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Chapter 1

Elementary theory

1.1 The Riemann ζ function on s > 1

Proposition 1.1.1. Let y < x be real numbers, and f : [y, x]→ R a monotone function. Then∑
n∈Z:y6n6x

f(n) =

∫ x

y

f(t)dt+O(|f(x)|) +O(|f(y)|).

Proof. We can assume that y, x ∈ Z. Also, we can assume that f is monotone increasing. Then∫ x

y

f(t)dt+ f(y) 6
∫ x

y

f(dte)dt+ f(y) 6
∑

n∈Z:y6n6x

f(n)

6
∫ x

y

f(btc)dt+ f(x) 6
∫ x

y

f(t)dt+ f(x).

The proof is complete.

Proposition 1.1.2. Assume f : N → C, F : R+ → C, g : R+ → R+ such that g(x) → 0 as x → ∞.
Then the following are equivalent.

(i) For all 1 6 y < x, we have∑
y6n<x

f(n) = F (x)− F (y) +O(g(x)) +O(g(y)).

(ii) There exists some c ∈ C such that for all x > 1,∑
n<x

f(n) = c+ F (x) +O(g(x)).

Proof. Assume (ii) holds. Then, for any 1 6 y < x,∑
y6n<x

f(n) =
∑
n<x

f(n)−
∑
n<y

f(n) = c+ F (x) +O(g(x))− (c+ F (y) +O(g(y)))

= F (x)− F (y) +O(g(x)) +O(g(y)),

hence (i) follows.
Now assume (i) holds. Then consider h(x) =

∑
n<x f(n)− F (x). Then for any 1 6 y < x, we have

h(x)− h(y) = O(g(x)) +O(g(y)), and this tends to 0, as y, x→∞, implying by Cauchy’s criterion that
limx→∞ h(x) = c for some c ∈ C, i.e.∑

n<x

f(n) = c+ F (x) + o(1), x→∞.

1



2 1. Elementary theory

Now fix some y ∈ R+, and let x→∞. By (i), we obtain∑
n<y

f(n) =
∑
n<x

f(n)− F (x) +O(g(x))︸ ︷︷ ︸
=c+o(1)

+F (y) +O(g(y)) = c+ F (y) +O(g(y)),

hence (ii) follows.

Remark 1.1.3. The quantity c in (ii) is obviously unique, and writing x = 1, we see that c = −F (1)+O(g(1)).
Also, if f and F are both real-valued, then c ∈ R. We also note that if limx→∞ F (x) = 0, then
limx→∞

∑
n<x f(x) = c.

Definition 1.1.4 (Riemann ζ for s > 1). For s > 1, we define ζ(s) =
∑∞
n=1 n

−s.

Proposition 1.1.5. The series defining ζ is convergent for any s > 1. Also

ζ(s) =
1

s− 1
+O(1), s > 1.

Proof. First, by Proposition 1.1.1, we have, for 1 6 y < x,∑
y6n6x

n−s =

∫ x

y

t−sdt+O(y−s) =
y1−s

s− 1
− x1−s

s− 1
+O(y−s).

Then Proposition 1.1.2 applies with F (x) = x1−s/(s− 1), which tends to 0 as x→∞, giving a certain
c ∈ R satisfying

∑
n<x n

−s = c+O(x−s). As x tends to infinity, this gives c = ζ(s), and that the series
in question is convergent.

The second statement follows from∑
y6n6x

n−s =
y1−s

s− 1
− x1−s

s− 1
+O(y−s)

by setting y = 1, and x→∞.

Remark 1.1.6. The same argument gives, for s > 0, that there exists some c ∈ C such that∑
n6x

n−s = c− x1−s

s− 1
+O(x−s).

In fact, this c equals ζ(s) for s > 0.

Proposition 1.1.7. For any x > 1, we have∑
n6x

1

n
= log x+ γ +O(x−1)

for some constant γ.

Proof. We combine again Proposition 1.1.1 and Proposition 1.1.2. First, for any 1 6 y < x,∑
y6n6x

1

n
=

∫ x

y

dt

t
+O(y−1) = log x− log y +O(y−1).

Then Proposition 1.1.2 applies and gives that∑
n6x

1

n
= γ + log x+O(x−1)

for some constant γ.

