1/2) and for any 0 < ε < 1,

Wq,ν(y)�ε |y|1/2−|ν|−ε(|q|+ |ν|+ 1)1+|ν|. (4.8)

Proof. See [4, (24-26)] (and also [5, (26-28)]).

At complex places, introduce

J(l,q),(ν,p)(y) =W(l,q),(ν,p)(y)

(√
8(2l + 1)

(2π)<ν

(
2l

l − q

) 1
2
(

2l

l − p

)− 1
2

√∣∣∣∣Γ(l + 1 + ν)

Γ(l + 1− ν)

∣∣∣∣
)−1

, (4.9)

the unnormalized Whittaker function appearing in [13, Section 5] and [45, Section 4.1]; our function
J(l,q),(ν,p)(y) is the same as J1ϕl,q(ν, p)(a(y)) in [45]. The advantage of this unnormalized function is its
regularity in ν. Note that J(l,q),(ν,p) is nothing else but (2.21) without its first line.

Lemma 4.4. For 0 < |y| ≤ 1 and ε > 0,

W(l,q),(ν,p)(y)�ε |y|1−|<ν|−ε(1 + |p|+ l)1+|p|/2. (4.10)

For |y| ≥ (l4 + 1)(|ν|2 + 1),

W(l,q),(ν,p)(y)� exp

(
− |y|
|ν|+ l + 1

)
. (4.11)

Proof. It is clear from the definition and the fact |<ν| ≤ 7/32 that

W(l,q),(ν,p)(y)� J(l,q),(ν,p)(y)(1 + l)

(
2l

l − q

) 1
2
(

2l

l − p

)− 1
2

� J(l,q),(ν,p)(y)(1 + |p|+ l)1+|p|/2,

since (
2l

l − q

) 1
2
(

2l

l − p

)− 1
2

=

(
(l − p)!(l + p)!

(l − q)!(l + q)!

)1/2

≤
(

(l + |p|)!
l!

)1/2

≤ (1 + |p|+ l)|p|/2.

Together with [45, (4.28)], this shows the bound (4.10). As for (4.11), take |y| ≥ (l4 + 1)(|ν|2 + 1) ≥ 1.
We first estimate J(l,q),(ν,p) from its expression in terms of K-Bessel functions (recall (2.22) and (2.23)).
We estimate the contribution of the binomial factor trivially:

ξlp(q, k) ≤
(

2l

l

)2(
l

bl/2c

)
≤ 32l � e|y|/(3(|ν|+l+1)),

since
|y|

3(|ν|+ l + 1)
≥ |y|

3(|ν|+ 1)(l + 1)
� l3 + 1.

Also trivially C|y|1/4 > l+ 1 and |y|/(3(|ν|+ l+ 1)) > y1/2/C with some absolute constant C, therefore

(2π|y|)l+1−k ≤ (2π|y|)l+1 ≤ (2π|y|)C|y|
1/4

� ey
1/2/C ≤ e|y|/(3(|ν|+l+1)).
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At this point, we record that the summation over k and transition factor from J(l,q),(ν,p) to W(l,q),(ν,p) is
also estimated similarly, since

(1 + l)(1 + |p|+ l)1+|p|/2 � (2l + 1)l/2+2 � (2π|y|)l+1 � e|y|/(3(|ν|+l+1)).

Now we would like to estimate
Kν+l−|q+p|−k(4π|y|)

Γ(l + 1 + ν − k)
,

where 0 ≤ k ≤ l −max(|p|, |q|). Instead of this, we may write

Kν+a(4π|y|)
Γ(b+ 1 + ν)

,

where 0 ≤ a ≤ b ≤ l: in the principal series <ν = 0, this is justified by Ks(x) = K−s(x) (see [58,
3.7(6)]) and |Γ(x)| = |Γ(x)|, hence take b = l − k, then a = |l − k − |q + p|| (and we conjugate ν, if
l− k < |q+ p|), 0 ≤ a ≤ b ≤ l follows from the constraint on k; while in the complementary series, p = 0
implies l − |q + p| − k ≥ 0, from which 0 ≤ a ≤ b ≤ l is satisfied by setting b = l − k, a = l − k − |q + p|.
By Basset’s integral [58, §6.16],

Kν+a(4π|y|)
Γ(b+ 1 + ν)

=
Γ(ν + a+ 1/2)

Γ(ν + b+ 1)

1

2
√
π(2π|y|)ν+a

∫ ∞
−∞

e−i4π|y|t

(1 + t2)ν+a+1/2
dt.

From Stirling’s formula, we see that the quotient of the Γ-factors is O(1). As for the rest, integrating by
parts, then shifting the contour to =t = −(|ν|+ a+ 2)−1 (similarly as in [14, (4.2-5)]),

1

2
√
π(2π|y|)ν+a

∫ ∞
−∞

e−i4π|y|t

(1 + t2)ν+a+1/2
dt� |ν|+ a+ 1

|y|ν+a−1

∫ ∞
−∞

te−i4π|y|t

(1 + t2)ν+a+3/2
dt

=
|ν|+ a+ 1

|y|ν+a−1

∫ −i(|ν|+a+2)−1+∞

−i(|ν|+a+2)−1−∞

te−i4π|y|t

(1 + t2)ν+a+3/2
dt

� |ν|+ a+ 1

|y|ν+a−1
exp

(
−(3 + 1/3)π|y|
|ν|+ a+ 1

)
.

Here, |ν|+ a+ 1� |y|1/2, so as above,

|ν|+ a+ 1� e|y|/(|ν|+a+1), |y|−ν−a+1 � e|y|/(3(|ν|+a+1)),

giving
Kν+l−|q+p|−j(4π|y|)

Γ(l + 1 + ν − j)
� exp

(
− 2|y|
|ν|+ l + 1

)
.

Altogether

W(l,q),(ν,p)(y)� exp

(
− |y|
|ν|+ l + 1

)
as claimed.

Now borrowing an idea from [4, p.330], we give a further bound on W(l,q),(ν,p).

Lemma 4.5. For all y ∈ C×,

W(l,q),(ν,p)(y)� (|y|3/4 + |y|)(l4 + 1)(|ν|2 + 1)(|p|+ 1). (4.12)

Proof. Our starting point is a special Jacquet-Langlands functional equation

W(l,q),(ν,p)(y) = (−1)l+qπ

∫
C×

j(
√
t)W(l,−q),(ν,p)(t/y)d×Ct, (4.13)

where j is defined in (4.2). This is proved in [12, Theorem 2 and (3)] in a different formulation, one is
straight-forward from the other using [45, (2.30), (2.43) and (4.2)]. Note that in [12], it is stated only
for the principal series, but it extends to the complementary series by analytic continuation, using the
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regularity of J(l,q),(ν,p) in ν and then the homogenity of (4.13). Also note that j(
√
t) does not lead to

confusion, since j(t) is an even function of t (by Lemma 4.2).
In (4.13), split up the integral as

W(l,q),(ν,p)(y)�

I︷ ︸︸ ︷∫
0<|t|<|y|(l4+1)(|ν|2+1)

j(
√
t)W(l,−q),(ν,p)(t/y)d×Ct

+

II︷ ︸︸ ︷∫
|t|≥|y|(l4+1)(|ν|2+1)

j(
√
t)W(l,−q),(ν,p)(t/y)d×Ct .

First estimate I. Using Cauchy-Schwarz,

I�

(∫
0<|t|<|y|(l4+1)(|ν|2+1)

|j(
√
t)|2d×Ct

)1/2(∫
0<|t|<|y|(l4+1)(|ν|2+1)

|W(l,−q),(ν,p)(t/y)|2d×Ct

)1/2

.

The second factor is at most 1, since the Whittaker functions have L2-norm 1 (recall (2.24) and the
remark after that). In the first factor, we may apply (4.3):

I�

(∫
0<|t|<|y|(l4+1)(|ν|2+1)

|j(
√
t)|2d×Ct

)1/2

�

(
(1 + p2)

∫ |y|(l4+1)(|ν|2+1)

0

r2(1 + r−1/2)d×Rr

)1/2

� max(|y|, |y|3/4)(l4 + 1)(|ν|2 + 1)(|p|+ 1).

In the second term II, we apply Lemma 4.4 together with (4.3). As above,

II� (1 + |p|)
∫
|t|>|y|(l4+1)(|ν|2+1)

|t|(1 + |t|−1/4) exp

(
− |t|
|y|(|ν|+ l + 1)

)
d×Ct

� (1 + |p|)
∫ ∞
|y|(l4+1)(|ν|2+1)

r(1 + r−1/4) exp

(
− r

|y|(|ν|+ l + 1)

)
d×Rr

� (1 + |p|)
∫ ∞

1/2

(|y|+ |y|3/4)(|ν|+ l + 1)s exp(−s)d×Rs

� max(|y|, |y|3/4)(|ν|+ l + 1)(|p|+ 1)

with the change of variable r = s|y|(|ν|+ l + 1). Summing up, we arrive at (4.12).

From (2.24), we know that the square-integral of a Whittaker function is 1. The next lemma encap-
sulates the fact that a Whittaker function cannot concentrate to a neighborhood of 0 or∞. To formulate
it properly, we introduce the notation, for any a ∈ Rr+s,

S(a) =

{
y = (y1, . . . , yr+s) ∈ Rr+s :

{
|yj | > |aj |, for all j ≤ r,
yj > |aj |, for all j > r

}
.

Lemma 4.6. There exist some positive constants C0, C1 depending only on F and r with the following
property. For any t ∈ F×∞ and w ∈ W (π) (where π is an automorphic representation with spectral
parameter r), we have

∫
S(ε/t)

|Ww,r(ty)|2 dy∏
j≤r |yj |2

∏
j>r |yj |3

> C1|t|∞

∏
j≤r

(1 + q2
j )
∏
j>r

(1 + l4j )

−1

, (4.14)

if ε is chosen such that its archimedan images satisfy εj ≤ C0(1 + q8
j )−1 at real, and εj ≤ C0(1 + l16

j )−1

at complex places.
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Proof. Observe that the integral on the left-hand side of (4.14) can be written as

|t|∞
∫
S(ε)

|Ww,r(y)|2 dy∏
j≤r |yj |2

∏
j>r |yj |3

,

so we are left to estimate this. By (2.24), we have a positive constant A depending only on F such that∫
S(0)

|Ww,r(y)|2 dy∏
j≤r |yj |

∏
j>r |yj |2

= A.

Now observe that by (4.7), (4.8) and (4.12), for all 0 < ε < 1,(∫ 0

−ε
+

∫ ε

0

)
|Wq,ν(y)|2 dy

|y|
�F,ν ε

1/2(1 + q4),

∫ ε

0

|W(l,q),(ν,p)(y)|2 dy
|y|2
�F,ν,p ε

1/2(1 + l8)

at real and complex places, respectively (in the real case, use also that |<ν| ≤ 7/64). Also by (4.6) and
(4.11),(∫ −B(1+q2)

−∞
+

∫ ∞
B(1+q2)

)
|Wq,ν(y)|2 dy

|y|
<

1

2(r + s)
,

∫ ∞
B(1+l4)

|W(l,q),(ν,p)(y)|2 dy
|y|2

<
1

2(r + s)

for some positive constant B depending on F and r. Altogether,∫
y∈S(ε)

|yj |<A(1+q2
j ) (j≤r)

yj<A(1+l4j ) (j>r)

|Ww,r(y)|2 dy∏
j≤r |yj |

∏
j>r |yj |2

> C1A
r+s.

with some positive number C1 (depending only on F and r), if ε is small enough (as in the statement,
with an appropriate C0). From this, the statement is obvious.

4.3 Transition between adelic and classical functions

In this section, we match the adelic automorphic functions with classical ones. By a classical automorphic
function with respect to Γ(n, c), we mean a funtion f : GL2(F∞) → C, which is left Γ(n, c)Z(F∞)-
invariant, where 0 6= n, c ⊆ o. We borrow the transition from [5, Section 2.12] and also slightly generalize
it.

For m ∈ GL2(Afin), introduce the notation Km(c) = m−1K(c)m. Given the ideals n, c as above, let
η ∈ A×fin be a finite idele representing n. It is easy to check that

Γ(n, c)Z(F∞)g 7→ GL2(F )Z(F∞)g

(
η−1 0
0 1

)
mKm(c), g ∈ GL2(F∞)

gives an embedding

Γ(n, c)Z(F∞)\GL2(F∞) ↪→ GL2(F )Z(F∞)\GL2(A)/Km(c).

Using now strong approximation [15, Theorem 3.3.1], and taking ideal class representatives n1, . . . , nh,
we obtain a decomposition

GL2(F )Z(F∞)\GL2(A)/Km(c) ∼=
h∐
j=1

Γ(nj , c)Z(F∞)\GL2(F∞) (4.15)

for each pair m ∈ GL2(Afin), c ⊆ o.

Lemma 4.7. Using the measures induced by those we defined earlier, for any Borel set U in the decom-
position (4.15),

measureLHS(U) = [K(o) : K(c)]−1measureRHS(U).

Proof. See [5, p.34].
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4.4 A bound on the supremum norm of a cusp form

The aim of this section is to give a bound of the form ||φ||sup �F,π ||φ||Sd , where φ is a sufficiently
smooth newform in the cuspidal representation π, and the order d depends only on F . We need some
preparatory lemmas.

Lemma 4.8. Assume (π, Vπ) is an irreducible cuspidal representation in L2(GL2(F )Z(A)\GL2(A)),
and φ ∈ Vπ is of pure weight w. Then for any k∞ ∈ K∞ and g ∈ GL2(A)

|φ(gk∞)| �F |φ(g)|
r+s∏
j=r+1

(lj + 1)7.

Proof. We may assume ||φ|| = 1. First observe that φ′(g) = φ(gk∞) is in the same irreducible represen-
tation of K∞ as φ, therefore, we may write

φ′(g) = φ(gk∞) = φ(g)
∑

|qr+1|≤lr+q,...,|qr+s|≤lr+s

α(g; q1, . . . , qr+s)

r∏
j=1

Φqj (kj)

r+s∏
j=r+1

Φ
lj
pj ,qj (kj)

||Φljpj ,qj ||SU2(C)

,

where for each g, ∑
|qr+1|≤lr+q,...,|qr+s|≤lr+s

|α(g; q1, . . . , qr+s)|2 = 1,

in particular, each |α(g; q1, . . . , qr+s)| ≤ 1. Since the sum has �F

∏r+s
j=r+1(lj + 1) terms, it suffices to

prove
|Φlp,q(k)|
||Φlp,q||SU2(C)

� (l + 1)6.

This follows from [2, Lemma on p.348 and Corollary on p.349] with n = 4 by the standard quaternion
representation of SU2(C). Each derivation gives a factor � (l + 1)3/2, see [45, (2.19), (2.31)].

Lemma 4.9. Let N = 2rh, where h is the class number of F . There are finitely many elements
a1, . . . , aN ∈ GL2(F ) regarded as elements of GL2(F∞) and some δ > 0 such that for any g ∈ GL2(F∞),
there exist elements z ∈ Z(F∞), γ ∈ SL2(o) (regarded as an element of GL2(F∞)) and k ∈ K∞ such
that

g = zγaj

(
y x
0 1

)
k,

for some 1 ≤ j ≤ N , where
( y x

0 1

)
∈ B(F∞) satisfies y1, . . . , yr+s > δ (in particular, all of them are real).

Proof. It is proved in [26, Theorem 3.6] that there are finitely many elements b1, . . . , bh ∈ SL2(F ) and
some δ′ > 0 such that for any g ∈ SL2(F∞), there exist elements z ∈ Z(F∞), γ ∈ SL2(o) and k ∈ K∞
such that in GL2(F∞),

g = zγbj

(
y x
0 1

)
k,

for some 1 ≤ j ≤ h, where
( y x

0 1

)
∈ B(F∞) satisfies y1, . . . , yr+s > δ′. Note that [26] works with totally

real fields, the general case is straight-forward using the same technique.
Therefore, we are left to work out the transition from SL2 to GL2. Take diagonal matrices s1, . . . , s2r ∈

GL2(F ) (regarded as matrices in GL2(F∞)) with lower-right entry 1, upper-left entry uj (1 ≤ j ≤ 2r),
such that for any given sign e = (±1)r, there is a j such that sign(uj) = e. Then let g ∈ GL2(F∞) be
given. We can assume that its determinant is 1 at all complex places and it is ±1 at all real places.
Denote by s the matrix which is

(
1 0
0 1

)
at those places where det g is 1, and

(−1 0
0 1

)
where det g is −1.

Now by the result for SL2, in GL2(F∞),

gs = zγbj

(
y x
0 1

)
k

for some 1 ≤ j ≤ h, where z ∈ Z(F∞), γ ∈ SL2(o), y1 . . . , yr+s > δ′, x ∈ F∞, k ∈ K∞. Then

g = zγbjss

(
y x
0 1

)
ssks = zγbjs

(
y sign(det s)x
0 1

)
k′,
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with k′ = sks ∈ K∞. This is almost appropriate, the only problem is that s is not necessarily in GL2(F ).
To remedy this, we take the si that admits the same sign as s, write bjs = bjsis

−1
i s, and observe that

s−1
i s

(
y sign(det s)x
0 1

)
=

(
|ui|−1y sign(det s)|ui|−1x

0 1

)
.

This shows that the collection (bjsi)i,j does the job with δ = δ′mini(|ui|−1) > 0.

Proposition 4.10. Let (π, Vπ) be an irreducible cuspidal representation in L2(GL2(F )Z(A)\GL2(A)).
Assume φ ∈ Vπ(cπ) such that ||φ||S2(7r+18s)

exists. Then

||φ||∞ = sup
g∈GL2(A)

|φ(g)| �F,π ||φ||S2(7r+18s)
.

Proof. We follow the proof of [5, Lemma 5]. Note that there is a correction made later in its erratum,
which we also incorporate. First assume φ ∈ Vπ(cπ) is of pure weight w. Let η1, . . . , ηh ∈ A×fin be
finite ideles representing the ideal classes. By strong approximation [15, Theorem 3.3.1], there exist
γ ∈ GL2(F ), g′ ∈ GL2(F∞), k ∈ K(o) such that for some 1 ≤ j ≤ h,

g = γ


∈GL2(F∞)︷︸︸︷

g′ ×

∈GL2(Afin)︷ ︸︸ ︷(
η−1
j 0

0 1

)
k

 .

Now decompose g′ in the sense of Lemma 4.9 as

g′ = zγ′aj′

(
y′ x′

0 1

)
k′,

where aj′ ∈ GL2(F ) (regarded as an element of GL2(F∞)) is from the fixed set {a1, . . . , a2rh}, y′ > δ at
all archimedean places, where δ > 0 is fixed (depending only on F ), z ∈ Z(F∞), γ′ ∈ SL2(o), k′ ∈ K∞.
From now on, we regard z as an element in Z(A), therefore we have

g = zγγ′aj′


∈GL2(F∞)︷ ︸︸ ︷(
y′ x′

0 1

)
k′×

∈GL2(Afin)︷ ︸︸ ︷
a−1
j′ γ

′−1

(
η−1
j 0

0 1

)
k

 .

Here, a−1
j′ γ

′−1
(
η−1
j 0

0 1

)
k lies in a fixed compact subset of GL2(Afin), which can be covered with finitely

many left cosets of the open subgroup K(cπ). Therefore

g = zγ∗


∈GL2(F∞)︷ ︸︸ ︷(
y′ x′

0 1

)
×
∈GL2(Afin)︷︸︸︷

m


∈GL2(F∞)︷︸︸︷

k∗∞ ×

GL2(Afin)︷︸︸︷
k∗fin

 ,

where γ∗ ∈ GL2(F ), k∗ = k∗∞ × k∗fin ∈ K∞ × K(cπ), and m ∈ GL2(Afin) runs through a finite set
depending only on F and cπ, y′ > δ at all archimedean places.

