HOMEWORK SET 4

- 9) The goal of this problem is to prove the crucial $L(1, \chi) \neq 0$ in an alternative way. Let $q \in \mathbf{N}$, and the characters below are the characters modulo q, χ_0 standing for the principal character, Ξ is the set of all such characters.
 - a) (0 point) Prove (in an alternative way to what we do in the lecture) that if $\chi \neq \chi_0$, then $L(s,\chi)$ is holomorphic on the domain $\Re s > 0$. (*Hint:* recall that $\sum_{n=1}^{\infty} \chi(n) n^{-s}$ is convergent for s > 0 from the lecture (Proposition 1.4.1 and its neighborhood), and combine this with Homework problem 7.)
 - b) (1 point) Consider the product

$$F(s) = \prod_{\chi \in \Xi} L(s, \chi),$$

and prove that, going for contradiction, if any of $L(1, \chi)$ vanishes, this extends holomorphically to $\Re s > 0$.

- c) (4 points) For $\Re s > 1$, F(s) is a Dirichlet series $\sum_{n=1}^{\infty} a_n n^{-s}$. Prove that the coefficients are nonnegative real numbers (i.e. $a_n \ge 0$). (*Hint:* use the Euler product of each $L(s, \chi)$, and show that for each prime p not dividing q, the product (over $\chi \in \Xi$) of Euler factors at p is $(1 p^{-\alpha_p s})^{-\beta_p}$ for some positive integers α_p, β_p depending only on p (and the all along implicit q).)
- d) (0 point) Prove that the Dirichlet series $\sum_{n=1}^{\infty} a_n n^{-s}$ is convergent on $\Re s > 0$. (*Hint:* use Homework problem 8.)
- e) (4 points) Conclude contradiction by showing that the Dirichlet series cannot converge at $s = 1/\varphi(q)$. (*Hint:* understand what α_p, β_p from above are, and recall that the reciprocal sum of primes is infinity.)
- 10) (3 points) For some $0 < \delta \leq 1/2$, assume that $\zeta(s) \neq 0$, if $\Re s > 1 \delta$ (this is the Riemann Hypothesis with $\delta = 1/2$). Prove that under this condition,

$$\sum_{n\leqslant x} \Lambda(n) = x + O(x^{1-\delta}\log^2 x).$$

(*Hint:* apply Proposition 2.5.1. Be careful with potential zeros on the line $\Re s = 1 - \delta$, try to figure out how to treat them.)