Remark 1.1.8. We have that γ ≈ 0.577.
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Interlude on infinite products

Let a1, a2, . . . be an inifinite sequence of complex numbers, and we assume that none of them is −1.

Definition 1.1.9 (convergence and absolute convergence of infinite products). We say that the infinite
product

∞∏
n=1

(1 + an)

is convergent and its value is c, if

lim
N→∞

N∏
n=1

(1 + an) = c,

and c ∈ C is nonzero. We say that it is absolutely convergent, if
∏∞
n=1(1 + |an|) is convergent.

Remark 1.1.10. One can easily see that when an > −1 for all n ∈ N, then
∏N
n=1(1+an) converges to c if and

only if
∑N
n=1 log(1+an) converges to log c, i.e.

∏∞
n=1(1+an) = c is equivalent to

∑∞
n=1 log(1+an) = log c.

Proposition 1.1.11. Assume an > 0. Then
∏∞
n=1(1 + an) is convergent if and only if

∑∞
n=1 an is

convergent. (Note that in this case, convergence and absolute convergence are the same.)

Proof. Clearly the sequence
∏N
n=1(1 + an) is monotone increasing in N , in particular, it is separated

from zero. Then the inequalities

N∑
n=1

an 6
N∏
n=1

(1 + an) 6 e
∑N
n=1 an

show that as N →∞,
∑N
n=1 an →∞ if and only if

∏N
n=1(1 + an)→∞.

Proposition 1.1.12. If
∏∞
n=1(1 + an) is absolutely convergent, then it is also convergent.

Proof. Assume
∏∞
n=1(1 + an) is absolutely convergent. Then clearly only finitely many of the an’s can

be −1/2, and dropping the first few terms of the sequence a1, a2, . . . does not affect the convergence or
absolute convergence. Therefore, we may assume that an 6= −1/2 for all n ∈ N.

First we show that
∏∞
n=1(1 + an) tends to a finite limit. Let PN =

∏N
n=1(1 + an) and QN =∏N

n=1(1 + |an|). Then

|PN+1 − PN | = |(1 + a1) · . . . · (1 + an)an+1| 6 (1 + |a1|) · . . . · (1 + |an|)|an+1| = QN+1 −QN .

The series
∑∞
N=1(QN+1 −QN ) is convergent by assumption, so is

∑∞
N=1 |PN+1 − PN |, and this means

that PN tends to a finite limit.
We still have to show that this finite limit cannot be 0. To this aim, observe that 1 +an → 1, implying

∞∑
n=1

an
1 + an

is absolutely convergent: indeed, dropping the first few terms,

|an|
2

6

∣∣∣∣ an
1 + an

∣∣∣∣ 6 2|an|.

Then the product
∞∏
n=1

(
1− an

1 + an

)
is absolutely convergent by Proposition 1.1.11, that is,

N∏
n=1

(
1− an

1 + an

)
= P−1

N

also tends to a finite limit.
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Proposition 1.1.13. Let D ⊆ C be a domain, and an(z) : D → C a sequence of functions such that∑∞
n=1 |an(z)| converges uniformly to a bounded function on D → C. Then

∏∞
n=1(1+an(z)) also converges

uniformly to a bounded function on D → C.

Proof. Let M be an upper bound of
∑∞
n=1 |an(z)| on D. Then

N∏
n=1

(1 + |an(z)|) 6 e
∑N
n=1 |an(z)| 6 eM .

Setting QN (z) =
∏N
n=1(1 + |an(z)|), this means that

QN+1(z)−QN (z) = (1 + |a1(z)|) · . . . · (1 + |an(z)|)|an+1(z)| 6 eM |an+1(z)|.

If PN (z) =
∏N
n=1(1 + |an(z)|), then, as in the proof of Proposition 1.1.12,

∑∞
N=1 |PN+1(z) − PN (z)|

converges uniformly, since its dominating series
∑∞
N=1(QN+1(z)−QN (z)) converges uniformly (vanishing

limit is excluded pointwise by Proposition 1.1.12).

End of interlude

Proposition 1.1.14. We have, for s > 1,

ζ(s) =
∏
p

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ . . .

)
=
∏
p

(
1− 1

ps

)−1

,

and the infinite product is absolutely convergent. This is known as the Euler product of the ζ function.

Proof. First we prove that the infinite product is absolutely convergent for any s > 1. Clearly,

p−s + p−2s + . . . = p−s(1− p−s)−1 6 2p−s,

and
∑
p p
−s 6

∑∞
n=1 n

−s <∞. This gives absolute convergence of the infinite product.
Also, for any s > 1,

ζ(s) =

∞∑
n=1

1

ns
= lim
N→∞

∑
n∈N

the largest prime divisor of n is at most N

1

ns
= lim
N→∞

∏
p

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ . . .

)
,

by the fundamental theorem of arithmetic. The proof is complete.

Definition 1.1.15 (von Mangoldt function). Let

Λ(n) =

{
log p, if n is a positive power of a prime p,

0, otherwise.

Proposition 1.1.16. For s > 1, we have

∞∑
n=1

Λ(n)

ns log n
= log ζ(s) = log

1

s− 1
+O(s− 1).

Proof. Combining Proposition 1.1.5 and Proposition 1.1.14, we obtain∏
p

(
1− p−s

)−1
= ζ(s) =

1

s− 1
+O(1).

Taking logarithms, we obtain (since ζ(s) > 1)

−
∑
p

log
(
1− p−s

)
= log ζ(s) = log

1

s− 1
+O(s− 1).

Applying the Taylor expansion of log(1− x), we obtain∑
p

∞∑
k=1

1

pks
= log ζ(s) = log

1

s− 1
+O(s− 1),

and the leftmost expression is clearly
∑∞
n=1 Λ(n)/(ns log n).
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1.2 Mertens’ theorems

Theorem 1.2.1 (Chebyshev’s theorem, upper bound). We have, for any x > 2,∑
n6x

Λ(n)� x.

Proof. First of all, instead of summing over prime powers, we can restrict to primes, since the number of
other powers is O(

√
x log x), and each of them contributes O(log x).

By dyadic decomposition, it suffices to show that∑
x/2<p6x

log p� x.

We can clearly assume that x is an even number. Then observe that∏
x/2<p6x

p |
(
x

x/2

)
6 2x.

Taking the logarithm of both sides, we obtain the statement.

Proposition 1.2.2. We have L = Λ ∗ 1, where ∗ is the convolution of number-theoretic functions, L is
the logarithm function n 7→ log n, and 1 is the constant 1 function.

Proof. Straight-forward calculation.

Theorem 1.2.3 (Mertens’ first theorem). We have, for any x > 2,

∑
n6x

Λ(n)

n
= log x+O(1).

Proof. We have ∑
n6x

log n =
∑
n6x

∑
d|n

Λ(d) =
∑
d6x

Λ(d)
(x
d

+O(1)
)
.

Then applying Proposition 1.1.1 and Theorem 1.2.1, we obtain

x
∑
d6x

Λ(d)

d
= x log x+O(x),

and the proof is complete.

Corollary 1.2.4. We have, for any x > 2,∑
p6x

log p

p
= log x+O(1).

Proof. It is easy to see that ∑
p

∞∑
k=2

log p

pk
�

∞∑
n=1

n−3/2 <∞,

and then Theorem 1.2.3 gives immediately the statement.

Theorem 1.2.5 (Mertens’ second theorem). There exists a constant c ∈ R such that for any x > 2,∑
p6x

1

p
= log log x+ c+ o(1).
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Proof. Let 2 6 y < x. Then for any y 6 p 6 x, we have

1

p
=

log p

p

(
1

log x
+

∫ x

y

1p6t
dt

t log2 t

)
,

since d
dt (log t)−1 = −(t log2 t)−1. Then summing this over all the primes between y and x, we obtain

∑
y6p6x

1

p
=

1

log x

∑
y6p6x

log p

p
+

∫ x

y

∑
y6p6t

log p

p

dt

t log2 t
.

Applying Corollary 1.2.4, we see∑
y6p6x

log p

p
= log x− log y +O(1),

∑
y6p6t

log p

p
= log t− log y +O(1).