Now let φm(g) = φ(gm). Obviously, φ and φm have the same supremum and Sobolev norms, and
when g decomposes as above,

|φ(g)| =

∣∣∣∣∣∣∣∣∣φm


∈GL2(F∞)︷ ︸︸ ︷(
y′ x′

0 1

)
k∗∞×

∈GL2(Afin)︷ ︸︸ ︷(
1 0
0 1

) 
∣∣∣∣∣∣∣∣∣�F

∣∣∣∣∣∣∣∣∣φm

∈GL2(F∞)︷ ︸︸ ︷(
y′ x′

0 1

)
×

∈GL2(Afin)︷ ︸︸ ︷(
1 0
0 1

) 
∣∣∣∣∣∣∣∣∣
r+s∏
j=r+1

(lj + 1)7, (4.16)

where we applied Lemma 4.8 in the last estimate.
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It is easy to check that φm is right Km−1(cπ)-invariant, so we may apply the adelic-classical transition.
It implies that there is a fractional ideal f (regarded as a lattice in F∞) depending only on F and π, such
that if x ∈ f′ (the dual of f),

φm

((
1 x
0 1

)(
y′ x′

0 1

))
= φm

((
y′ x′

0 1

))
,

where we did not indicate the finite part.
Therefore, analogously to (2.25), we see that φm can be expanded into Fourier series

φm

((
y′ x′

0 1

))
=
∑

06=t∈f

a(t)Ww,r(ty
′)ψ∞(tx′). (4.17)

We need some bound on the Fourier-Whittaker coefficients, which we work out in the following lemma.

Lemma 4.11.
a(t)�F,π ||φ||

∏
j≤r

(1 + |qj |5)
∏
j>r

(1 + l10
j ).

Proof. By Plancherel’s formula,∑
06=t∈f

|a(t)Ww,r(ty
′)|2 = const.(F, π)

∫
F∞/f′

∣∣∣∣φm((y′ x′

0 1

))∣∣∣∣2 dx′.
Take only a single term on the left-hand side. Choose C0 as in Lemma 4.6 and then take ε to be the
largest which is allowed there. Integrate both sides on the domain S(ε/t) with respect to the measure
dy′/(

∏
j≤r |y′j |2

∏
j>r |y′j |3) (note that dx′dy′/(

∏
j≤r |y′j |2

∏
j>r |y′j |3) is the invariant measure on the

symmetric space GL2(F∞)/K∞). By Lemma 4.6, we obtain

|a(t)|2|t|∞

∏
j≤r

(1 + q2
j )
∏
j>r

(1 + l4j )

−1

�F,π

∫
F∞/f′×S(ε/t)

∣∣∣∣φm((y′ x′

0 1

))∣∣∣∣2 dx′dy′∏
j≤r |y′j |2

∏
j>r |y′j |3

.

Here, the Siegel domain F∞/f
′ × S(ε/t) covers each point of Z(A)GL2(F )\GL2(A)/Km−1(cπ) at most

OF,π(|t/ε|∞) times (see [38, Lemma 2.10]), which, together with the choice of ε, gives

|a(t)|2 �F,π ||φ||2
∏
j≤r

(1 + q10
j )
∏
j>r

(1 + l20
j ),

and the claim follows.

Now (4.16) and (4.17) give

|φ(g)| �F,π ||φ||
∏
j≤r

(1 + |qj |5)
∏
j>r

(1 + l17
j )

∑
06=t∈f

|Ww,r(ty
′)|. (4.18)

We turn our attention to
∑

0 6=t∈f |Ww,r(ty
′)|.

The pointwise bounds for local Whittaker functions

Wq,ν(y)�F,π |q|3 + 1, if |y| < (q2 + 1)(|ν|2 + 1),

Wq,ν(y)�F,π exp
(
− |y|

2(q2+1)(|ν|2+1)

)
, if |y| ≥ (q2 + 1)(|ν|2 + 1),

W(l,q),(ν,p)(y)�F,π l
8 + 1, if |y| < (l4 + 1)(|ν|2 + 1),

W(l,q),(ν,p)(y)�F,π exp
(
− |y|

2(l4+1)(|ν|2+1)

)
, if |y| ≥ (l4 + 1)(|ν|2 + 1)

follow easily from (4.6), (4.7), (4.8), (4.11) and (4.12). From these, we see that

Wq,ν(y)�F,π (|q|3 + 1) exp

(
− |y|

2(q2 + 1)(|ν|2 + 1)

)
,

W(l,q),(ν,p)(y)�F,π (l8 + 1) exp

(
− |y|

2(l4 + 1)(|ν|2 + 1)

) (4.19)
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holds for all y 6= 0, at real and complex places, respectively.
With the notation Aj = |qj |3 +1, Bj = 2(q2

j +1)(|νj |2 +1) at real, Aj = l8j +1, Bj = 2(l4j +1)(|νj |2 +1)

at complex places, (4.19) implies that Ww,r(y)�F,π

∏r+s
j=1Aj exp(−|yj |/Bj). Then

∑
06=t∈f

|Ww,r(ty
′)| �F,π

r+s∏
j=1

Aj
∑

06=t∈f

r+s∏
j=1

exp(−|tjy′j |/Bj)

≤
r+s∏
j=1

Aj

∞∑
N=1

∑
06=t∈f

(N−1)≤maxj(|tjy′j |/Bj)<N

exp(−max
j

(|tjy′j |/Bj))

�F,π

r+s∏
j=1

Aj

∞∑
N=1

e−N
r∏
j=1

NBj

r+s∏
j=r+1

N2B2
j

�
r+s∏
j=1

AjB
deg[Fj :R]
j .

Here we used that |y′j | > δ at all places, and also the fact that a lattice L in F∞ contains OL(Nr+2s)
points of supremum norm ≤ N .

Therefore, ∑
06=t∈f

|Ww,r(ty
′)| �F,π

r∏
j=1

(|qj |5 + 1)
r+s∏
j=r+1

(l16
j + 1),

which, together with (4.18), give rise to

|φ(g)| �F,π ||φ||
∏
j≤r

(1 + q10
j )
∏
j>r

(1 + l33
j ). (4.20)

Assume now a sufficiently smooth φ ∈ Vπ is not necessarily of pure weight. We may decompose it as

φ =
∑

w∈W (π)

bwφw, (4.21)

where φw is a weight w function of norm 1 in Vπ. Let us follow the common practice and using the
smoothness of φ, estimate bw in terms of sup w = max(|q1|, . . . , |qr|, lr+1, . . . , lr+s). Using Parseval, then
(2.11) and (2.12), we find, for any nonnegative integer k,

bw = 〈φ, φw〉 �k
1

(1 + (sup w))2k
〈Ωkk,jφ, φw〉 �k

1

(1 + (sup w))2k
||φ||S2k

, (4.22)

where j is the index of an archimedean place, where the maximum (in the definition of sup w) is attained.
Together with (4.20) and (4.21), this implies

|φ(g)| �F,π,k

∑
w∈W (π)

1

1 + (sup w)2k
||φ||S2k

∏
j<r

(1 + q10
j )
∏
j≥r

(1 + l33
j )

�F,π,k

∑
w∈W (π)

(1 + sup w)10r+33s−2k||φ||S2k
.

Here, choosing k = 7r + 18s, we obtain the statement by noting that sup w attains the positive integer
N on a set of cardinality OF (Nr+2s−1).

4.5 A bound on Kirillov vectors

Proposition 4.12. Let (π, Vπ) be an automorphic representation occuring in L2(GL2(F )Z(A)\GL2(A)).
Let t ⊆ o be an ideal, a, b, c be nonnegative integers, 0 < ε < 1/4. Let P ∈ C[x1, . . . , xr+2s] be a
polynomial of degree at most a in each variable. Set then

D = P

((
yj

∂

∂yj

)
j≤r

,

(
yj

∂

∂yj

)
j>r

,

(
yj

∂

∂yj

)
j>r

)
.
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Assume φ ∈ RtVπ(cπ) such that ||φ||S2(3r+4s+2)+(r+s)(a+b+2c)
exists. Then DWφ exists and

DWφ(y)�a,b,c,P,F,ε||φ||S2(3r+4s+2)+(r+s)(a+b+2c)
N (t)εN (cπ)εN (r)−c

r∏
j=1

(|yj |1/2−ε + |yj |1/2−θ−ε)(min(1, |yj |−b))
r+s∏
j=r+1

(|yj |3/4 + |yj |)(min(1, |yj |−b)).

Proof. We follow the proof of [5, Lemma 4]. First assume φ ∈ RtVπ(cπ) is of pure weight w. Then we
may write

|Wφ(y)| = ||Wφ|| · |Ww,r(y)|.
Using Proposition 2.2, (2.31), (2.40), (2.42), the remark after that, (3.5), Proposition 3.2, and the
estimates (4.7), (4.8), (4.12), we have, for 0 < ε < 1/4,

Wφ(y)�F,ε ||φ||N (t)εN (cπ)εN (r)ε
r∏
j=1

(1 + |νj |+ |qj |)1+θ(|yj |1/2−ε + |yj |1/2−θ−ε)

·
r+s∏
j=r+1

(1 + |pj |)(1 + |νj |2)(1 + l4j )(|yj |3/4 + |yj |).

This gives

Wφ(y)�F,ε ||φ||N (t)εN (cπ)εN (r)2
r∏
j=1

(1 + |qj |)1+θ(|yj |1/2−ε + |yj |1/2−θ−ε)

·
r+s∏
j=r+1

(1 + l4j )(|yj |3/4 + |yj |).

Now take an arbitrary φ ∈ RtVπ(cπ), which is sufficiently smooth. Then recalling (4.21) and (4.22),
in

φ =
∑

w∈W (π)

bwφw, ||φw|| = 1,

we have

bw �k
1

(1 + (sup w))2k
||φ||S2k

.

Now choosing k = 3r + 4s, we obtain

Wφ(y)�F,ε ||φ||S2(3r+4s)
N (t)εN (cπ)εN (r)2

r∏
j=1

(|yj |1/2−ε + |yj |1/2−θ−ε)
r+s∏
j=r+1

(|yj |3/4 + |yj |). (4.23)

The differential operators given in (2.4) and (2.5) act on the sufficiently smooth Kirillov vectors. We
record the action of some of them (neglecting some absolute scalars for simplicity). Of course, Ωj(,±)

act by λ(±). From (2.30) and (2.41), it is easy to derive that Rj , V1,j + W1,j , V2,j + W2,j act via
a multiplication by yj , <yj , =yj , respectively; finally Hj by yj(∂/∂yj), and H1,j , H2,j by yj(∂/∂yj) +
yj(∂/∂yj), iyj(∂/∂yj)− iyj(∂/∂yj), respectively.

Now assume given a, b, c and the polynomial P as in the statement. Then

D = const.FP
(

(Hj)j≤r, ((H1,j − iH2,j)/2)j>r, ((H1,j + iH2,j)/2)j>r

)
,

and define the differential operator

D′ =

∏
j≤r

Ωc+2
j

∏
j>r

Ωc+2
j,+


 ∏

1≤j≤r
|yj |≥1

Rb
j




∏
r+1≤j≤r+s
|yj |≥1

|<yj |≥|=yj |

(V1,j + W1,j)
b




∏

r+1≤j≤r+s
|yj |≥1

|<yj |<|=yj |

(V2,j + W2,j)
b

 .

Applying (4.23) to D′Dφ, we obtain the statement.
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Chapter 5

The density of the spectrum

In this chapter, we estimate the density of the Eisenstein and the cuspidal spectrum in terms of the
spectral parameters. These are the extensions of [5, Lemma 2 and Lemma 6]. After the suitable
modifications, the proofs given there apply in the more general situation.

First of all, we introduce some notations. Given an ideal c, let

C(c) = {π ∈ C | c ⊆ cπ}, E(c) = {χ ∈ E | c ⊆ cχ,χ−1}.

5.1 Density of the Eisenstein spectrum

Lemma 5.1. Let c21c2 = c ⊆ o, where c2 is squarefree. Then for 1 ≤ X ∈ R, 1 ≤ P ∈ Z,∫
$∈E(c)
|ν$,j |≤X
|p$,j |≤P

1d$ �F X
r+sP sN (c1).

Proof. Any Hecke character χ can be factorized as χ = χ∞χfin. Here, χfin|∏
p o×p

is a character of
∏

p o
×
p .

By Proposition 2.3, cχ|c1, so there are at most ϕ(c1) possibilities for this restriction. Assume given
a character ξ of

∏
p o
×
p , we estimate the measure of the set S of those Hecke characters χ for which

χfin|∏
p o×p

= ξ. If S = ∅, the measure is 0. If S 6= ∅, fix some χ0 ∈ S. Then to any χ in S, associate

χ′ = χχ−1
0 . From the non-archimedan part, we see χ′ is trivial on

∏
p o
×
p . From the archimedan part,

we see that for a ∈ F×∞,+, χ′(aj) = |aj |tj , if j ≤ r, and χ′(aj) = |aj |tj (aj/|aj |)pj , if j > r, where
tj ∈ i[−2X, 2X], and pj ∈ [−2P, 2P ] ∩ Z. Fix the vector (pj)j>r ∈ [−2P, 2P ]s ∩ Zs.

Now χ′∞ is trivial on the group U+ of totally positive units embedded in F×∞,+. Fix a generating set
{u1, . . . , ur+s−1} for the torsion-free part of U+. Then by the notation of [5], take

M =


deg[F1 : R] . . . deg[Fr+s : R]

deg[F1 : R] log |u1,1| . . . deg[Fr+s : R] log |u1,r+s|
· ·
· ·
· ·

deg[F1 : R] log |ur+s−1,1| . . . deg[Fr+s : R] log |ur+s−1,r+s|

 ∈ R(r+s)×(r+s).

Then the column vector t = (tj)j ∈ i[−2X, 2X]r+s with iT =
∑
j deg[Fj : R]tj satisfies Mt ∈ i{T} ×

(2πiZ)r+s−1. Using that M is invertible and depends only on F , we see∫ 2(r+2s)X

−2(r+2s)X

#(({T} × (2πiZ)r+s−1) ∩Mi[−2X, 2X]r+s)dT �F X
r+s,

since the integrand is OF (Xr+s−1). Taking into account the finiteness of the torsion subgroup of U+

and of F×F×∞,+
∏

p o
×
p \A×, finally summing over (pj)j>r ∈ [−2P, 2P ]s, we obtain the statement.
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Lemma 5.2. Let c21c2 = c ⊆ o, where c2 is squarefree. Then for 1 ≤ X ∈ R,∫
$∈E(c)

j≤r:|ν$,j |≤X
j>r:|ν2

$,j−p
2
$,j |≤X

2

1d$ �F X
r+2sN (c1).

Proof. Set P = X in the previous lemma.

5.2 Density of the cuspidal spectrum

In the estimate of the density of the cuspidal spectrum, we use the Kuznetsov formula (see [46, Theorem
1] or Theorem 3 in Chapter 8). In our notation, for a weight function h of the form described below,

[K(o) : K(c)]
−1

∑
π∈C(c)

C−1
π

∑
t|cc−1

π

h(rπ)λtπ(αa−1)λtπ(α′a′−1) + CSC =

const.F∆(αa−1, α′a′−1)

∫
h(r)dµ+

const.F
∑
m∈C

∑
c∈amc

∑
ε∈o×+/o2×

KS(εα, a−1d−1;α′γm, a
′−1d−1; c, a−1m−1d−1)

N (ca−1m−1)

∫
Bh(r)

(
4π

(αα′γmε)
1
2

c

)
dµ,

(5.1)

where KS is a Kloosterman sum, B is a certain Bessel function, and dµ is a certain measure of the space
of the spectral parameters r. We explain the notation and the conditions: a−1 and a′−1 are nonzero
fractional ideals; α ∈ a, α ∈ a′ such that αα′ is totally positive; C is a fixed set of narrow ideal class
representatives m, for which m2aa′−1 is a principal ideal generated by a totally positive element γm;
∆(αa−1, α′a′−1) is 1 if αa−1 = α′a′−1, otherwise it is 0; CSC is an analogous integral over the Eisenstein
spectrum. For the sake of completeness, we will discuss the details in Chapter 8.

The weight function h we will use is of the form h =
∏
j hj , where hj ’s are defined as follows. Let

aj , bj > 1, a′j ∈ R be given. Then at real places

hj(νj) =

 e(ν2
j− 1

4 )/aj , if |<νj | < 2
3 ,

1, if νj ∈ 1
2 + Z, 3

2 ≤ |νj | ≤ bj ,
0 otherwise,

(5.2)

while at complex places

hj(νj , pj) =

{
e(ν2

j+a′jp
2
j−1)/aj , if |<νj | < 2

3 , pj ∈ Z, |pj | ≤ bj ,
0 otherwise.

(5.3)

In the estimate of the density of the cuspidal spectrum, we choose our parameters as follows. At each
place, aj > 1 is arbitrary, then set bj =

√
aj . Furthermore, at complex places, we use a′j = −1. In this

setup, we have the following lemma about the integrals on the geometric side.

Lemma 5.3. At real places,∫
hj(νj)dµj � aj ,

∫
(Bjhj)νj (t)dµj � aj min(1, |t|1/2).

At complex places, ∫
hj(νj , pj)dµj � a2

j ,

∫
(Bjhj)(νj ,pj)(t)dµj � aj min(1, |t|).

Proof. The bounds at real places are taken from [11, pp.124-126]. As for complex places, the first bound
follows from trivial estimates: by (8.9),∫

hj(νj , pj)dµj �
∑
|pj |≤bj

∫
(0)

e(ν2
j−p

2
j )/aj (p2

j − ν2
j )dνj

�
∑
|pj |≤bj

∫ ∞
0

e−u
2/aju2du+

∑
|pj |≤bj

∫ ∞
0

e−u
2/ajp2

jdu

� bja
3/2
j + b3ja

1/2
j = 2a2

j .
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The second bound follows the same way as [13, (10.16)]. The only difference is that in our case, the sum
over pj (which is the same as p in [13, (10.18-19)]) is restricted to |pj | ≤ bj . It is easy to check that the
difference coming from the terms |pj | > bj is majorized by the right-hand side of [13, (10.20)].

Now we can estimate the density of the cuspidal spectrum.

Lemma 5.4. Let c ⊆ o be an ideal. Then for 1 ≤ Xj ∈ Rr+s,∑
$∈C(c)

j≤r:|ν$,j |≤Xj
j>r:|ν2

$,j−p
2
$,j |≤X

2
j

∑
t|cc−1

$

|λt$(m)|2 �F,ε

∏
j≤r

X2+ε
j

∏
j>r

X4+ε
j

N (c)1+ε +

∏
j

X2+ε
j

 (N (gcd(m, c)))1/2N (m)1/2+ε.

Proof. This is the generalization of [5, Lemma 6], we can repeat its proof. Choose a narrow class
representative n of m−1 from a fixed set of narrow class representatives. Then for some α ∈ F×,
m = αn−1, and 1 �F N ((α))/N (m) �F 1. We apply the Kuznetsov formula (5.1) with α = α′,
a = a′ = n, and the weight function is the one described above, setting aj = X2

j , bj = Xj at each
archimedean place. On the spectral side of the Kuznetsov formula, we obtain an upper bound on the
left-hand side of the statement, since the contribution of the Eisenstein spectrum is nonnegative. For
$ ∈ C(c), by (3.2), (3.5) and Proposition 3.2, [K(o) : K(c)]C$ �F,ε (

∏
j Xj)

εN (c)1+ε. Then by the

previous lemma, the delta term gives �F,ε

(∏
j≤rX

2+ε
j

)(∏
j>rX

4+ε
j

)
N (c)1+ε. As for the Kloosterman

term, we use Weil’s bound [56, (13)] together with the previous lemma to see it is

�F,ε

∏
j

X2+ε
j

N (c)1+ε max
a∈C

∑
06=c∈nac

N ((gcd(m, cn−1a−1)))1/2

N (cn−1a−1)1/2−ε

·
∏
j≤r

min(1, |αj/cj |1/2)
∏
j>r

min(1, |αj/cj |),
(5.4)

where C is a fixed set of narrow class representatives (depending only on F ) such that a2 is a totally
positive principal ideal for each a ∈ C. Then the sum over the elements c can be rewritten as a sum over
the principal ideals (c), the sum over the units is estimated in [9, Lemma 8.1]. Then the above display is

�F,ε

∏
j

X2+ε
j

N (c)1+ε max
a∈C

∑
06=(c)⊆nac

N (gcd(m, cn−1a−1))1/2

N (cn−1a−1)1/2−ε

· (1 + | log(N ((α/c)))|r+s−1) min(1,N ((α/c))).

This is obviously

�F,ε

∏
j

X2+ε
j

N (c)1+εN (m)1/2+2ε max
a∈C

∑
06=(c)⊆nac

N ((gcd(m, cn−1a−1)))1/2

N ((c))1/2−ε
1

N ((c))1/2+2ε
.

We estimate now the sum. First extend it to all nonzero ideals contained in nac (parametrized as bnac,
where 0 6= b ⊆ o), then factorize out N (gcd(m, c))1/2. We obtain

1

N (nac)1+ε

∑
b⊆o

N (gcd(m, cb))1/2

N (b)1+ε
≤ N (gcd(m, c))1/2

N (nac)1+ε

∑
b⊆o

N (gcd(m, b))1/2

N (b)1+ε

≤ N (gcd(m, c))1/2

N (nac)1+ε

∑
m′|m

∑
b′⊆o

N (m′)1/2

N (m′b′)1+ε

≤ N (gcd(m, c))1/2

N (nac)1+ε

∑
m′|m

ζF (1 + ε)

�F,ε
N (gcd(m, c))1/2

N (nac)1+ε
N (m)ε.
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Altogether, the contribution of the Kloosterman term is

�F,ε

∏
j

X2+ε
j

N (gcd(m, c))1/2N (m)1/2+ε. (5.5)

Recalling that the contribution of the Eisenstein spectrum is nonnegative, the proof is complete.

Lemma 5.5. Let c ⊆ o be an ideal. Then for 1 ≤ Xj ∈ Rr+s,

∑
$∈C(c)

j≤r:|ν$,j |≤Xj
j>r:|ν2

$,j−p
2
$,j |≤X

2
j

∑
t|cc−1

π

1�F,ε

∏
j≤r

X2+ε
j

∏
j>r

X4+ε
j

N (c)1+ε.

Proof. Take m = o in the previous lemma.
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Chapter 6

The spectral decomposition of shifted
convolution sums

The aim of this chapter is to prove a variant of [5, Theorem 2] for arbitrary number fields.
We focus on the subspace L2(Z(A)GL2(F )\GL2(A)/K(c)), its spectral decomposition is similar to

(2.3), the only modification is the restriction of C, E to C(c), E(c), respectively. If f is a function of those
infinite-dimensional representations, which are not orthogonal to L2(Z(A)GL2(F )\GL2(A)/K(c)), we
write ∫

(c)

f$d$ =
∑
π∈C(c)

fπ +

∫
E(c)

f$d$.

Theorem 1. We have a spectral decomposition of shifted convolution sums in the sense of Part A with
functions satisfying the bound in Part B.

Part A. Assume π1, π2 are irreducible cuspidal representations in L2(Z(A)GL2(F )\GL2(A)). Let
l1, l2 ∈ o \ {0}, and set c = lcm(l1cπ1

, l2cπ2
). Let moreover W1,W2 : F×∞ → C be arbitrary Schwarz

functions, that is, they are smooth and tend to 0 faster then any power of y−1 or y, as y tends to ∞
or 0, respectively. Then for any $ ∈ C(c) ∪ E(c) and t|cc−1

π , there exists a function W$,t : F×∞ → C×

depending only on F, π1, π2,W1,W2, $, t such that the following holds. For any Y ∈ (0,∞)r+s, any ideal
n ⊆ o and any 0 6= q ∈ n, there is a spectral decomposition of the shifted convolution sum

∑
l1t1−l2t2=q,06=t1,t2∈n

λπ1
(t1n

−1)λπ2
(t2n−1)√

N (t1t2n−2)
W1

((
(l1t1)j
Yj

)
j

)
W2

((
(l2t2)j
Yj

)
j

)

=

∫
(c)

∑
t|cc−1

$

λt$(qn−1)√
N (qn−1)

W$,t

((
qj
Yj

)
j

)
d$,

where λt$(m) is given in (2.35).

Proof. First apply Proposition 2.2 to see that there exist functions φ1 ∈ Vπ1(cπ1), φ2 ∈ Vπ2(cπ2) such
that Wφ1

= W1, Wφ2
= W2. Set then

Φ = R(l1)φ1R(l2)φ2.

Then since c = lcm(l1cπ1 , l2cπ2), we see that Φ is right K(c)-invariant. Also, since W1,W2 are from
the Schwarz space, φ1, φ2 are smooth and have finite Sobolev norms of arbitrarily large order, so
does Φ ∈ L2(Z(A)GL2(F )\GL2(A)/K(c)) (use Proposition 2.2 and Proposition 4.10 together with [57,
Lemma 8.4]). Then by (2.3), (2.19), (2.37) and the remark made in the beginning of this chapter, we
can decompose Φ as

Φ = Φsp +

∫
(c)

∑
t|cc−1

π

Φ$,td$, (6.1)

where Φ$,t ∈ Rt(V$(c$)) and Φsp is the orthogonal projection of Φ to Lsp. Now set W$,t = WΦ$,t . We
claim this fulfills the property stated in Part A. Given Y ∈ (0,∞)r+s, n ⊆ o, 0 6= q ∈ n, let (yfin) = n,
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and y∞ = Y . We compute ∫
F\A

Φ

((
y−1 x
0 1

))
ψ(−qx)dx (6.2)

in two ways. On the one hand, we use (6.1). Here, q 6= 0 implies that Φsp has zero contribution to (6.2),
and we obtain∫

F\A
Φ

((
y−1 x
0 1

))
ψ(−qx)dx =

∫
(c)

∑
t|cc−1

$

λt$(qn−1)√
N (qn−1)

W$,t

((
qj
Yj

)
j

)
d$

from (2.34) and (2.38). On the other hand, using (2.17) and (2.29) together with the choice of φ1, φ2,
we obtain ∫

F\A
Φ

((
y−1 x
0 1

))
ψ(−qx)dx =

∑
l1t1−l2t2=q,06=t1,t2∈n

λπ1
(t1n

−1)λπ2
(t2n−1)√

N (t1t2n−2)

·W1

((
(l1t1)j
Yj

)
j

)
W2

((
(l2t2)j
Yj

)
j

)
.

The equality of the last two displays is exactly the statement.

Part B. Conditions as in Part A. Assume D is a differential operator as in Proposition 4.12. Then for
any 0 < ε < 1/4 and nonnegative integers b, c, we have, for all y ∈ F×∞,∫

(c)

∑
t|cc−1

$

(N (r$))2c|DW$,t(y)|2d$ �F,ε,π1,π2,a,b,c,P N ((l1l2))ε||W1||2Sα ||W2||2Sα

·
r∏
j=1

(|yj |1−ε + |yj |1−2θ−ε)(min(1, |yj |−2b))

r+s∏
j=r+1

(|yj |3/2 + |yj |2)(min(1, |yj |−2b))

with α = 2(3r + 4s+ 2) + (r + s)(a+ b+ 2c) + 2(7r + 18s).

Proof. Let Φ be the function appearing in the proof of Part A. Then by Proposition 4.12 and a conse-
quence of (2.8) (see [5, (85)]), we have∫

(c)

∑
t|cc−1

$

(N (r$))2c|DW$,t(y)|2d$ �F,ε,π1,π2,a,b,c,P N (l1l2)ε||Φ||2Sβ

·
r∏
j=1

(|yj |1−ε + |yj |1−2θ−ε)(min(1, |yj |−2b))

r+s∏
j=r+1

(|yj |3/2 + |yj |2)(min(1, |yj |−2b))

with β = 2(3r+ 4s+ 2) + (r+ s)(a+ b+ 2c). For any differential operator D′ ∈ U(g) of order k, we have

||D′φ1||∞ �F,π1
||φ1||Sk+2(7r+18s)

, ||D′φ2||∞ �F,π2
||φ2||Sk+2(7r+18s)

by Proposition 4.10. The operators R(l1), R(l2) do not affect Sobolev norms and Z(A)GL2(F )\GL2(A)
has finite volume, therefore ||Φ||Sβ �F,π1,π2

||φ1||Sβ+2(7r+18s)
||φ2||Sβ+2(7r+18s)

. Now Proposition 3.2 and
(3.5) completes the proof.

Remark 2. In the more general setup described briefly in Remark 1, we have to require that π1 and π2

are of the same central character.

From the L2-bound presented in Theorem 1, Part B, we can easily deduce L1-bounds, these are
generalizations of [5, Remark 12].
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Corollary 6.1. Conditions as in Theorem 1. Assume D is a differential operator as in Proposition 4.12.
Then for any 0 < ε < 1/4 and nonnegative integers b, c′, we have, for all y ∈ F×∞,∫
E(c)

∑
t|cc−1

$

(N (r$))c
′
|DW$,t(y)|d$ �F,ε,π1,π2,a,b,c′,P N (l)1/4N ((l1l2))ε||W1||Sα′ ||W2||Sα′

·
r∏
j=1

(|yj |1/2−ε + |yj |1/2−θ−ε)(min(1, |yj |−b))
r+s∏
j=r+1

(|yj |3/4 + |yj |)(min(1, |yj |−b))

with α′ = 2(3r + 4s + 2) + (r + s)(a + b + 2c′ + 4(r + 2s)) + 2(7r + 18s), where l stands for the largest
square divisor of lcm((l1), (l2)).

Proof. Set c = c′ + 2(r + 2s). Apply first Cauchy-Schwarz,∫
E(c)

∑
t|cc−1

$

(N (r$))c
′
|DW$,t(y)|d$

2

�F

∫
E(c)

∑
t|cc−1

$

(N (r$))2c|DW$,t(y)|2d$

·
∫
E(c)

∑
t|cc−1

$

(N (r$))−4(r+2s)d$.

Now Theorem 1, Part B estimates the first integral, while by Lemma 5.2, the second integral is �F

(N (l))1/2. We are done by taking square-roots.

Corollary 6.2. Conditions as in Theorem 1. Assume D is a differential operator as in Proposition 4.12.
Then for any 0 < ε < 1/4 and nonnegative integers b, c′, we have, for all y ∈ F×∞,∑
$∈C(c)

∑
t|cc−1

$

(N (r$))c
′
|DW$,t(y)| �F,ε,π1,π2,a,b,c′,P N ((l1l2))1/2+ε||W1||Sα′ ||W2||Sα′

·
r∏
j=1

(|yj |1/2−ε + |yj |1/2−θ−ε)(min(1, |yj |−b))
r+s∏
j=r+1

(|yj |3/4 + |yj |)(min(1, |yj |−b))

with α′ = 2(3r + 4s+ 2) + (r + s)(a+ b+ 2c′ + 4(r + 2s)) + 2(7r + 18s).

Proof. Almost the same as before, the only difference is that we use Lemma 5.5.
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Chapter 7

A Burgess type subconvex bound for
twisted GL2 L-functions

In this chapter, as an application of Theorem 1, we prove a Burgess type subconvexity for twisted GL2

L-functions over arbitrary number fields. For totally real fields, this was proved by Blomer and Harcos
in [5]. We also note that for arbitrary number fields, Wu [61] recently proved this result, using a different
method. Our approach is the extension of the one in [5, Section 3.3].

Assume that π is an irreducible automorphic cuspidal representation in L2(Z(A)GL2(F )\GL2(A)).
Let q ⊆ o be an ideal, χ a Hecke character of conductor q. We may also think of χ as a character on the
group of fractional ideals coprime to q, extended to be 0 on other ideals. There exists characters χfin of
(o/q)× and χ∞ of F×∞ satisfying χ((t)) = χfin(t)χ∞(t) for all t ∈ o coprime to q. The transition from one
meaning to another of Hecke characters can be found at several places (see [15, Sections 1.7 and 3.1],
for example). Our goal is to estimate L(1/2, π ⊗ χ) in terms of N (q). Fix any ε > 0. From now on, the
implicit constants in � are always meant to depend on F, ε, π, χ∞, even if it is not emphasized in the
subscript like �F,ε,π,χ∞ . Fix an ideal n coprime to q satisfying

N (n)�F,ε N (q)ε (7.1)

and note that in every narrow ideal class, there is a representative n with these properties.
First we introduce the following notation. For given positive real numbers a < b,

[[a, b]] = {x ∈ F×∞,+ : a ≤ |xj | ≤ b}. (7.2)

Let G0 be a smooth, compactly supported function on F 1
∞,+ = {x ∈ F×∞,+ : |x|∞ = 1} satisfying

that
∑
u∈o×+

G0(ux) = 1 for all x ∈ F 1
∞,+. We extend this function to F×∞,+ as G(x) = G0(x/|x|∞), then∑

u∈o×+
G(ux) = 1 for all x ∈ F×∞,+. Assume that G0 is supported on [[c1, c2]], then G is supported on

F diag
∞,+[[c1, c2]], where c1, c2 are constants depending only on F (recall (7.2)). Fix moreover a compact

fundamental domain G0 for the action of o×+ on F 1
∞,+ and let G = F diag

∞,+G0 be its extension to F×∞,+.

7.1 The amplification method

Let ξ be a character of (o/q)×. Parametrized by v = (v1, . . . , vr+s) ∈ (iR)r+s, p = (pr+1, . . . , pr+s) ∈ Zs,
assume that Wv,p are functions on F×∞,+ satisfying the following properties:

(i) Wv,p is smooth and supported on [[c3, c4]] for some c3 < c1 and c4 > c2 depending only on F ;

(ii) for any differential operator D of the form

D =

((
∂

∂yj

)µj
j≤r

(
∂

∂yj

)µj,1
j>r

(
∂

∂yj

)µj,2
j>r

)
,

with nonnegative integers µj,∗, we have

DWv,p(y)�F,D

r∏
j=1

(1 + |vj |)µj
r+s∏
j=r+1

(1 + |vj |+ |pj |)µj,1+µj,2 .
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Compare this with (2.13) and (2.14), and for convenience, introduce

N (v, p) =

r∏
j=1

(1 + |vj |)
r+s∏
j=r+1

(1 + |vj |+ |pj |)2. (7.3)

Then set

Lξ(v, p) =
∑

0<<t∈n

λπ(tn−1)ξ(t)√
N (tn−1)

Wv,p

(
t

Y 1/(r+2s)

)
. (7.4)

The only assumption on the positive real number Y is that

Y �ε N (q)1+ε. (7.5)

Introduce K = n ∩ F diag
∞,+[[c3, c4]]. We see that the numbers t that give a positive contribution are all in

the set n ∩ K and also satisfy t ∈ [[c3, c4]]Y 1/(r+2s), this latter implies |t|∞ ≈F Y .
Assume L (the amplification length) is a further parameter satisfying

logL ≈ logN (q). (7.6)

Lemma 7.1. Denote by Πq,+(L, 2L) the set of totally positive, principal prime ideals l ⊆ o satisfying
N (l) ∈ [L, 2L] and l - q. Set πq,+(L, 2L) = #Πq,+(L, 2L). Then

πq,+(L, 2L)�F,ε LN (q)−ε.

Proof. This follows immediately from the results [52, Corollary 6 of Proposition 7.8 and Proposition
7.9(ii)] about the natural density of prime ideals in narrow ideal classes. (See also [53, Chapter VII, §13]
for analogous statements about the Dirichlet density.)

Therefore,

|Lχfin
(v, p)|2 =

1

πq,+(L, 2L)2

∣∣∣∣∣∣∣∣Lχfin
(v, p)

∑
l∈o∩G

(l)∈Πq,+(L,2L)

1

∣∣∣∣∣∣∣∣
2

�ε
N (q)ε

L2

∑
ξ∈ ̂(o/q)×

∣∣∣∣∣∣∣∣Lξ(v, p)
∑
l∈o∩G

(l)∈Πq,+(L,2L)

ξ(l)χfin(l)

∣∣∣∣∣∣∣∣
2

.

Observe that the ξ-sum is the square integral of the Fourier transform of the function

(o/q)× 3 x 7→
∑
t∈n∩K

∑
l∈o∩G

(l)∈Πq,+(L,2L)
lt≡x (mod q)

χfin(l)
λπ(tn−1)√
N (tn−1)

Wv,p

(
t

Y 1/(r+2s)

)
,

so Plancherel gives

|Lχfin
(v, p)|2 �ε

ϕ(q)N (q)ε

L2

∑
x∈(o/q)×

∣∣∣∣∣∣∣∣
∑
l∈o∩G

(l)∈Πq,+(L,2L)

χfin(l)
∑
t∈n∩K

lt≡x (mod q)

λπ(tn−1)√
N (tn−1)

Wv,p

(
t

Y 1/(r+2s)

)∣∣∣∣∣∣∣∣
2

.

This can be further majorized using ϕ(q) ≤ N (q) and (o/q)× ⊂ o/q, giving

|Lχfin
(v, p)|2 �ε

N (q)1+ε

L2

∑
l1,l2∈o∩G

(l1),(l2)∈Πq,+(L,2L)

χfin(l1)χfin(l2)

∑
t1,t2∈n∩K
l1t1−l2t2∈q

λπ(t1n
−1)λπ(t2n−1)√
N (t1t2n−2)

Wv,p

(
t1

Y 1/(r+2s)

)
Wv,p

(
t2

Y 1/(r+2s)

)
.

(7.7)
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In (7.7), the contribution of l1t1− l2t2 = 0 will be referred as the diagonal contribution DC, and that of
l1t1 − l2t2 6= 0 as the off-diagonal contribution ODC, that is,

DC =
N (q)1+ε

L2

∑
l1,l2∈o∩G

(l1),(l2)∈Πq,+(L,2L)

χfin(l1)χfin(l2)

∑
t1,t2∈n∩K
l1t1−l2t2=0

λπ(t1n
−1)λπ(t2n−1)√
N (t1t2n−2)

Wv,p

(
t1

Y 1/(r+2s)

)
Wv,p

(
t2

Y 1/(r+2s)

) (7.8)

and

ODC =
N (q)1+ε

L2

∑
l1,l2∈o∩G

(l1),(l2)∈Πq,+(L,2L)

χfin(l1)χfin(l2)

∑
t1,t2∈n∩K

l1t1−l2t2∈q\{0}

λπ(t1n
−1)λπ(t2n−1)√
N (t1t2n−2)

Wv,p

(
t1

Y 1/(r+2s)

)
Wv,p

(
t2

Y 1/(r+2s)

)
.

(7.9)

We will estimate them separately, optimize in the choice of the parameter L (taking care of (7.6)), which
will give rise to an estimate of Lχfin

(v, p). Using Mellin inversion and the consequence of the approximate
functional equation presented in Section 3.3, this bound on Lχfin

(v, p) (with implicit parameters satisfying
(7.1) and (7.5)) will give rise to a Burgess type subconvex bound on L(1/2, π ⊗ χ).

7.2 Estimate of the diagonal contribution

First focus on (7.8). Then by Cauchy-Schwarz,

DC �F,ε
N (q)1+ε

L2

∑
l∈o∩G

(l)∈Πq,+(L,2L)

∑
t∈n∩K
|t|∞≈FY

|λπ(tn−1)|2

N (tn−1)
|{(l′, t′) ∈ (o ∩ G)× (n ∩ K) : l′t′ = lt}|.

Here, |{(l′, t′) ∈ (o ∩ G) × (n ∩ K) : l′t′ = lt}| is at most the number of divisors of (lt), which is
�F,ε N ((lt))ε �F,ε (LY )ε. By (3.8), (7.1) and (7.5), we see∑

t∈n∩K
|t|∞≈FY

|λπ(tn−1)|2

N (tn−1)
�F,ε N (q)ε,

and estimate the number of prime ideals (l) trivially by �F L. Altogether,

DC �F,ε
N (q)1+ε

L
. (7.10)

7.3 Off-diagonal contribution: spectral decomposition and Eisenstein part

7.3.1 Spectral decomposition

The estimate of the off-diagonal contribution (7.9) requires much more work. Assume G0 is supported
on [[c5, c6]] for some constants c5, c6 depending only on F . Then only l1, l2 ∈ [[c5L

1/(r+2s), c6L
1/(r+2s)]]

and t1, t2 ∈ [[c3Y
1/(r+2s), c4Y

1/(r+2s)]] have nonzero contribution to (7.9). If l1, l2, t1, t2 satisfy these
constraints, then

l1t1 − l2t2 ∈ B = {x ∈ F∞ : |xj | ≤ c7(LY )1/(r+2s)}
with c7 = 2c4c6. Now a term on the right-hand side of (7.9) corresponding to some fixed l1, l2 can be
written as∑

0 6=q∈qn∩B

∑
l1t1−l2t2=q
06=t1,t2∈n

λπ(t1n
−1)λπ(t2n−1)√
N (t1t2n−2)

W1

(
l1t1

(LY )1/(r+2s)
; v, p

)
W2

(
l2t2

(LY )1/(r+2s)
; v, p

)
, (7.11)
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where W1,W2 are smooth functions on F×∞,+ defined as

W1(y; v, p) = Wv,p(yL
1/(r+2s)/l1), W2(y; v, p) = Wv,p(yL

1/(r+2s)/l2).

Now by the assumptions made on Wv,p and l1, l2, we have that W1,W2 are smooth of compact support
[[c8, c9]] (where c8, c9 depend on F ) and for any differential operator D of the form

D =

((
∂

∂yj

)µj
j≤r

(
∂

∂yj

)µj,1
j>r

(
∂

∂yj

)µj,2
j>r

)
,

with nonnegative integers µj(,1,2), we have

DW1,2(y; v, p)�F,D N (v, p)µ, (7.12)

where µ = maxj(µj(,1,2)) (recall (7.3)).
Now by Theorem 1, (7.11) can be rewritten as∑

06=q∈qn∩B

∫
(c)

∑
t|cc−1

$

λt$(qn−1)√
N (qn−1)

W$,t

(
q

(LY )1/(r+2s)
; v, p

)
d$, (7.13)

where c = cπlcm((l1), (l2)).

7.3.2 Eisenstein spectrum

First we estimate the contribution of the Eisenstein spectrum to (7.13). We use Corollary 6.1 with
D = 1, a = c′ = 0, b = 2. The largest square divisor of lcm((l1), (l2)) is o, hence∫

E(c)

∑
t|cc−1

$

|W$,t(y; v, p)| �F,ε,π N ((l1l2))ε||W1||Sα1
||W2||Sα1

with some positive integer α1 depending only on F , uniformly in y, v, p. Moreover, by [57, Lemma 8.4]
and (7.12), for any positive α,

||W1,2||Sα �F,π,α N (v, p)2α (7.14)

giving ∫
E(c)

∑
t|cc−1

$

|W$,t(y; v, p)| �F,ε,π N ((l1l2))εN (v, p)4α1 .

Taking into account (2.39), (7.1), (7.5) and (7.6), we see that the contribution of the Eisenstein
spectrum to (7.13) is

�F,ε N (v, p)4α1N (q)ε
∑

06=q∈qn∩B

N (gcd(c, (q)))√
N ((q))

.

In the sum, each ideal (q) appears with multiplicity �F,ε N (q)ε. Indeed, each ideal (q) ⊆ o has a
generator q satisfying |qj | ≥ c5 at each archimedean place. Hence the possible units ε for which qε ∈ B
all satisfy |εj | ≤ c10(LY )1/(r+2s) at each place, for some constant c10 depending only on F . The number
of such units is �F,ε log(N (q))r+s−1 by (7.5) and (7.6). Then the above display is

�F,ε N (v, p)4α1N (q)2ε
∑

06=(q)⊆qn
N ((q))�FLY

N (gcd(c, (q)))√
N ((q))

.

Here, the sum is �F,ε N (q)−1+ε(LY )1/2, since gcd(c, (q)) = gcd(cπ, (q)), which has norm OF,π(1).
Altogether, using again (7.5), in (7.13), the Eisenstein spectrum has contribution

�F,ε,π N (v, p)4α1N (q)−1/2+εL1/2, (7.15)

which is analogous to [5, (116)].
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7.4 Off-diagonal contribution: cuspidal spectrum

Set

C(c, ε) = {$ ∈ C(c) : N (r$) ≤ N (q)ε}.

Later we will prove that the contribution of representations outside C(c, ε) is small. So restrict to C(c, ε),
and fix also the sign of q as follows. For any sign ξ ∈ {±1}r, set

B(ξ) = {y ∈ B : sign(y) = ξ}.

Then focus on the quantity

∑
q∈qn∩B(ξ)

∑
$∈C(c,ε)

∑
t|cc−1

$

λt$(qn−1)√
N (qn−1)

W$,t

(
q

(LY )1/(r+2s)
; v, p

)
. (7.16)

We follow again [5]. Consider the Mellin transform (a function of v′ = (v′1, . . . , v
′
r+s) ∈ (iR)r+s, p′ =

(p′r+1, . . . , p
′
r+s) ∈ Zs)

Ŵ ξ
$,t(v

′, p′; v, p) =

∫
F×∞,+

W$,t(ξy; v, p)

r+s∏
j=1

|yj |v
′
j

r+s∏
j=r+1

(
yj
|yj |

)p′j
d×∞y. (7.17)

We would like to invert this. As for p′, observe that W$,t(y; v, p) is continuous on the set where each |yj |
is fixed (this is the product of s circles), so the standard Fourier analysis of the circle group is applicable.
Also from Corollary 6.2, we see that the set (iR)r+s (this is the product of r + s lines) can be used for
Mellin inversion (see [29, 17.41]). Therefore, (7.16) is

�F

∑
p′∈Zs

∫
(iR)r+s

(LY )(v′1+...+v′r+s)/(r+2s)

·
∑

$∈C(c,ε)

∑
t|cc−1

$

Ŵ ξ
$,t(v

′, p′; v, p)
∑

q∈qn∩B(ξ)

λt$(qn−1)√
N (qn−1)

r+s∏
j=1

|qj |−v
′
j

r+s∏
j=r+1

(
qj
|qj |

)−p′j dv′j .

By Cauchy-Schwarz, this is

�F

∑
p′∈Zs

∫
(iR)r+s

 ∑
$∈C(c,ε)

∑
t|cc−1

$

∣∣∣Ŵ ξ
$,t(v

′, p′; v, p)
∣∣∣2
1/2

 ∑
$∈C(c,ε)

∑
t|cc−1

$

∣∣∣∣∣∣
∑

q∈qn∩B(ξ)

λt$(qn−1)√
N (qn−1)

r+s∏
j=1

|qj |−v
′
j

r+s∏
j=r+1

(
qj
|qj |

)−p′j ∣∣∣∣∣∣
2


1/2

|dv′j |.

(7.18)

In what follows, we estimate the Mellin part ∑
$∈C(c,ε)

∑
t|cc−1

$

∣∣∣Ŵ ξ
$,t(v

′, p′; v, p)
∣∣∣2
1/2

(7.19)

and the arithmetic part ∑
$∈C(c,ε)

∑
t|cc−1

$

∣∣∣∣∣∣
∑

q∈qn∩B(ξ)

λt$(qn−1)√
N (qn−1)

r+s∏
j=1

|qj |−v
′
j

r+s∏
j=r+1

(
qj
|qj |

)−p′j ∣∣∣∣∣∣
2


1/2

(7.20)

separately.
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7.4.1 Estimate of the Mellin part

Recall the definition (7.17) of the Mellin transform. Our plan is to insert differentiations (using that W ’s
are highly differentiable) to show that the Mellin part decays fast in terms of N (v′, p′).

At real places (j ≤ r), for v′j 6= 0,∫
R×+

W (yj)y
v′j
j d
×
Ryj =

∫ ∞
0

W (yj)y
v′j−1

j dyj = − 1

v′j

∫ ∞
0

∂

∂yj
W (yj)y

v′j
j dyj

= − 1

v′j

∫
R×+

yj
∂

∂yj
W (yj)y

v′j
j d
×
Ryj ,

so at those real places, where |v′j | ≥ 1, we can gain a factor |v′j |−1 using the differential operator yj(∂/∂yj).
The complex places (j > r) can be handled similarly. For v′j 6= 0,

∫
C×

W (yj)|yj |v
′
j

(
yj
|yj |

)p′j
d×Cyj = − 1

v′j

∫
C×
|yj |

∂

∂|yj |
W (yj)|yj |v

′
j

(
yj
|yj |

)p′j
d×Cyj ,

while for p′j 6= 0,

∫
C×

W (yj)|yj |v
′
j

(
yj
|yj |

)p′j
d×Cyj = − 1

ip′j

∫
C×

∂

∂(yj/|yj |)
W (yj)|yj |v

′
j

(
yj
|yj |

)p′j
d×Cyj .

This means that at those complex places, where |v′j | ≥ 1 (or |p′j | ≥ 1, respectively), we can gain a factor

|v′j |−1 (or |p′j |−1, respectively), by inserting the differential operator y(∂/∂y) (or ∂/∂(y/|y|), respectively).

A simple calculation shows that for any real-differentiable complex function f(z) with z = reiθ (r > 0,
θ ∈ [0, 2π]), both r∂f/∂r and ∂f/∂θ are bounded by � |z∂f/∂z|+ |z∂f/∂z|.

Therefore, set the differential operators

D(e,f,g) =

((yj ∂

∂yj

)ej)
j≤r

,

((
yj

∂

∂yj

)fj)
j>r

,

((
yj

∂

∂yj

)gj)
j>r

 ,

where 0 ≤ ej ≤ 3 (j ≤ r), 0 ≤ fj ≤ 6, 0 ≤ gj ≤ 6 (j > r). Then the above argument, together with
(7.17) and Cauchy-Schwarz, implies that (7.19) is

�F (N (v′, p′))−3/2
∑

(e,f,g)

∫
F×∞,+

∫
F×∞,+

 ∑
$∈C(c,ε)

∑
t|cc−1

$

|D(e,f,g)W$,t(y; v, p)|2
1/2

 ∑
$∈C(c,ε)

∑
t|cc−1

$

|W$,t(y
′; v, p)|2

1/2

d×∞yd
×
∞y
′


1/2

.

Now we apply Theorem 1 with a = 6, b = 2, c = 0 in the first sum, and with a = 0, b = 2, c = 0 in the
second sum. Together with (7.14), this implies that the integrand is

�F,ε N (q)εN (v, p)4α2

r∏
j=1

min(|yj |1/4, |yj |−3/2) min(|y′j |1/4, |y′j |−3/2)

r+s∏
j=r+1

min(|yj |3/4, |yj |−1) min(|y′j |3/4, |y′j |−1)

with some positive integer α2 depending only on F . Altogether, the Mellin part (7.19) is

�F,ε N (q)εN (v, p)4α2N (v′, p′)−3/2. (7.21)
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7.4.2 Estimate of the arithmetic part

Our next goal is to give a bound on (7.20), which is uniform in v′, p′. Fix v′, p′ and consider

∑
$∈C(c,ε)

∑
t|cc−1

$

∣∣∣∣∣∣
∑

q∈qn∩B(ξ)

λt$(qn−1)√
N (qn−1)

r+s∏
j=1

|qj |−v
′
j

r+s∏
j=r+1

(
qj
|qj |

)−p′j ∣∣∣∣∣∣
2

. (7.22)

Following [5, p.45], introduce, for any ideal a ⊆ o,

f(a; v′, p′) =
∑
q∈B(ξ)
(q)=an

r+s∏
j=1

|qj |−v
′
j

r+s∏
j=r+1

(
qj
|qj |

)−p′j
.

The number of possible units ε for which qε ∈ B is �F,ε N (q)ε (recall the argument in Section 7.3.2),
hence

|f(a; v′, p′)| �F,ε N (q)ε. (7.23)

With this notation, we can rewrite the innermost sum in (7.22) as

∑
q∈qn∩B(ξ)

λt$(qn−1)√
N (qn−1)

r+s∏
j=1

|qj |−v
′
j

r+s∏
j=r+1

(
qj
|qj |

)−p′j
=

∑
N (m)�LY/N (qn)

λt$(mq)√
N (mq)

f(mq; v′, p′),

where � in the sum means that we may choose a constant depending only on F such that this holds.
Now on the right-hand side, for each occuring m, transfer each prime factor dividing both m and q from
m to q. This does not affect the summand (since it depends only on the product mq) and lets us write

∑
N (m)�LY/N (qn)

λt$(mq)√
N (mq)

f(mq; v′, p′) =
∑

q|q′|q∞

∑
N (m)�LY/N (q′n)

gcd(m,q)=o

λt$(mq′)√
N (mq′)

f(mq′; v′, p′). (7.24)

The following lemma expresses λt$(mq′).

Lemma 7.2. Assume m and q′ are coprime ideals in o. Then

λt$(mq′) =
∑

b| gcd(q′ gcd(q′,t)−1,gcd(q′,t))

µ(b)λ$(q′ gcd(q′, t)−1b−1)λt$(m gcd(q′, t)b−1).

Proof. We follow [6, pp.73-74]. (At [5, p.45], [6, pp.73-74] is adapted incorrectly. The corrected version
can be found in the erratum of [5].)

By (2.18) and (2.35), we have

λt$(mq′) =
∑

s| gcd(mq′,t)

αt,sN (s)1/2λ$(mq′s−1)

=
∑

s1| gcd(m,t)
s2| gcd(q′,t)

αt,s1s2
N (s1s2)1/2λ$(mq′s−1

1 s−1
2 )

=
∑

s1| gcd(m,t)
s2| gcd(q′,t)

αt,s1s2N (s1s2)1/2λ$(q′s−1
2 )λ$(ms−1

1 ),

where the last equation holds by gcd(m, q′) = o and (2.27).
Inverting the multiplicativity relation (2.27), we see that

λ$(q′s−1
2 ) = λ$(q′ gcd(q′, t)−1 · gcd(q′, t)s−1

2 )

=
∑

b| gcd(q′ gcd(q′,t)−1,gcd(q′,t)s−1
2 )

µ(b)λ$(q′ gcd(q′, t)−1b−1)λ$(gcd(q′, t)s−1
2 b−1).
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Writing this into the above display, we obtain that

λt$(mq′) =
∑

b| gcd(q′ gcd(q′,t)−1,gcd(q′,t))

µ(b)λ$(q′ gcd(q′, t)−1b−1)

∑
s1| gcd(m,t)

s2| gcd(q′,t)b−1

αt,s1s2N (s1s2)1/2λ$(m gcd(q′, t)b−1s−1
1 s−1

2 )

=
∑

b| gcd(q′ gcd(q′,t)−1,gcd(q′,t))

µ(b)λ$(q′ gcd(q′, t)−1b−1)

∑
s| gcd(t,m gcd(q′,t)b−1)

αt,sN (s)1/2λ$(m gcd(q′, t)b−1s−1)

=
∑

b| gcd(q′ gcd(q′,t)−1,gcd(q′,t))

µ(b)λ$(q′ gcd(q′, t)−1b−1)λt$(m gcd(q′, t)b−1),

which completes the proof.

Now we use this lemma in (7.24). By (2.26), we see

λ$(q′ gcd(q′, t)−1b−1)�ε N (q′)θ+ε.

We claim gcd(q′, t)|cπ. Indeed, t|cc−1
$ with c = cπlcm((l1), (l2)), where l1, l2 are primes not dividing q.

Altogether, the q-sum in (7.22) can be estimated as

�F,ε

∑
q|q′|q∞

N (q′)−1/2+θ+ε
∑
b|cπ

∣∣∣∣∣∣∣∣
∑

N (m)�LY/N (q′n)
gcd(m,q)=o

λt$(mb)√
N (m)

f(mq′; v′, p′)

∣∣∣∣∣∣∣∣ . (7.25)

Similarly as in Lemma 5.4, take the function h defined in (5.2), (5.3) with aj = N (q)2ε at real,
aj = N (q)ε at complex places, bj =

√
aj at all archimedean places, finally a′j = −1 at complex places.

This has the property that it gives weight �F 1 to representations in C(c, ε).

∑
$∈C(c,ε)

∑
t|cc−1

$

∣∣∣∣∣∣
∑

q∈qn∩B(ξ)

λt$(qn−1)√
N (qn−1)

r+s∏
j=1

|qj |−v
′
j

r+s∏
j=r+1

(
qj
|qj |

)−p′j ∣∣∣∣∣∣
2

�F,ε

∑
$∈C(c,ε)

∑
t|cc−1

$

h(r$)

∣∣∣∣∣∣
∑

q∈qn∩B(ξ)

λt$(qn−1)√
N (qn−1)

r+s∏
j=1

|qj |−v
′
j

r+s∏
j=r+1

(
qj
|qj |

)−p′j ∣∣∣∣∣∣
2

.

In the summation over $, multiply by a factor C−1
$ , which is �F,ε,π N (q)−ε by (3.5) and Proposition

3.2. We also add the analogous nonnegative contribution of the Eisenstein spectrum.
Therefore, using (7.23), (7.25) estimates the $-sum of (7.22) as

∑
$∈C(c,ε)

∑
t|cc−1

$

∣∣∣∣∣∣
∑

q∈qn∩B(ξ)

λt$(qn−1)√
N (qn−1)

r+s∏
j=1

|qj |−v
′
j

r+s∏
j=r+1

(
qj
|qj |

)−p′j ∣∣∣∣∣∣
2

�F,ε,π N (q)−1+2θ+ε max
b1,b2|cπ

∑
N (m1),N (m2)�LY/N (q)

1√
N (m1m2)∣∣∣∣∣∣

∑
$∈C(c)

C−1
$

∑
t|cc−1

$

h(r$)λt$(m1b1)λt$(m2b2) + CSC

∣∣∣∣∣∣ .
(7.26)

We apply the Kuznetsov formula (5.1) to estimate the last line of (7.26), with α = α′ = 1, a−1 = m1b1,
a′−1 = m2b2. The delta term is, up to a constant multiple,

[K(o) : K(c)]∆(m1b1,m2b2)

∫
h(r$)dµ.
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Here, by Lemma 5.3, the integral of h gives �F,ε N (q)2(r+s)ε, and we also have [K(o) : K(c)] �F,ε,π

L2N (q)ε by (3.2) and (7.6). When ∆(m1b1,m2b2) 6= 0, N (m1) ≈F,π N (m2), so the sum over m1,m2 can
be replaced by a sum over m. Using (7.5), we see that LY/N (q) �ε N (q)εL, and taking into account
also (7.6), we obtain that ∑

N (m)�LY/N (q)

1

N (m)
�F,ε N (q)ε.

Altogether, the delta term of the geometric side of the Kuznetsov formula (5.1) contributes

�F,ε,π N (q)−1+2θ+εL2 (7.27)

to the right-hand side of (7.26).
As for the Kloosterman term, similarly to (5.4), we have to estimate

max
a∈C

∑
ε∈o×+/o2×

∑
06=c∈m−1

1 b−1
1 ac

N ((gcd(m1b1,m2b2, cm1b1a
−1)))1/2

N (cm1b1a−1)1/2−ε

·
∏
j≤r

min(1, |εjγa,j/cj |1/2)
∏
j>r

min(1, |εjγa,j/cj |),

where γa is a totally positive generator of the ideal a2(m1b1)−1m2b2, C is a fixed set of narrow class
representatives (depending only on F and the narrow class of (m1b1)−1m2b2) with the property that
such a γa exists for each a ∈ C. The sum over ε ∈ o×+/o

2× is negligible. Now take a totally positive β ∈ o
such that (β) ⊇ m1b1, N ((β))�F N (m1b1), and then the above is

�F max
a∈C

∑
06=c∈ac

N ((gcd(m1b1,m2b2, ca
−1)))1/2

N (ca−1)1/2−ε

·
∏
j≤r

min(1, |γa,jβj |1/4/|cj |1/2)
∏
j>r

min(1, |γa,jβj |1/2/|cj |),

Then the same method as in the proof of Lemma 5.4 shows that the previous display can be estimated
as

�F,ε,π N ((γaβ))1/4+εN (gcd(m1,m2, c))
1/2+εN (c)−1−ε.

The last factor N (c)−1−ε cancels [K(o) : K(c)]. Noting that N ((γaβ))�F,π N (m1m2), we see that the
Kloosterman term contributes

�F,ε,π N (q)−1+2θ+ε
∑

N (m1),N (m2)�LY/N (q)

N (gcd(m1,m2, c))
1/2+εN (m1m2)−1/4+ε

to the right-hand side of (7.26). Obviously

N (gcd(m1,m2, c))
1/2 ≤ N (gcd(m1, c))

1/4N (gcd(m2, c))
1/4,

so the above display is (using also (7.5) and (7.6) again)

�F,ε N (q)−1+2θ+2ε

 ∑
N (m)�LY/N (q)

(
N (gcd(m, c))

N (m)

)1/4
2

.

Here, if m is divisible by l1 or l2, then N (gcd(m, c))� L (by (7.6), an ideal of norm � N (q)εL cannot
have two different prime divisors l1, l2), this happens at most for N (q)ε many m’s. For other m’s,
N (gcd(m, c))�π 1. Therefore, the Kloosterman contribution to (7.26) is

�F,ε,π N (q)−1+2θ+εL3/2. (7.28)

Taking square-roots, we obtain from (7.27) and (7.28) that the arithmetic part (7.20) is

�F,ε,π N (q)−1/2+θ+εL. (7.29)
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7.4.3 Summing up in the cuspidal spectrum

Inside C(c, ε), (7.18), (7.21) and (7.29) show that the contribution (7.16) is

�F,ε

∑
p′∈Zs

∫
(iR)r+s

N (v, p)4α2N (v′, p′)−3/2N (q)−1/2+θ+εL|dv′j | �F,ε N (q)−1/2+θ+εLN (v, p)4α2 ,

and this bound holds (with the implicit constant multiplied by 2r) without rectricting the summation in
(7.18) to a specific sign ξ.

Now we concentrate on representations outside C(c, ε). First of all, from Lemma 5.4, we see that

λt$(qn−1)�F,ε,π L
1/2+εN ((q))1/4+εN (r$),

therefore, with a large c′ (depending on ε), we may write (using (7.6)), outside C(c, ε),

λt$(qn−1)√
N (qn−1)

�F,ε,π L
1/2+εN (q)−1/4N (r$)�F,ε,π N (r$)c

′
.

Now by Cauchy-Schwarz, outside C(c, ε), the cuspidal contribution is, with some c much larger than c′,

�F,ε,π

 ∑
06=q∈qn∩B

∑
$/∈C(c,ε)

∑
t|cc−1

$

N (r$)2(c′−c)

1/2

 ∑
06=q∈qn∩B

∑
$/∈C(c,ε)

∑
t|cc−1

$

∣∣∣∣N (r$)cW$,t

(
q

(LY )1/(r+2s)
; v, p

)∣∣∣∣2
1/2

.

The first factor is N (q)−k for any k ∈ N, if c−c′ is large enough, as it follows from Lemma 5.5. As for the
second factor, apply Theorem 1, Part B with a = 0, b = 0 and the above c. The number of q’s in qn∩B
is OF (LY ). Then together with (7.14), we see that the second factor is�F,ε,π N (q)−1+εN (v, p)4α3 with
some positive integer α3. To match Y and L with N (q), we use (7.5) and (7.6) throughout.

Altogether, the cuspidal spectrum has contribution

�F,ε,π N (v, p)4 max(α2,α3)N (q)−1/2+θ+εL. (7.30)

7.5 Choice of the amplification length

Set α = max(α1, α2, α3). Summing trivially over l1, l2, and using (7.11), (7.13), (7.15) and (7.30), we see

ODC �F,ε,π N (v, p)4αN (q)1/2+θ+εL.

This estimate, together with (7.10) and through (7.7), (7.8), (7.9), gives rise to

|Lχfin
(v, p)|2 �F,ε,π N (v, p)4α(N (q)1+εL−1 +N (q)1/2+θ+εL),

|Lχfin
(v, p)| �F,ε,π N (v, p)2α(N (q)1/2+εL−1/2 +N (q)1/4+θ/2+εL1/2).

We see that the optimal choice is L = N (q)1/4−θ/2, which meets the condition (7.6). With this, we
obtain the bound

|Lχfin
(v, p)| �F,ε,π N (v, p)2αN (q)3/8+θ/4+ε. (7.31)

7.6 A subconvex bound for L-functions

Let us return to the point of the introduction of this chapter. Our aim is to bound L(1/2, π ⊗ χ) in
terms of N (q), where q is the conductor of χ.

Theorem 2.
L(1/2, π ⊗ χ)�F,π,χ∞,ε N (q)3/8+θ/4+ε.
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Proof. We start out from (3.9) as follows. First of all, we split up the sum over ideals according to their
narrow class (with representatives n satisfying (7.1)). Then

L(1/2, π ⊗ χ)�π,χ∞,ε N (q)ε max
Y≤cN (q)1+ε

∣∣∣∣∣∣∣
∑

0<<t∈n (mod o×+)

λπ(tn−1)χ(tn−1)√
N (tn−1)

V

(
|t|∞
Y

)∣∣∣∣∣∣∣
for some c = c(π, χ∞, ε), hence (7.5) is satisfied. Here, by the partition of unity introduced in the
beginning of this chapter, the sum on the right-hand side can be rewritten as∑

0<<t∈n

λπ(tn−1)χ(tn−1)√
N (tn−1)

G(t∞)V

(
|t|∞
Y

)
W

(
t∞

Y 1/(r+2s)

)
,

where W is a smooth nonnegative function which is 1 on [[c1, c2]] and supported on [[c3, c4]]. Now
introducing the Mellin transform

V̂ (v, p) =

∫
F×∞,+

G(y)V (y)χ∞(y)

r+s∏
j=1

|yj |vj
r+s∏
j=r+1

(
yj
|yj |

)pj
d×y,

we have, by Mellin inversion, that the above display is

�F

∑
p∈Zs

∫
v∈(iR)r+s

V̂ (v, p)
∑

0<<t∈n

λπ(tn−1)χfin(t)√
N (tn−1)

Wv,p

(
t

Y 1/(r+2s)

)
dv,

where

Wv,p(y) = W (y)

r+s∏
j=1

|yj |−vj
r+s∏
j=r+1

(
yj
|yj |

)−pj
d×y.

Since F (y), V (y), W (y) are all smooth and compactly supported, we see that

V̂ (v, p)�β,χ∞ N (v, p)−β

for all β ∈ N and also that the family of Wv,p’s satisfies (i) and (ii). Then

L(1/2, π ⊗ χ)�F,π,χ∞,ε,β

∑
p∈Zs

∫
v∈(iR)r+s

Lχfin
(v, p)N (v, p)−βdv

with L of (7.4) satisfying all conditions we needed in its estimate. Now taking a β which is much larger
than 2α, (7.31) completes the proof.

Remark 3. For a cuspidal representation π of arbitrary central character (recall Remark 1), the same
bound holds with the same proof, see also Remark 2.
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Chapter 8

A semi-adelic Kuznetsov formula over
number fields

The content of this chapter is more or less the same as of [46]. Our approach follows [56], borrowing the
archimedean investigations from [9], [10], [13] and [45].

8.1 Some preliminaries about the group SL2(C)

The available literature about complex places is much smaller than that about real places, so we quote the
details up to some extent. We mainly follow the works of Bruggeman, Motohashi and Lokvenec-Guleska
[12], [13], [45]. For the notation, recall Chapter 1.

First record the Iwasawa decomposition: any element g ∈ SL2(C) can be uniquely written in the
form g = n(x)a(y)k[α, β], where

n(x) =

(
1 x
0 1

)
, a(y) =

(√
y 0

0 1/
√
y

)
,

x ∈ C, y > 0 real. This y will be referred as the height of g.
Assume some ν, p, l, q are given (in r and w), then let

ϕ(n(x)a(y)k[α, β]) = y1+νΦlp,q(k[α, β]).

When it is needed, we indicate the dependence on the weight and spectral data and write ϕl,q(ν, p).

8.1.1 Jacquet integral

Following [45, Section 4.1], for ω ∈ C, and f ∈ C∞(SL2(C)) satisfying the growth condition

f(n(x)a(y)k[α, β]) = O(y1+σ)

with some σ > 0, define the Jacquet integral

Jωf(g) =

∫
C

e−2πi(ωx+ωx)f(wn(x)g)d<xd=x,

where w = k[0, 1] stands for the Weyl element. For 0 6= ω ∈ C and f = ϕ, we drop ϕ from the notation
and simply write Jω in place of Jωϕ. This can be computed (see [13, Section 5] and [45, Section 4.1]) to
be

Jω(n(x)a(y)k[α, β]) = (−1)l−p(2π)ν |ω|ν−1e2πi(ωx+ωx)

·
∑
|m|≤l

(
iω

|ω|

)−p−m
wlm(ν, p; |ω|y)Φlm,q(k[α, β]),

(8.1)

where

wlm(ν, p; y) =

l− 1
2 (|m+p|+|m−p|)∑

j=0

(−1)jξlp(m, j)
(2πy)l+1−j

Γ(l + 1 + ν − j)
Kν+l−|m+p|−j(4πy), (8.2)
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K denoting the K-Bessel function, and

ξlp(m, j) =
j!(2l − j)!

(l − p)!(l + p)!

(
l − 1

2 (|m+ p|+ |m− p|)
j

)(
l − 1

2 (|m+ p| − |m− p|)
j

)
. (8.3)

Note that a priori we need <ν > 0, but we can remove this condition by analytic continuation. Compare
this with (2.21), (2.22), (2.23), and also with (4.9).

8.1.2 Goodman-Wallach operator

Another operator we need, is the Goodman-Wallach operator, which we specialize again to ϕ and obtain
(see [13, Section 6] and [45, Section 4.2])

Mω(n(x)a(y)k[α, β]) = (2π|ω|)−ν−1e2πi(ωx+ωx)

·
∑
|m|≤l

(
−iω
|ω|

)p−m
µlm(ν, p; |ω|y)Φlm,q(k[α, β]),

where

µlm(ν, p; y) =

l− 1
2 (|m+p|+|m−p|)∑

j=0

ξlp(m, j)
(2πy)l+1−j

Γ(l + 1 + ν − j)
Iν+l−|m+p|−j(4πy),

I denoting the I-Bessel function. Again, occasionally, we may write Mωϕ or even Mωϕl,q(ν, p), when
there is any danger of confusion.

We cite [13, Lemma 6.2], [45, Lemma 4.2.2] for the relations matching these operators. Here, we have
to indicate the dependence on ν, p. Let ω2 6= 0, <ν > 0. Then

J0Mω2
=

sinπ(ν − p)
ν2 − p2

Γ(l + 1− ν)

Γ(l + 1 + ν)
ϕ(−ν,−p). (8.4)

and for ω1 6= 0,

Jω1Mω2 = J ∗ν,p(4π
√
ω1ω2)Jω1

, (8.5)

with

J ∗ν,p(z) = J∗ν−p(z)J
∗
ν+p(z), (8.6)

where J∗ν is the even entire function of z which is equal to Jν(z)(z/2)−ν for z > 0 (J stands for the
J-Bessel function).

8.1.3 Complex Whittaker functions form an orthonormal basis of L2(C×, d×Cy)

First we compute the L2-norm of J1, confirming the normalization we used in (2.21). What follows is
analogous to [12, Theorem 1], the difference is that we work it out for the complementary series as well
(i.e. we do not require <ν = 0).

Lemma 8.1. ∫ ∞
0

|J1(a(y))|2 dy
y

=
(2π)2<ν

8(2l + 1)

(
2l

l − q

)−1(
2l

l − p

) ∣∣∣∣Γ(l + 1− ν)

Γ(l + 1 + ν)

∣∣∣∣ .
Proof. First observe that Φlm,q(k[1, 0]) = 0, if m 6= q, and Φlq,q(k[1, 0]) = 1. Hence in [45, (4.8)], we may
write

J1(a(y)) = vlq(y, 1),

where

vlq(y, 1) = y1−ν
∫
C

e−2πiy(z+z)

(1 + |z|2)1+ν
Φlp,q

(
k

[
z√

1 + |z|2
,

−1√
1 + |z|2

])
d<zd=z.

So what is left is to compute
∫∞

0
|vlq(y, 1)|2dy/y.
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First let q = l. Then by (8.1), (8.2), (8.3), this integral is

(2π)ν+ν 1

Γ(l + 1 + ν)Γ(l + 1 + ν)

(
(2l)!

(l − p)!(l + p)!

)2 ∫ ∞
0

(2πy)2l+2|Kν−p(4πy)|2 dy
y
. (8.7)

To compute the inner integral, we use [29, 6.576(4)]:∫ ∞
0

r2l+1|Kν(r)|2dr =

22l−1

(2l + 1)!
Γ

(
l + 1 +

ν

2
− ν

2

)
Γ

(
l + 1− ν

2
+
ν

2

)
Γ

(
l + 1 +

ν

2
+
ν

2

)
Γ

(
l + 1− ν

2
− ν

2

)
,

the conditions are all satisfied by noting |<ν| < 1/2.
First assume we are in the principal series (<ν = 0). Then (8.7) equals

1

22l+2

1

Γ(l + 1 + ν)Γ(l + 1− ν)

(
(2l)!

(l − p)!(l + p)!

)2
22l−1

(2l + 1)!
Γ(l + 1 + ν)Γ(l + 1− ν)(l + p)!(l − p)! =

1

8(2l + 1)

(
2l

l − p

)
.

Now assume we are in the complementary series (=ν = 0, ν 6= 0). Then p = 0 and for (8.7), we obtain

(2π)2ν

22l+2

1

Γ(l + 1 + ν)Γ(l + 1 + ν)

(
(2l)!

(l!)2

)2
22l−1

(2l + 1)!
Γ(l + 1 + ν)Γ(l + 1− ν)(l!)2 =

(2π)2ν

8(2l + 1)

(
2l

l

)
Γ(l + 1− ν)

Γ(l + 1 + ν)
.

For a general |q| ≤ l, the identity [12, p.89]∫ ∞
0

|vlq(y)|2 dy
y

=

(
2l

l − q

)−1 ∫ ∞
0

|vll(y)|2 dy
y

completes the proof.

On the other hand, we prove that two complex Whittaker functions are orthogonal, provided that
they are of the same spectral and different weight parameter.

Lemma 8.2. For a fixed pair (ν, p), if (l, q) 6= (l′, q′), then∫
C×
W(l,q),(ν,p)(y)W(l′,q′),(ν,p)(y)d×Cy = 0.

Proof. This is again covered by [12, Theorem 1] for the principal series. If q 6= q′, it is clear from (2.21)

that rewriting
∫
C×

. . . d×Cy as (2π)−1
∫∞

0

∫ 2π

0
. . . dθr−1dr, the integral ofW(l,q),(ν,p)(y)W(l′,q′),(ν,p)(y) van-

ishes, since the two Whittaker functions are transformed via two different characters of the circle group.
If q = q′ and l 6= l′, then we can repeat the proof of [12, Theorem 1], the differential operators D+

q and
D−q extend to the complementary series by analytic continuation.

8.2 Notation and the statement of the formula

8.2.1 Kloosterman sums

We quote the definition of Kloosterman sums from [56, Definition 2] (see also [56, Definition 1]). Let
a1, a2 be fractional ideals of F , and c be any ideal such that c2 ∼ a1a2 (i.e. they are in the same ideal
class). Let then c ∈ c−1, α1 ∈ a−1

1 d−1, α2 ∈ a1d
−1c−2. We define the Kloosterman sum as

KS(α1, a1;α2, a2; c, c) =
∑

x∈(a1c−1/a1c)×

ψ∞

(
α1x+ α2x

−1

c

)
,

where the summation runs through the x’s which generate a1c
−1/a1c as an o-module, and x−1 is the

unique element in (a−1
1 c/a−1

1 cc2)× such that xx−1 ∈ 1 + cc; ψ∞ is the archimedean character defined as
ψ∞(x) = exp(2πiTr(x)) = exp(2πi(x1 + . . .+ xr + xr+1 + xr+1 + . . .+ xr+s + xr+s)).
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8.2.2 Archimedean Bessel transforms and measures

In the Kuznetsov formula, on the so-called geometric side, the weight functions are Bessel transforms.
Assume f(r) is a function of the form

f(r) =

r∏
j=1

fj(νj)

r+s∏
j=r+1

fj(νj , pj),

where fj ’s are functions on the possible spectral parameter values: νj in the real case, (νj , pj) in the
complex case, these are encoded in r (recall (2.6), (2.7), (2.13)). Then let

Bf(r)(z) =

r∏
j=1

(Bjfj)νj (z)
r+s∏
j=r+1

(Bjfj)(νj ,pj)(z),

where Bjfj is defined as follows. At real places,

(Bjfj)νj (z) = fj(νj) · (Bj)νj (z),

(Bj)νj (z) =
2π

sinπνj
(J−2νj (|z|)− J2νj (|z|)),

J standing for the J-Bessel function. At complex places,

(Bjfj)(νj ,pj)(z) = fj(νj , pj) · (Bj)(νj ,pj)(z),

(Bj)(νj ,pj)(z) =
|z/2|−2νj (iz/|z|)2pjJ ∗−νj ,−pj (z)− |z/2|

2νj (iz/|z|)−2pjJ ∗νj ,pj (z)
sinπ(νj − pj)

,

J ∗ is defined in (8.6).

Introduce moreover the measure dµ on the space of spectral parameters as follows. Again, we give it
locally: dµ =

∏
j dµj . At real places,

∫
f(νj)dµj(νj) =

∫ i∞

0

f(νj)(−4πνj) tanπνj
dνj
2πi

+
∑

2|2νj+1,1<2νj+1

f(νj). (8.8)

At complex places, ∫
f(νj , pj)dµj(νj , pj) =

∑
pj

∫
(0)

f(νj , pj)(p
2
j − ν2

j )dνj . (8.9)

8.2.3 The Kuznetsov formula

Let h =
∏
j hj , where hj ’s are defined as follows. Let aj , bj > 1, a′j ∈ R be given. Then at real places

hj(νj) =

 e(ν2
j− 1

4 )/aj , if |<νj | < 2
3 ,

1, if νj ∈ 1
2 + Z, 3

2 ≤ |νj | ≤ bj ,
0 otherwise.

While at complex places

hj(νj , pj) =

{
e(ν2

j+a′jp
2
j−1)/aj , if |<νj | < 2

3 , pj ∈ Z, |pj | ≤ bj ,
0 otherwise.

Fix some fractional ideals a−1, a′−1, and some nonzero elements α ∈ a, α′ ∈ a′ such that αα′ is totally
positive. Let C be a fixed set of narrow ideal class representatives m, for which m2aa′−1 is a principal
ideal generated by a totally positive element γm, fixed once for all.
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Theorem 3. The sum formula (5.1) holds for the weight function h, that is,

[K(o) : K(c)]
−1

∑
π∈C(c)

C−1
π

∑
t|cc−1

π

h(rπ)λtπ(αa−1)λtπ(α′a′−1) + CSC =

const.∆(αa−1, α′a′−1)

∫
h(r)dµ+

const.
∑
m∈C

∑
c∈amc

∑
ε∈o×+/o2×

KS(εα, a−1d−1;α′γm, a
′−1d−1; c, a−1m−1d−1)

N (ca−1m−1)

∫
Bh(r)

(
4π

(αα′γmε)
1
2

c

)
dµ,

where ∆(αa−1, α′a′−1) is 1 if αa−1 = α′a′−1, and 0 otherwise; o×+ stands for the group of totally positive
units; for the integrals with respect to dµ, recall (8.8) and (8.9). The constants denoted by const. are
nonzero and depend only on the field F and the normalization of measures.

The abbreviation CSC stands for an analogous integral over the Eisenstein spectrum, we will not
spell it out explicitly (see [56]). Note that taking the square-root in Bh(r) does not lead to confusion:
at real places, there are positive numbers under the square-root, while at complex places, Bh(ν,p) is
even. Also record the terminology: the left-hand side is called the ’spectral side’, the right-hand side
is the ’geometric side’; the first term of the geometric side is the ’delta term’, the second one is the
’Kloosterman term’.

8.3 Poincaré series

First of all, recall the content of Section 4.3. This time, we can fix m =
(

1 0
0 1

)
∈ GL2(Afin).

Define

FS =

{
f : GL2(A)→ C :

∫
Z(A)GL2(F )\GL2(A)

|f |2 <∞,

f

(
γ

(
z 0
0 z

)
gk

)
= f(g), if γ ∈ GL2(F ), z ∈ F×∞, k ∈ K(c)

}
.

This is a larger space of automorphic functions than one usually deals with: this is the L2 space of the
left-hand side of (4.15). Then to any φ ∈ FS, (4.15) associates classical automorphic functions, which
we denote by

φn(g∞) = φ

((
η−1 0
0 1

)
g∞

)
, g∞ ∈ GL2(F∞).

See also [56, (9)].

8.3.1 Definition of Poincaré series

Fix some nonzero ideals a, b. We define the following characters on N(F∞). For x ∈ F∞, let ψ1(x) =
ψ∞(αx) and ψ2(x) = ψ∞(α′x), where α ∈ a, α′ ∈ ab2 are nonzero elements with the property that αα′

it totally positive (that is, positive at all real places). They give rise naturally to characters of N(F∞)
which are trivial on Γ(a, c) ∩N(F∞), Γ(ab2, c) ∩N(F∞), respectively.

The building blocks of the Poincaré series are functions f1, f2 on Z(F∞)\GL2(F∞) with the prescribed
left action of N(F∞):

f1

((
1 x
0 1

)(
z 0
0 z

)
g

)
= ψ1(x)f1(g), f2

((
1 x
0 1

)(
z 0
0 z

)
g

)
= ψ2(x)f2(g). (8.10)

Then the Poincaré series are defined on the left-hand side of (4.15) as

P a
1 (g) =

∑
γ∈ZΓΓN (a,c)\Γ(a,c)

f1(γg), P ab2

2 (g) =
∑

γ∈ZΓΓN (ab2,c)\Γ(ab2,c)

f2(γg), (8.11)

with ZΓ standing for the center, ΓN for the upper triangular unipotent subgroup (the intersection with
N(F∞)) of the corresponding group Γ; this defines both P1 and P2 only on a single component (in the
decomposition (4.15)), on other components, let them be zero.
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Of course, there might be convergence problems. If we can define the building blocks such that the
resulting Poincaré series are absolutely convergent, then this definition is valid. Unfortunately, when all
the archimedean places are complex, we are not able to guarantee the absolute convergence, so in this
case, we have to clarify, what we mean by the sums in (8.11). We will return to this problem later. Until
then, we always assume r > 0 (i.e. F has at least one real embedding).

Our building blocks will be pure tensors, fi(x) =
∏r+s
j=1 fi,j(x) for i = 1, 2. In the next subsections,

we give the local definitions.

8.3.2 Building blocks at real places

In the construction of a real factor of our building blocks, we mainly follow [10, Section 3.2], where the
authors work with the group SL2(R).

For a given σ ∈ (1/2, 1) and an even integer u, we denote by Tu,σ the linear space of functions η
defined on the set

{ν ∈ C : |<ν| ≤ σ} ∪
{

1

2
,

3

2
, . . .

}
and satisfying the conditions

(i) η is holomorphic and even on a neighborhood of the strip |<ν| ≤ σ,

(ii) η(ν)�A e
−π2 |=ν|(1 + |=ν|)−A for each A > 0,

(iii) η
(
b−1

2

)
= 0, if b is an even integer such that b > u.

For η ∈ Tu,σ define the following function on the set y > 0 (see [10, (3.10)])

(L̃uη)(y) =
1

4πi

∫
(0)

η(ν)Wu/2,ν(y)

∣∣∣∣∣Γ
(

1
2 + ν − u

2

)
Γ(2ν)

∣∣∣∣∣
2

dν

+
∑

2|b,1<b≤u

η

(
b− 1

2

)
Wu/2,(b−1)/2(y)

b− 1(
u−b

2

)
!
(
u+b−2

2

)
!
.

Now for some fixed q ∈ Z, α ∈ R \ {0} and η ∈ Tu,σ, we define the following function using the
Iwasawa decomposition. First, if det g > 0, then let

(L̃αq η)(g) = (L̃αq η)

((
1 x
0 1

)(
y 0
0 1

)(
cos θ sin θ
− sin θ cos θ

))
= e2πiαx(L̃qsign(α)η)(4π|α|y)eiqθ.

If det g < 0, then g = g′
(−1 0

0 1

)
with det g′ > 0 and in this case we simply prescribe (L̃αq η)(g) =

(L̃−αq η)(g′).

Now let η, θ ∈ Tu,σ. For real factors of f1, f2, choose L̃αq η, L̃α
′

q θ, respectively. Of course, we may use
different η’s and θ’s at different real places.

Before turning to complex places, note that the functions we defined are transformed transform like
weight q functions on the positive domain det g > 0, and like weight −q functions on the negative domain
det g < 0.

8.3.3 Building blocks at complex places

In the construction of a complex factor of our bulding blocks, we follow [13, Section 7] and [45, Section
9.1].

Let l > 0 be an integer, |q| ≤ l. Following [13, Theorem 7.1] and [45, Definition 9.1.3], for a given
σ ∈ (1, 3/2), we denote by T lσ the linear space of functions η defined on the set

{(ν, p) ∈ C× Z : |<ν| ≤ σ, |p| ≤ l}

and satisfying the conditions

(i) η is holomorphic on a neighborhood of the strip |<ν| ≤ σ,
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(ii) η(ν, p)�A e
−π2 |=ν|(1 + |=ν|)−A for each A > 0,

(iii) η(ν, p) = η(−ν,−p).

Now for the given l, q, some fixed α and η ∈ T lσ , let

(L̃αl,qη)(g) =
|α|

2π3i

∑
|p|≤l

(iα/|α|)p

(2l + 1)−1/2
(

2l
l−p
)1/2( 2l

l−q
)−1/2

·
∫

(0)

η(ν, p)(2π|α|)−νΓ(l + 1 + ν)Jα(g)νε(p) sinπ(ν − p)dν

with ε(0) = 1, ε(p) = −1 for p ∈ Z \ {0}. Note that this function differs from the function appearing in
[45, Theorem 9.1.4] by the factor |α|.

Now let η, θ ∈ T lσ . For a complex factor of f1, choose L̃αl,qη and for f2, choose L̃α′l,qθ. Of course, we
may use different η’s and θ’s at different complex places.

8.3.4 Convergence of Poincaré series

Now we return to the question of convergence. As we mentioned, there is a technical difficulty, which
does not arise if F has at least one real archimedean embedding, we assume this temporarily.

We cite a tool from [9].

Lemma 8.3. Let a, b ∈ R, a+ b > 0. Assume f is a function on (R×)r × (C×)s satisfying

f(y)�
r+s∏
j=1

min(|yj |a deg[Fj :R], |yj |−b deg[Fj :R]).

Then ∑
ε∈o×

f(εy)� (1 + | log |y||r+s−1) min(|y|a∞, |y|−b∞ ).

Proof. See [9, Lemma 8.1].

We focus on P1, the proof is the same for P2. We have the local bounds:

• for j ≤ r, by [10, (3.11)],

(L̃αq η)

((
1 x
0 1

)(
y 0
0 1

)(
cos θ sin θ
− sin θ cos θ

)(
±1 0
0 1

))
� min(y

1
2 +σ, y

1
2−σ),

• while for j > r, by [45, (9.18)],

(L̃αl,qη)

((
1 x
0 1

)(
y 0
0 1

)(
β γ

−γ β

))
�
{
y1+t, as y → 0 for all t ∈ (0, 1),
y−k, as y →∞ for all k ≥ 1.

Of course, the implied constants depend on the function η and in the complex case, on the chosen
numbers t, k. Now in the definition (8.11) of P1, we may focus on the component P a

1 . Rewrite it as

P a
1 (g) =

∑
γ∈ZΓΓN (a,c)\Γ(a,c)

f1(γg) =
∑

γ′∈Γ∞(a,c)\Γ(a,c)

∑
γ∈ZΓΓN (a,c)\Γ∞(a,c)

f1(γγ′g) =
∑

γ′∈Γ∞(a,c)\Γ(a,c)

h(γ′g),

where
h(g) =

∑
γ∈ZΓΓN (a,c)\Γ∞(a,c)

f1(γg),

and Γ∞ stands for the upper triangular subgroup of Γ. Now observe the coset space ZΓΓN (a, c)\Γ∞(a, c)
is covered by the set {(

(±)rε 0
0 ε−1

)
: ε ∈ o×

}
,
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where by (±)r, we mean that at each real place there can be some sign. This (±)r results only a finite,
2r term summation and apart from this, our summation is over the units. Hence Lemma 8.3 applies and
gives

h(g)�
{
|y|a−ε∞ , (|y|∞ → 0),
|y|−b+ε∞ , (|y|∞ →∞),

where y is the height of g (the diagonal factor in the Iwasawa decomposition: the quotient of the upper-
left and the lower-right entry), a is the product of 1/2 + σ’s at the real places and (1 + t)/2’s at the
complex places and b is the product of σ − 1/2’s and k/2’s. We can easily guarantee a > 1 and b > 0,
and for a small ε > 0, a− ε > 1. Now∑

γ′∈Γ∞(a,c)\Γ(a,c)

h(γ′g)�
∑

γ′∈Γ∞(a,c)\Γ(a,c)

|y(γ′g)|a−ε∞ ,

where y(γ′g) means the height of γ′g. On the right-hand side, we see an Eisenstein series, which is
absolutely convergent (as a − ε > 1). Moreover, on the left-hand side, the contribution of the upper-
triangular element is bounded (as b > 0), so the resulting function is also bounded, hence square-
integrable. (See [10, Lemma 2.4] and [9, p.648].)

8.4 Scalar product of Poincaré series

8.4.1 Geometric description

Let πb be a finite idele representing b. With the abbreviation

π−1
b P2 =

(
π−1
b 0
0 π−1

b

)
P2,

consider the inner product 〈π−1
b P2, P1〉. The Poincaré series P1, P2 are defined in the space FS, and the

inner product is also understood there. In what follows, we shall expand this both geometrically and
spectrally, and the equation of these expressions will give rise to the Kuznetsov formula.

First we note the following consequence of strong approximation (see [56, (83)]). Given an element
g∞ ∈ GL2(F∞), there exist elements γ ∈ GL2(F ), κγ ∈ K(c) such that(

π−1
b 0
0 π−1

b

)(
π−1
a 0
0 1

)
g∞ = γ−1

(
(π2

bπa)−1 0
0 1

)
g′∞κγ .

Then

γ ∈ GL2(F ) ∩GL2(F∞)

(
(π2

bπa)−1 0
0 1

)
κγ

(
πaπb 0

0 πb

)
.

We denote the set of such γ’s by Γ(a→ ab2), following [56] in notation (however, our Γ(a→ ab2) is not
exactly the same as Venkatesh’s one, because of the different normalization of the congruence subgroup
K(c)). For γ ∈ Γ(a → ab2), we denote by κγ a corresponding element from K(c). Fix an element
γ∗ ∈ Γ(a→ ab2), then Γ(a→ ab2) = γ∗Γ(a, c) = Γ(ab2, c)γ∗.

When we compute the inner product 〈π−1
b P2, P1〉 using the decomposition (4.15), we see that only

the a-part, that is, π−1
b P a

2 is relevant (on the other components, at least one of π−1
b P2 and P1 is zero).

The definition of P2 and a simple computation (see [56, (85), (91)]) give

π−1
b P a

2 (g) =
∑

γ∈ZΓΓN (ab2,c)\Γ(a→ab2)

f2(γg).

Setting I = 〈π−1
b P2, P1〉, we can unfold the integral as

I =

∫
Z(F∞)ΓN (a,c)\GL2(F∞)

f1(g)
∑

γ∈ZΓΓN (ab2,c)\Γ(a→ab2)

f2(γg)dg

=

∫
Z(F∞)N(F∞)\GL2(F∞)

f1(g)

∫
ΓN (a,c)\N(F∞)

ψ1(n)
∑

γ∈ZΓΓN (ab2,c)\Γ(a→ab2)

f2(γng)dndg,

(8.12)
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here the inner integral is essentially the Fourier coefficient of π−1
b P2 corresponding to the character ψ1.

Let us split this up as I = I1 + I2 according to the small and the large Bruhat cell, that is, I1 is the
same integral as I, but in the inner summation, we let γ be upper-triangular, and I2 corresponds to the
rest.

First we compute I1. Observe that I1 is an empty integral unless b is principal. Assume then that b
is generated by an element [b]. By [56, Lemma 14],

I1 =
∑
ε∈o×

∫
ΓN (a,c)Z(F∞)\GL2(F∞)

f1(g)f2

((
[b]−1ε 0

0 [b]

)
g

)
dg.

Let

∆(α, α′[b]−2) =

{
1, if ∃ε0 ∈ o× : α = α′[b]−2ε0,
0 otherwise.

Take this ε0 (if exists). Now let N(F∞) act on the left, we obtain by (8.10)

I1 = const.∆(α, α′[b]−2)N (a−1)

∫
N(F∞)Z(F∞)\GL2(F∞)

f1(g)f2

((
[b]−1ε0 0

0 [b]

)
g

)
dg.

Now we can turn our attention to the large Bruhat cell. First we state the explicit Bruhat decompo-
sition.

Lemma 8.4. On the large Bruhat cell, we have(
a b
c d

)
=

(
1 ac−1

0 1

)(
0 −1
1 0

)(
c 0
0 c−1(ad− bc)

)(
1 dc−1

0 1

)
.

Proof. Straight-forward calculation.

For τ ∈ ZΓΓN (ab2, c)\Γ(a→ ab2)/ΓN (a, c), denote by [τ ] ∈ Γ(a→ ab2) any representative. Then

I2 =

∫
ΓN (a,c)Z(F∞)\GL2(F∞)

∑
τ∈ZΓΓN (ab2,c)\Γ(a→ab2)/ΓN (a,c)

[τ ]/∈B(F∞)

∑
µ∈ΓN (a,c)

f1(g)f2([τ ]µg)dg.

Now folding together the integral and the µ-sum, we obtain

I2 =
∑

τ∈ZΓΓN (ab2,c)\Γ(a→ab2)/ΓN (a,c)
[τ ]/∈B(F∞)

∫
Z(F∞)\GL2(F∞)

f1(g)f2([τ ]g)dg.

Let [τ ] = n1,[τ ]wa[τ ]n2,[τ ] according to the Bruhat decomposition Lemma 8.4. Then by (8.10),

I2 =
∑

τ∈ZΓΓN (ab2,c)\Γ(a→ab2)/ΓN (a,c)
[τ ]/∈B(F∞)

ψ1(n2,[τ ])ψ2(n1,[τ ]) ·
∫
Z(F∞)\GL2(F∞)

f1(g)f2(wa[τ ]g)dg

=
∑

τ∈ZΓΓN (ab2,c)\Γ(a→ab2)/ΓN (a,c)
[τ ]/∈B(F∞)

ψ1(n2,[τ ])ψ2(n1,[τ ])

·
∫
N(F∞)Z(F∞)\GL2(F∞)

f1(g)

∫
N(F∞)

ψ1(n)f2(wa[τ ]ng)dndg.

By Lemma 8.4,

n2,[τ ] =

(
1 dc−1

0 1

)
, n1,[τ ] =

(
1 ac−1

0 1

)
.
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Putting everything together and using again [56, Lemma 14] for the explicit description of Γ(a → ab2)
(keeping in mind that our normalization differs a little), we obtain

I = const.∆(α, α′[b]−2)N (a−1)

∫
N(F∞)Z(F∞)\GL2(F∞)

f1(g)f2

((
[b]−1ε0 0

0 [b]

)
g

)
dg

+ const.
∑

c∈abc,ε∈o×/o2×

KS(εα, a−1d−1;α′, a−1b−2d−1; c, a−1b−1d−1)

·
∫
N(F∞)Z(F∞)\GL2(F∞)

f1(g)

∫
N(F∞)

ψ1(n)f2

(
w

(
1 0
0 εc−2

)
ng

)
dndg.

(8.13)

See [56, (95)], for convenience, we note that a = a−1
Venkateshd

−1 and b = b−1
Venkatesh.

8.4.2 Spectral description

On the other hand, we decompose spectrally the inner product (see (2.3)). With this aim in mind, take
the following orthonormal system in the cuspidal spectrum of L2(Z(A)GL2(F )\GL2(A)). First of all,
use the decomposition

Lcusp =
⊕
π∈C

Vπ.

Then in each Vπ, take
Vπ = Vπ(c)⊕ Vπ(c)⊥.

The whole Vπ(c)⊥ is orthogonal to P1 and π−1
b P2, so we may restrict to Vπ(c). Then in Vπ(c), take the

decomposition

Vπ(c) =
⊕

w∈W (π)

⊕
t|cc−1

π

RtVπ,w(cπ).

On the right-hand side, the occuring spaces are one-dimensional, so we may take a vector of norm
1 in each of them (which is well-defined up to a complex scalar of modulus 1). The set of all these
vectors is denoted by B(c). However, we need a slightly larger space, since we defined P1 and P2 in
L2(Z(F∞)GL2(F )\GL2(A)) instead of L2(Z(A)GL2(F )\GL2(A)). That is, to obtain a basis in the
cuspidal subspace of L2(Z(F∞)GL2(F )\GL2(A)), we have to twist the elements of B(c) by the class
group characters, obtaining BFS(c). Altogether, we obtain

〈π−1
b P2, P1〉 =

∑
f∈BFS(c)

〈P1, f〉〈π−1
b P2, f〉+ CSC,

where CSC stands for the contribution of the Eisenstein spectrum. Again, it is larger than in (2.3), since
we have to twist by the class group characters, so we have to sum up finitely many pieces similar to the
one appearing in the continuous part of (2.3). This part of the spectrum can be handled similarly to the
cuspidal part, and we will not spell it out explicitly. The contribution of Lsp (and also its twisted variants)
is 0, since N(F∞) acts on both P1 and π−1

b P2 through nontrivial characters (ψ1 and ψ2, respectively),
and on any element of Lsp through the trivial character.

Then

〈P1, f〉 = [K(o) : K(c)]
−1/2

∫
Z(F∞)ΓN (a,c)\GL2(F∞)

f1(g)fa(g)

= const. [K(o) : K(c)]
− 1

2

∫
K∞

∫
(R×)r×(R×+)s

f1

((
y 0
0 1

)
k

)
1∏r

j=1 |yj |
∏r+s
j=r+1 |yj |2

·
∫

ΓN (a,c)\N(F∞)

ψ1(−x)fa
((

1 x
0 1

)(
y 0
0 1

)
k

)
dx

dy∏r+s
j=1 |yj |

dk,

the factor [K(o) : K(c)]
−1/2

is explained in Lemma 4.7.
Now we may apply the K∞-transformation properties we prescribed in the definition of f1 (qj ’s and

(lj , qj)’s). It shows that P1 is orthogonal to all forms of any weight except for those that are of the form

w = (±q1, . . . ,±qr, (lr+1, qr+1), . . . , (lr+s, qr+s)).
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So we may restrict to those f ’s that are of such a weight w. Then by (2.24), (2.28), (2.31), (2.34),

〈P1, f〉 = const.[K(o) : K(c)]−1/2C−1/2
π λtπ(αa−1)

√
N (a−1)√
N ((α))

r∏
j=1

{∫ ∞
0

f1

((
yj 0
0 1

))
Wqj ,νj (αjyj)|yj |−1d×Ryj

OR

∫ ∞
0

(−1)επ,jf1

((
yj 0
0 1

))
W−qj ,νj (αjyj)|yj |−1d×Ryj

}
r+s∏
j=r+1

∫ ∞
0

f1

((
yj 0
0 1

))
W(lj ,qj),(νj ,pj)(αjyj)|yj |

−2d×Ryj ,

where qj , (lj , qj), νj , (νj , pj), επ,j are all encoded in f , ’OR’ indicates that we may choose opposite weight
at real places. Now repeating the above computation with 〈π−1

b P2, f〉, we obtain that

〈π−1
b P2, P1〉 = const. [K(o) : K(c)]

−1 N (a−1b−1)√
N ((αα′))

∑
π∈CFS(c)

C−1
π

∑
t|cc−1

π

ωπ(π−1
b )λtπ(αa−1)λtπ(α′a−1b−2)

r∏
j=1

(∫ ∞
0

f1

((
yj 0
0 1

))
Wqj ,νj (αjyj)|yj |−1d×Ryj

∫ ∞
0

f2

((
yj 0
0 1

))
Wqj ,νj (α

′
jyj)|yj |

−1d×Ryj

+

∫ ∞
0

f1

((
yj 0
0 1

))
W−qj ,νj (αjyj)|yj |−1d×Ryj

∫ ∞
0

f2

((
yj 0
0 1

))
W−qj ,νj (α′jyj)|yj |

−1d×Ryj

)
r+s∏
j=r+1

(∫ ∞
0

f1

((
yj 0
0 1

))
W(lj ,qj),(νj ,pj)(αjyj)|yj |

−2d×Ryj∫ ∞
0

f2

((
yj 0
0 1

))
W(lj ,qj),(νj ,pj)(α

′
jyj)|yj |

−2d×Ryj

)
+ CSC,

(8.14)

where ωπ stands for the central character of π.

8.5 Archimedean computations

In this section, we compute the local contributions to integrals given in the previous section of functions
defined earlier.

8.5.1 The real case

We introduce the following notation: for any g, let

g∗ =

(
−1 0
0 1

)
g

(
−1 0
0 1

)
.

We start with the evaluation of the geometric side (8.13). For the small Bruhat cell, we need to
investigate the function

L̃α
′
j
q θ

((
[b]−2

j ε0j 0

0 1

)
g

)
.

In the case of ε0j < 0, we can rewrite this as

L̃α
′
j
q θ

((
[b]−2

j |ε0j | 0

0 1

)
g∗
(
−1 0
0 1

))
= L̃−α

′
j

q θ

((
[b]−2

j |ε0j | 0

0 1

)
g∗
)
.
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This is of weight −q. Assuming q 6= 0, we see that integrating this against L̃αjq on N(R)Z(R)\GL2(R),
we obtain 0. So this term vanishes unless ε0j > 0 (under the condition q 6= 0). If ε0j > 0, we have

L̃α
′
j
q θ

((
[b]−2

j ε0j 0

0 1

)
g

)
= L̃αjq θ(g).

Now we may apply [10, Corollary 3.6] by noting

〈L̃αq θ, L̃αq η〉N(R)Z(R)\GL2(R) = 〈L̃αq θ, L̃αq η〉N(R)\Z(R)GL+
2 (R) + 〈L̃−αq θ, L̃−αq η〉N(R)\Z(R)GL+

2 (R), (8.15)

where GL+
2 (R) stands for the elements of GL2(R) with positive determinant. We obtain

〈L̃αjq θ, L̃αjq η〉N(R)Z(R)\GL2(R) = const.|αj |

∫ i∞

0

θ(ν)η(ν)
∑
±

∣∣∣∣∣∣
Γ
(

1
2 + ν ± sign(αj)q

2

)
Γ(2ν)

∣∣∣∣∣∣
2

dν

2πi

+
∑

1<b≤|sign(αj)q|

θ

(
b− 1

2

)
η

(
b− 1

2

)∑
±

b− 1(
±sign(αj)q−b

2

)
!
(
±sign(αj)q+b−2

2

)
!

 .

(8.16)

By the further notation

λ(ν, q) =
∑
±

1

Γ
(

1
2 − ν ±

sign(αj)q
2

)
Γ
(

1
2 + ν ± sign(α′j)q

2

) ,
this equals

const.|αj |
(∫ i∞

0

η(ν)θ(ν)λ(ν, q)(−4πν) tan(πν)
dν

2πi

+
∑

1<b≤|sign(αj)q|

η

(
b− 1

2

)
θ

(
b− 1

2

)
λ

(
b− 1

2
, q

) .

On the large Bruhat cell, we need to compute∫ ∞
−∞

e−2πiαjxL̃α
′
j
q θ

((
0 1
−1 0

)(
1 0
0 c−2

j εj

)(
1 x
0 1

)
g

)
dx.

Again, if εj < 0, then∫
N(R)Z(R)\GL2(R)

(L̃αq η)(g)

∫ ∞
−∞

e−2πiαjxL̃α
′
j
q θ

((
0 1
−1 0

)(
1 0
0 c−2

j εj

)(
1 x
0 1

)
g

)
dxdg =∫

Z(R)\GL2(R)

(L̃αjq η)(g)L̃α
′
j
q θ

((
0 1
−1 0

)(
1 0
0 c−2

j εj

)
g

)
dg = 0,

as we integrate a weight q function against a weight −q function like before (assuming again q 6= 0). So
we may assume εj > 0. If det g > 0, by [10, Theorem 3.8, (3.34-35)], we obtain that this integral equals∫ ∞

−∞
e−2πiαjxL̃α

′
j
q θ

((
0 1
−1 0

)(
1 0
0 c−2

j εj

)(
1 x
0 1

)
g

)
dx = L̃αjq θ̃(g)

with

θ̃(ν) = θ(ν)
1

2|αj |

Γ
(

1
2 + ν +

sign(αj)q
2

)
Γ
(

1
2 + ν +

sign(α′j)q

2

)Bν (4π
(αjα

′
jεj)

1
2

cj

)
|αjα′jεj |

1
2

|cj |
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with B defined in 8.2.2. The holomorphy condition of [10, Theorem 3.8] is satisfied by our condition
sign(αj) = sign(α′j). The case det g < 0 can be reduced as before (use (8.15) again). By (8.16), up to
some constant, the contribution of the large cell is

|αjα′jεj |
1
2

|cj |

(∫ i∞

0

η(ν)θ(ν)λ(ν, q)(−4πν) tan(πν)Bν

(
4π

(αjα
′
jεj)

1
2

cj

)
dν

2πi

+
∑

1<b≤sign(αj)q

η

(
b− 1

2

)
θ

(
b− 1

2

)
λ

(
b− 1

2
, q

)
B b−1

2

(
4π

(αjα
′
jεj)

1
2

cj

) .

(8.17)

On the spectral side (8.14), we need to integrate our building block against our normalized Whittaker
function. Using [10, Corollary 3.5],∫ ∞

0

L̃αjq η(y)Wqj ,νj (αjy)|y|−1d×Ry =

const.|αj |η(ν)
−isign(αj)

q
2

{Γ(1/2− νj + sign(αj)qj/2)Γ(1/2 + νj + sign(αj)qj/2)}1/2
.

As the inner product of such two, at a real place in (8.14) we obtain∫ ∞
0

L̃αjq η(y)Wqj ,νj (αjy)|y|−1d×Ry

∫ ∞
0

L̃α
′
j
q θ(y)Wqj ,νj (α

′
jy)|y|−1d×Ry

+

∫ ∞
0

L̃αjq η(y)W−qj ,νj (αjy)|y|−1d×Ry

∫ ∞
0

L̃αjq θ(y)W−qj ,νj (α′jy)|y|−1d×Ry =

const.|αjα′j |η(ν)θ(ν)λ(ν, q).

(8.18)

8.5.2 The complex case

We execute the complex analog of the above procedure. On the small cell, in our normalization [45,
display between (10.22-23)] gives

L̃α
′
j

l,qθ

((
[b]−2

j ε0j 0

0 1

)
g

)
= L̃αjl,qθ(g).

We have to integrate this against L̃αjl,qη. Using [45, Lemma 9.1.5],

〈L̃αjl,qθ, L̃
αj
l,qη〉N\G = const.|αj |2

∑
|p|≤l

∫
(0)

η(ν, p)θ(ν, p)Γ(l + 1− ν)Γ(l + 1 + ν)
sin2 π(ν − p)
p2 − ν2

ν2ε(p)dν

with ε(0) = 1, ε(p) = −1 for p ∈ Z \ {0}. Introducing

λl(ν, p) = Γ(l + 1− ν)Γ(l + 1 + ν)
sin2 π(ν − p)
(p2 − ν2)2

ν2ε(p),

we get

〈L̃αjl,qθ, L̃
αj
l,qη〉N\G = const.|αj |2

∑
|p|≤l

∫
(0)

η(ν, p)θ(ν, p)λl(ν, p)(p
2 − ν2)dν. (8.19)

Note that λl(ν, p) is nonzero.
On the large Bruhat cell, the corresponding integral is∫

C

e−2πiαj(x+x)L̃α
′
j

l,qθ

((
0 1
−1 0

)(
1 0
0 c−2

j εj

)(
1 x
0 1

)
g

)
d<xd=x.

Now using [45, Lemma 9.1.8], we obtain

const.

∣∣∣∣∣α′jεjαjc2j

∣∣∣∣∣ L̃αjl,q
(
B(ν,p)

(
4π

(αjα
′
jεj)

1
2

cj

)
θ(ν, p)

)
(g),
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where

B(ν,p)(z) =
1

sinπ(ν − p)
{|z/2|−2ν(iz/|z|)2pJ ∗−ν,−p(z)− |z/2|2ν(iz/|z|)−2pJ ∗ν,p(z)},

with J ∗ defined in (8.6). Now by (8.19),

const.

∣∣∣∣∣αjα′jεjc2j

∣∣∣∣∣ ∑
|p|≤l

∫
(0)

η(ν, p)θ(ν, p)λl(ν, p)B(ν,p)

(
4π

(αjα
′
jεj)

1
2

cj

)
(p2 − ν2)dν. (8.20)

We are left to work with the spectral side. To deliver the computation at a complex place of (8.14),
we use [45, (10.4-7)], obtaining∫ ∞

0

L̃αjl,qη
((

y 0
0 1

))
Wj(αjy)|y|−2d×Ry =

const.|αj |2ipΓ(l + 1− ν)
sinπ(ν − p)
ν2 − p2

νε(p)η(−ν, p)

√∣∣∣∣Γ(l + 1 + ν)

Γ(l + 1− ν)

∣∣∣∣.
Note that the last factor is 1, unless we are in the complementary series and in this case, p = 0. Now
taking the inner product of such two, we obtain∫ ∞

0

L̃αjl,qη(y)Wj(αjy)|y|−2d×Ry

∫ ∞
0

L̃α
′
j

l,qθ(y)Wj(α′jy)|y|−2d×Ry =

= const.|αjα′j |2η(ν, p)θ(ν, p)λl(ν, p).

(8.21)

Observe the similar behaviour of the real and the complex cases, even the factors coming from α, α′ are
the same by noting that for the complex modulus | · |C, |z|C = |z|2. Of course, the applied integral
transforms and hence the integral kernels in the final formulas show some difference.

8.6 Derivation of the sum formula

8.6.1 Preliminary sum formulas

In this section we state some preliminary versions of the sum formula.

Lemma 8.5. With the above notation, assuming that αα′ is totally positive,

[K(o) : K(c)]
−1

∑
π∈CFS(c)

C−1
π

∑
t|cc−1

π

ωπ(π−1
b )(ηθλ)λtπ(αa−1)λtπ(α′a−1b−2) + CSC =

const.∆(α, α′[b]−2)

∫
(ηθλ)dµ+

const.
∑
c∈abc

∑
ε∈o×+/o2×

KS(εα, a−1d−1;α′, a−1b−2d−1; c, a−1b−1d−1)

N (ca−1b−1)

∫
B(r)

(
4π

(αα′ε)
1
2

c

)
(ηθλ)dµ.

(8.22)

Proof. Immediate from (8.13), (8.14), (8.16), (8.17), (8.18), (8.19), (8.20) and (8.21).

In an actual application, some ideals a−1, a′−1 are given. If there is some ideal b such that a′−1

equals a−1b−2 up to a totally positive principal ideal, that is, aa′−1 is a square in the narrow class group,
then adjusting α′ in (8.22), we obtain a formula including λtπ(αa−1)λtπ(α′a′−1). Denote by C a fixed set
of narrow class representatives m for which m2aa′−1 is a principal ideal generated by a totally positive
element γm, fixed once for all, and let C ′ be a set of representatives for the rest of ideals.
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Lemma 8.6. For all m ∈ C and α ∈ a, α ∈ a′ such that αα′ is totally positive, we have

[K(o) : K(c)]
−1

∑
π∈CFS(c)

C−1
π

∑
t|cc−1

π

ωπ(π−1
m )(ηθλ)λtπ(αa−1)λtπ(α′a′−1) + CSC =

const.∆(αa−1, α′a′−1)

∫
(ηθλ)dµ+

const.
∑
c∈amc

∑
ε∈o×+/o2×

KS(εα, a−1d−1;α′γm, a
′−1d−1; c, a−1m−1d−1)

N (ca−1m−1)

∫
B(r)

(
4π

(αα′γmε)
1
2

c

)
(ηθλ)dµ.

(8.23)

Proof. Immediate from the previous lemma.

Lemma 8.7. Let m be a narrow class representative from either C or C ′. Denote by Ξ the dual of the
narrow class group. Assume α ∈ a, α′ ∈ a′ such that αα′ is totally positive. Then∑

π∈CFS(c)

C−1
π

∑
t|cc−1

π

ωπ(π−1
m )(ηθλ)λtπ(αa−1)λtπ(α′a′−1)

=
1

|Ξ|
∑
χ∈Ξ

∑
π∈CFS(c)

C−1
π⊗χ

∑
t|cc−1

π

ωπ⊗χ(π−1
m )(ηθλ)λtπ⊗χ(αa−1)λtπ⊗χ(α′a′−1).

(8.24)

The analogous identity holds for CSC. Moreover, if m ∈ C ′, the sum is 0 (and so is CSC).

Proof. First note that if π ∈ CFS(c), then for χ ∈ Ξ, λπ⊗χ(b) = χ(b)λπ(b) holds for the Fourier coeffi-
cients, which in particular implies Cπ = Cπ⊗χ.

Observe that for any narrow class group character χ,∑
π∈CFS(c)

C−1
π

∑
t|cc−1

π

ωπ(π−1
m )(ηθλ)λtπ(αa−1)λtπ(α′a′−1) =

∑
π∈CFS(c)

C−1
π⊗χ

∑
t|cc−1

π

ωπ⊗χ(π−1
m )(ηθλ)λtπ⊗χ(αa−1)λtπ⊗χ(α′a′−1).

Indeed, the central character of each π is multiplied by χ2, which is trivial on the archimedean ideles,
and also the archimedean parameters (q, (l, q), ν, p) are invariant under these twists. From this, (8.24) is
clear.

Moreover,

1

|Ξ|
∑
χ∈Ξ

∑
π∈CFS(c)

C−1
π

∑
t|cc−1

π

ωπ⊗χ(π−1
m )(ηθλ)λtπ⊗χ(αa−1)λtπ⊗χ(α′a′−1) =

1

|Ξ|
∑

π∈CFS(c)

C−1
π

∑
t|cc−1

π

ωπ(π−1
m )(ηθλ)λtπ(αa−1)λtπ(α′a′−1)

∑
χ∈Ξ

χ(m−2a−1a′).

By definition, the inner sum is |Ξ| if m ∈ C, and 0 if m ∈ C ′.
The same argument works for CSC.

Lemma 8.8. We have the preliminary sum formula

[K(o) : K(c)]
−1

∑
π∈C(c)

C−1
π

∑
t|cc−1

π

(ηθλ)λtπ(αa−1)λtπ(α′a′−1) + CSC =

const.∆(αa−1, α′a′−1)

∫
(ηθλ)dµ+

const.
∑
m∈C

∑
c∈amc

∑
ε∈o×+/o2×

KS(εα, a−1d−1;α′γm, a
′−1d−1; c, a−1m−1d−1)

N (ca−1m−1)

∫
B(r)

(
4π

(αα′γmε)
1
2

c

)
(ηθλ)dµ.

(8.25)
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Proof. Using that C(c) consists of those elements of CFS(c) on which Z(A) acts trivially, we can rewrite
the left-hand side as

[K(o) : K(c)]
−1 1

|C ∪ C ′|
∑

m∈C∪C′

∑
π∈CFS(c)

C−1
π

∑
t|cc−1

π

ωπ(π−1
m )(ηθλ)λtπ(αa−1)λtπ(α′a′−1) + CSC.

Now the contribution of m ∈ C is given in (8.23), while the contribution of m ∈ C ′ is 0 by Lemma 8.7.
Note that |C| does not depend on a, a′, since C is a coset of the squares in the narrow class group.

We close this section by noting that as c runs through amc, the weighted sum of Kloosterman sums
is absolutely convergent: combine the estimates [10, Lemma 3.13] and [45, Lemma 11.1.2] at real and
complex places, respectively, with Weil’s bound [56, (13)].

8.6.2 Extension of the preliminary sum formula

Now we are in the position to prove Theorem 3. Observe that (8.25) resembles (5.1), except for the
weight function, which is a triple product ηθλ of functions in the preliminary sum formula, and a single
function in the Kuznetsov formula.

Proof of Theorem 3 in the case of r 6= 0. Set qj > max(2, aj , bj) at real, min(lj , qj) > max(2, aj , bj) at

complex places. Choose a small δ > 0. Then let η(ν, p) = eδν
2

on |<ν| ≤ 2/3 and in the discrete series
at real places, let η(ν) = 1, if ν ∈ 1/2 + Z and 3/2 ≤ |ν| ≤ bj .

Recall that λj 6= 0 at complex places. Unfortunately, at real places, λ(ν) might vanish. We claim
that

λ(ν) =
∑
±

1

Γ
(

1
2 − ν ±

q
2

)
Γ
(

1
2 + ν ± q

2

) 6= 0

on the domain

D = {ν ∈ C : <ν = 0} ∪
(
−1

2
,

1

2

)
∪
{
ν ∈ 1

2
+ Z : |ν| ≤ q − 1

2

}
.

Indeed, for =ν = 0, 3/2 ≤ q/2 + 1/2 ∈ 1/2 + Z. This shows that Γ(1/2 + q/2 + ν),Γ(1/2 + q/2 − ν)
are both positive, so the term ’+q/2’ gives a positive number. Similarly, it is easy to see that in the
term ’−q/2’, Γ(1/2 − q/2 + ν),Γ(1/2 − q/2 − ν) are either of the same sign or both show a pole (for
ν ∈ 1/2 + Z). In any case, they give a nonnegative contribution. For <ν = 0, the positivity is clear, as
there are complex norms in the denominators.

Moreover, the recursion xΓ(x) = Γ(x + 1) implies that if q is large enough, λ(ν) does not vanish on
D′ = |<ν| < 1/3. Adjust q to satisfy this.

Fix a positive integer N > (q−1)/2. Given ε > 0, from the Mergelyan-Bishop approximaton theorem
(see e.g. [54, Theorem 20.5] for the original version and [40, Theorem 1.11.5] for its extension to Riemann
surfaces), we see that there is a rational function λε on C ∪ {∞} with possible poles in {±N} (which
is disjoint from |<ν| ≤ (q − 1)/2 by the choice of N) such that |λε(ν)− 1/λ(ν)| < εmin(1, |ν|−3) for all
ν ∈ D ∪D′ ∪ {∞}. Since λ is real on <ν = 0 and even, we may assume these hold for λε.

At complex places, let λε = 1/λ.

We have already given η. Let θ(ν, p) = h(ν, p)e−δν
2

λε(ν, p). By construction, this can be chosen to
be a test function, if δ is small enough (independently of ε).

Now the triple product gives eδν2e−δν
2

h(ν, p)λ(ν, p)λε(ν, p). Observe that in (5.1) and (8.25) the
relevant ν’s come from D, where we know the uniform convergence h(ν, p)λ(ν, p)λε(ν, p) → h(ν, p) as
ε → 0 and also that the sum formula holds for hλελ. Now [10, Lemmas 3.16 and 3.17] completes the
proof (we note that the domain D′ is introduced to obtain functions such that their Bessel transform
have the right order of magnitude for the absolute convergence in the Kloosterman term: recall the

remark made at the end of Section 8.6.1) by observing that eδν2e−δν
2

= 1 on D.

8.7 The proof in the case of r = 0

8.7.1 The definition of Poincaré series

If all the archimedean places are complex, the inverse Lebedev transform L̃αl,qη does not tend to 0 fast
enough as the height goes to 0, so the earlier definition of Poincaré series is not exact.
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In this case we have a little technical simplification, as PSL2(C) = PGL2(C), so we can assume that
all occuring complex matrices have determinant 1.

To remedy our problem, we follow the argument of Bruggeman and Motohashi [13, Section 9]. We
will also refer to the thesis of Lokvenec-Guleska [45].

Let

B(η) = 2πl · l!η(0, 1)|α|2
√

2l + 1

(
2l

l − 1

)− 1
2
(

2l

l − q

) 1
2

.

Then [13, (7.14-15)], [45, (9.16-17)] can be written as

(L̃αl,qη)(g) = B(η)Mαϕl,q(1, 0)(g) +O(|y|(1+σ)/2
∞ ), (8.26)

where y is the height of g. Note that σ > 1, and here we indicated the function ϕ and its weight and
spectral data, the latter evaluated at (1, 0) and we may assume that l > 0 (if l = 0, then this gives 0,
and we have the order of magnitude needed to give a similar argument to that in Section 8.3.4).

Use
∏

Mα as the building block (where we dropped j from
∏
j), and let (see [13, (9.1)])

P
∏

Mαϕl,q(ν, p)(g) =
∑

γ∈ZΓΓN (a,c)\Γ(a,c)

∏
Mαϕl,q(ν, p)(γg).

This is absolutely convergent for <ν > 1 (see [45, (4.54)], then an Eisenstein series again majorizes our
sum). Note that when ν is a vector in Cs, by <ν > 1 we mean <νj > 1 for all j. In order to keep
notations as simple as it is possible, we will use similar abbreviation from now on, not only for ν, but
for p, l, q as well. For example, ν = 1, p = 0 means that νj = 1, pj = 0 for all j.

Now take any building block f which is a pure tensor, and follow [13, (5.1-6)]. Using the Bruhat
decomposition, the Poincaré series Pf can be written formally as

Pf(g) =
∑

ε∈o×/o2×

f

((
ε 0
0 ε−1

)
g

)

+
∑

06=c∈acd

∑
d

∑
ω∈(ad)−1

f

((
1 d′c−1

0 1

)(
0 1
−1 0

)(
c 0
0 c−1

)(
1 dc−1 + ω
0 1

)
g

)
,

where d′ ∈ o is the element modulo (ad)−1c such that dd′ ≡ 1 modulo (ad)−1c and we sum over those
d’s modulo (ad)−1c for which such a d′ ∈ o exists, that is, d generates o/(ad)−1c as an o-module. Now
applying Poisson summation, we see that the ω-sum can be rewritten as

const.N (a)
∑
ω∈a

ψ∞(dω/c)

∫
F∞

ψ∞(ωx)−1f

((
1 d′c−1

0 1

)(
0 1
−1 0

)(
c 0
0 c−1

)(
1 x
0 1

)
g

)
dx.

Now assume that for some ω′ ∈ a,

f(n(x)g) = ψ∞(ω′x)f(g).

Therefore we obtain

Pf(g) =
∑

ε∈o×/o2×

f

((
ε 0
0 ε−1

)
g

)

+
∑
ω∈a

∑
06=c∈acd

KS(ω, a−1d−1;ω′, a−1d−1; c, a−1d−1)Jω

(
f

((
1/c 0
0 c

)
g

))
,

noting that by Jω, we mean the product of the local integrals (we have chosen f to be a pure tensor).

If ω, ω′, a are all fixed and only c varies, Weil’s bound (see [56, (13)]) gives

KS(ω, a−1d−1;ω′, a−1d−1; c, a−1d−1)�ε,ω,ω′,a |c|1/2+ε
∞ . (8.27)
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Now specializing the above to
∏

Mα, α taking the place of ω′ (which is indeed in a), we see (still for
<ν > 1)

P
∏

Mαϕl,q(ν, p)(g) =
∑

ε∈o×/o2×

∏
Mαϕl,q(ν, p)

((
ε 0
0 ε−1

)
g

)

+
∑

06=c∈acd

KS(0, a−1d−1;α, a−1d−1; c, a−1d−1)J0

(∏
Mαϕl,q(ν, p)

((
1/c 0
0 c

)
g

))

+
∑

06=ω∈a

∑
06=c∈acd

KS(ω, a−1d−1;α, a−1d−1; c, a−1d−1)Jω

(∏
Mαϕl,q(ν, p)

((
1/c 0
0 c

)
g

))
.

(8.28)

Here, the first term continues analytically to ν ∈ Cs. In the second term, we apply (8.4) together with
(8.27), this continues to <ν > 0. In the last term, apply (8.5), together with the explicit form of Jω, this
gives (using also [45, (4.52)])∑

06=ω∈a

Jωϕl,q(ν, p)(g)

 ∑
06=c∈acd

KS(ω, a−1d−1;α, a−1d−1; c, a−1d−1)
∏
j

1

|cj |2(1+νj)

(
cj
|cj |

)2pj

J ∗νj ,pj

(
4π

cj

√
αjωj

) .

Here, the inner sum continues analytically to <ν > 1/2 by (8.27). The resulting function is of order
exp(C

√
|ω|) in ω with C depending on ν, p, α, a, c, so the ω-sum gives an analytic function (as the

K-Bessel function appearing in J has exponential decay exp(−c|ω|) at infinity).
Now P

∏
Mα is a well-defined Poincaré series, however, it fails to be square-integrable. Fix some

0 < A ∈ R. Let ρ be a funcion on Rs such that it is smooth, ρ(y) = 1 if
∏
j |yj | ≤ A, and ρ(y) = 0

if
∏
j |yj | ≥ A + 1. This extends to (SL2(C))s via the Iwasawa decomposition na(y)k by making it

independent of n and k.
Let

∏
M′

α(g) = ρ(g)
∏

Mα(g), then we have, for <ν > 1/2,

P
∏

M′
α(g) = P

∏
Mα(g) + (ρ(y)− 1)

∑
ε∈o×/o2×

∏
Mα

((
ε 0
0 ε−1

)
g

)
, (8.29)

if A is large enough, y = y(g) stands for the height of g = na(y)k. Now observe that as
∏
j |yj | → ∞,

the magnitude of P
∏

M′
α is determined by the second line of (8.28) and it is �

∏
j |yj |1−<νj , so it is

bounded according to (8.4) at ν = 1, p = 0, and also bounded uniformly in ν on a right-neighborhood
ν ∈ [1, 1 + δ) (with a small δ > 0).

Now returning to (8.26), define Eη via

(L̃αl,qη)(g) = B(η)M′
αϕl,q(1, 0)(g) + Eη(g).

On the product this gives∏
(L̃αl,qη)(g) =

∑
S⊆{1,...,s}

∏
{1,...,s}\S

B(η)M′
αϕl,q(1, 0)(g)

∏
S

Eη(g),

where
∏
S means

∏
j∈S . Now define

P
∏

(L̃αl,qη)(g) = P
∏

B(η)M′
αϕl,q(1, 0)(g) + P

∑
∅6=S⊆{1,...,s}

 ∏
{1,...,s}\S

B(η)M′
αϕl,q(1, 0)

∏
S

Eη

 (g).

(8.30)
By our construction, Eη(g) � |y|1+ε

∞ for some ε > 0 as |y|∞ → 0, and Eη(g) � |y|−k∞ for all k ∈ N as
|y|∞ → ∞. Hence the second Poincaré series on the right-hand side is absolutely convergent and gives
a bounded function (the argument of Section 8.3.4 goes through). This, together with the boundedness
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of P
∏

M′ at ν = 1, p = 0, gives that defining our Poincaré series this way, it is bounded, hence square-
integrable, B(η) and

∏
B(η) are constants (for α, l, q, η fixed).

Altogether, in case of r = 0, we use (8.30) as the definition of the Poincaré series, where the first
term P

∏
B(η)M′ϕl,q(1, 0) is understood via analytic continuation as explained above:

P
∏

B(η)M′ϕl,q(1, 0) =
∏

B(η) lim
ν→1+

P
∏

M′ϕl,q(ν, 0), (8.31)

where inside the limit, there is an absolutely convergent Poincaré series for all <ν > 1. Finally, we also
record what we obtain from (8.30), (8.31):

P
∏

(L̃αl,qη)(g) = lim
ν→1+

P
∏

B(η)M′
αϕl,q(ν, 0)(g)

+P
∑

∅6=S⊆{1,...,s}

 ∏
{1,...,s}\S

B(η)M′
αϕl,q(1, 0)

∏
S

Eη

 (g).
(8.32)

8.7.2 The complement of the original argument

From this point, we may modify the argument given in the case of r 6= 0 as follows. In place of each
occurence of P L̃αl,qη(g), write (8.32): use the Poincaré series obtained from∏B(η)M′

αϕl,q(ν, p) +
∑

∅6=S⊆{1,...,s}

 ∏
{1,...,s}\S

B(η)M′
αϕl,q(1, 0)

∏
S

Eη

 (g)

with some ν > 1, and then let limν→1+. That is, start out from (8.32) as

fν1 (g) =

∏B(η)M′
αϕl,q(ν, p) +

∑
∅6=S⊆{1,...,s}

 ∏
{1,...,s}\S

B(η)M′
αϕl,q(1, 0)

∏
S

Eη

 (g),

fν
′

2 (g) =

∏B(η)M′
α′ϕl,q(ν

′, p) +
∑

∅6=S⊆{1,...,s}

 ∏
{1,...,s}\S

B(η)M′
α′ϕl,q(1, 0)

∏
S

Eθ

 (g),

then define P ν1 = Pfν1 , P ν
′

2 = Pfν
′

2 in the sense of (8.11). Finally, let

P1 = lim
ν→1+

P ν1 , P2 = lim
ν′→1+

P ν
′

2 .

Now assume φ is an integrable function over Z(F∞)Γ(a, c)\GL2(F∞) such that its Fourier coefficient∫
ΓN (a,c)\N(F∞)

ψ1(−n)φ(ng)dn =

{
O(|y|ε∞), |y|∞ → 0,
O(|y|−ε∞ ), |y|∞ →∞

for some ε > 0, y stands for the height of g. This holds both for the basis elements f in the cuspidal
spectrum and for Eisenstein series (recall the notation of Section 8.4.2), as it follows from their Fourier-
Whittaker expansions (2.25), (2.38). Then by unfolding,∫

Z(F∞)Γ(a,c)\GL2(F∞)

lim
ν→1+

P ν1 (g)φ(g)dg

= lim
ν→1+

∫
Z(F∞)Γ(a,c)\GL2(F∞)

P ν1 (g)φ(g)dg

= lim
ν→1+

∫
Z(F∞)Γ(a,c)\GL2(F∞)

∑
γ∈ZΓΓN (a,c)\Γ(a,c)

fν1 (γg)φ(γg)dg

= lim
ν→1+

∫
Z(F∞)N(F∞)\GL2(F∞)

fν1 (g)

∫
ΓN (a,c)\N(F∞)

ψ1(−n)φ(ng)dndg

=

∫
Z(F∞)N(F∞)\GL2(F∞)

lim
ν→1+

fν1 (g)

∫
ΓN (a,c)\N(F∞)

ψ1(−n)φ(ng)dndg

=

∫
Z(F∞)N(F∞)\GL2(F∞)

L̃αl,qη(g)

∫
ΓN (a,c)\N(F∞)

ψ1(−n)φ(ng)dndg.
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We made two interchanges between limit and integral. Both are explained by dominated convergence
as follows. First, we can split up P1 and f1 according to (8.32), in which we have to explain the
interchange in the first term (there is no ν in the second one), restrict to this. In the first interchange,
the function φ is integrable where it is integrated, and it is multiplied by a function which is bounded
(with a bound independent of ν in a small neighborhood of ν = 1: see the remark made after (8.29)),
therefore, the function φ itself serves as an integrable majorant. In the second interchange, we may use
|y|∞

∫
ΓN (a,c)\N(F∞)

ψ1(−n)φ(ng)dn as an integrable majorant, where y is the height of g: it majorizes

by [45, (4.54-55)] and it is integrable by the condition made on
∫

ΓN (a,c)\N(F∞)
ψ1(−n)φ(ng)dn. Now the

content of Section 8.4.2 is fully explained in this case.
As for the geometric side, we start with moving the limits outside∫

Z(F∞)Γ(a,c)\GL2(F∞)

lim
ν→1+

P ν1 (g) lim
ν′→1+

P ν2 (g)dg = lim
ν,ν′→1+

∫
Z(F∞)Γ(a,c)\GL2(F∞)

P ν1 (g)P ν2 (g),

which is justified by noting that P1, P2, P
ν
1 , P

ν′

2 are all bounded uniformly in ν, ν′ ∈ [1, 1 + δ) for a small
δ > 0. Then inside the limit, we proceed as in Section 8.4.1 to the point (8.13), which, in this case, is

I = lim
ν,ν′→1+

(
const.∆(α, α′[b]−2)N (a−1)

∫
N(F∞)Z(F∞)\GL2(F∞)

fν1 (g)fν
′

2

((
[b]−1ε0 0

0 [b]

)
g

)
dg

+ const.
∑

c∈abc,ε∈o×/o2×

KS(εα, a−1d−1;α′, a−1b−2d−1; c, a−1b−1d−1)

·
∫
N(F∞)Z(F∞)\GL2(F∞)

fν1 (g)

∫
N(F∞)

ψ1(n)fν
′

2

(
w

(
1 0
0 εc−2

)
ng

)
dndg

)
.

First concenctrate on the delta term, we claim there that

lim
ν,ν′→1+

∫
N(F∞)Z(F∞)\GL2(F∞)

fν1 (g)fν
′

2

((
[b]−1ε0 0

0 [b]

)
g

)
dg

=

∫
N(F∞)Z(F∞)\GL2(F∞)

lim
ν→1+

fν1 (g) lim
ν′→1+

fν
′

2

((
[b]−1ε0 0

0 [b]

)
g

)
dg

=

∫
N(F∞)Z(F∞)\GL2(F∞)

L̃αl,qη(g)L̃α
′

l,qθ(g)

((
[b]−1ε0 0

0 [b]

)
g

)
dg.

We have to check the first equality, where we can focus again on the part corresponding to the first term
of (8.32), where ρ(g)|y|2∞ (y is still the height of g) is an integrable majorant: it is trivially integrable
and majorizes by [45, (4.54-55)].

As for the Kloosterman term, we claim analogously

lim
ν,ν′→1+

∑
c∈abc,ε∈o×/o2×

KS(εα, a−1d−1;α′, a−1b−2d−1; c, a−1b−1d−1)

·
∫
N(F∞)Z(F∞)\GL2(F∞)

fν1 (g)

∫
N(F∞)

ψ1(n)fν
′

2

(
w

(
1 0
0 εc−2

)
ng

)
dndg

=
∑

c∈abc,ε∈o×/o2×

KS(εα, a−1d−1;α′, a−1b−2d−1; c, a−1b−1d−1)

·
∫
N(F∞)Z(F∞)\GL2(F∞)

lim
ν→1+

fν1 (g)

∫
N(F∞)

ψ1(n) lim
ν′→1+

fν
′

2

(
w

(
1 0
0 εc−2

)
ng

)
dndg

=
∑

c∈abc,ε∈o×/o2×

KS(εα, a−1d−1;α′, a−1b−2d−1; c, a−1b−1d−1)

·
∫
N(F∞)Z(F∞)\GL2(F∞)

L̃αl,qη(g)

∫
N(F∞)

ψ1(n)L̃α
′

l,qη

(
w

(
1 0
0 εc−2

)
ng

)
dndg.

Again, we have to check the interchangeability, and we may restrict to the first term according to

(8.32). The integrable majorant is ρ(g)|y|3/2∞ |c|−3
∞ (y is still the height of g), its integrability is ob-

vious, and it majorizes by [13, (9.25)] (for the integral over N(F∞)), [45, (4.54)] (for the integral over
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N(F∞)Z(F∞)\GL2(F∞)) and finally (8.27) (for the sum of Kloosterman sums). This altogether explains
Section 8.4.1 in this case.

Proof of Theorem 3 in the case of r = 0. The above argument shows that this definition of the Poincaré
series leads to the same scalar product, both on the geometric and on the spectral side, as in Section
8.4. Now we continue as in Section 8.5 and Section 8.6, everything goes through with the simplification
that we do not need the approximation in the final step, since the function λ cannot vanish at complex
places.
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Springer-Verlag, Berlin, 1981. Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische
Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], 48.

[9] R. W. Bruggeman and R. J. Miatello. Sum formula for SL2 over a number field and Selberg type estimate
for exceptional eigenvalues. Geom. Funct. Anal., 8(4):627–655, 1998.

[10] R. W. Bruggeman and R. J. Miatello. Sum formula for SL2 over a totally real number field. Mem. Amer.
Math. Soc., 197(919):vi+81, 2009.

[11] R. W. Bruggeman, R. J. Miatello, and I. Pacharoni. Estimates for Kloosterman sums for totally real number
fields. J. Reine Angew. Math., 535:103–164, 2001.

[12] R. W. Bruggeman and Y. Motohashi. A note on the mean value of the zeta and L-functions. XIII. Proc.
Japan Acad. Ser. A Math. Sci., 78(6):87–91, 2002.

[13] R. W. Bruggeman and Y. Motohashi. Sum formula for Kloosterman sums and fourth moment of the
Dedekind zeta-function over the Gaussian number field. Funct. Approx. Comment. Math., 31:23–92, 2003.

[14] R. W. Bruggeman and Y. Motohashi. A new approach to the spectral theory of the fourth moment of the
Riemann zeta-function. J. Reine Angew. Math., 579:75–114, 2005.

[15] D. Bump. Automorphic forms and representations, volume 55 of Cambridge Studies in Advanced Mathemat-
ics. Cambridge University Press, Cambridge, 1997.

[16] D. Bump. Lie groups, volume 225 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2004.

[17] D. A. Burgess. On character sums and L-series. II. Proc. London Math. Soc. (3), 13:524–536, 1963.

[18] W. Casselman. On some results of Atkin and Lehner. Math. Ann., 201:301–314, 1973.

[19] J. W. Cogdell and I. Piatetski-Shapiro. The arithmetic and spectral analysis of Poincaré series, volume 13
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