Then using again d
dt (log t)−1 = −(t log2 t)−1 and also d

dt log log t = (t log t)−1, we obtain∫ x

y

∑
y6p6t

log p

p

dt

t log2 t
=

∫ x

y

(log t− log y +O(1))
dt

t log2 t

= log log x− log log y + log y

(
1

log x
− 1

log y

)
+O

(
1

log y

)
.

Then altogether ∑
y6p6x

1

p
= log log x− log log y +O

(
1

log y

)
,

and Proposition 1.1.2 completes the proof.

Corollary 1.2.6. There exists a constant c ∈ R such that for any x > 2,

∑
n6x

Λ(n)

n log n
= log log x+ c+ o(1).

Proof. The same way as Theorem 1.2.3 implies Corollary 1.2.4.

Proposition 1.2.7. Let 0 < a < b <∞. Then∑
xa6p6xb

1

p
= log

b

a
+ o(1), x→∞.

Let f be a fixed compactly supported function from R+ to C. Then

∑
p

1

p
f

(
log p

log x

)
=

∫ ∞
0

f(t)
dt

t
+ o(1), x→∞.

The same holds for Λ(n)/(n log n) in place of 1/p.

Proof. The first statement follows from Theorem 1.2.5:∑
xa6p6xb

1

p
= log(b log x) + c+ o(1)− log(a log x)− c− o(1) = log b− log a+ o(1).

The second statement follows by observing that it simplifies to the first one for f = 1[a,b], and that every
compactly supported function is approximated by characteristic ones (in L∞-norm).

The proof is the same for Λ(n)/(n log n).



1.2. Mertens’ theorems 7

Proposition 1.2.8. We have

γ =

∫ ∞
0

1[0,1](t)− e−t

t
dt.

Also, for ε > 0 small enough and N large enough, we have∫ N

ε

1[0,1](t)− e−t

t
dt = γ +O(ε) +O(1/N).

Proof. We have, by definition,

γ = lim
n→∞

((
1 +

1

2
+ . . .+

1

n

)
− log n

)
.

Here, (
1 +

1

2
+ . . .+

1

n

)
− log n =

∫ 1

0

1− un

1− u
du−

∫ 1− 1
n

0

1

1− u
du

=

∫ 1

0

1[1−1/n,1] − un

1− u
du

=

∫ n

0

1[0,1](t)−
(
1− t

n

)n
t

dt.

As n→∞, the integrand tends pointwise to (1[0,1](t)− e−t)/t, and it is dominated in absolute value by
O(e−t). Then the first statement follows by dominated convergence. The second statement follows by
noting that the integral from 0 to ε is O(ε), and from N to ∞ it is O(1/N).

Theorem 1.2.9 (Mertens’ third theorem). We have∏
p6x

(
1− 1

p

)
=
e−γ + o(1)

log x
, x→∞.

Proof. Recall that for any s > 1, we have

∞∑
n=1

Λ(n)

ns log n
= − log(s− 1) +O(s− 1).

Writing s = 1 + 1/ log x, we obtain, as x→∞,

∞∑
n=1

Λ(n)

n log n
e− logn/ log x = log log x+ o(1).

Then
∞∑
n=1

Λ(n)

n log n

(
e− logn/ log x − 1[0,1]

(
log n

log x

))
= −c+ o(1),

where c is the same constant as in Corollary 1.2.6.
On the other hand, consider the quantity, for any small ε > 0 fixed,∑

n<xε

Λ(n)

n log n

(
e− logn/ log x − 1[0,1]

(
log n

log x

))
,

which is, combining Proposition 1.2.7 and Proposition 1.2.8 (see also its proof),∫ ε

0

(e−t − 1[0,1](t))

t
dt+ o(1) = O(ε) + o(1),

and similarly, for any large N fixed,∑
n>xN

Λ(n)

n log n

(
e− logn/ log x − 1[0,1]

(
log n

log x

))
= O(1/N) + o(1).
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Then for some small ε > 0 and large N , we see

∑
xε6n6xN

Λ(n)

n log n

(
e− logn/ log x − 1[0,1]

(
log n

log x

))
= −c+O(ε) +O(1/N) + o(1).

By Proposition 1.2.7, this is the same as∫ N

ε

e−t − 1[0,1]

t
dt+ o(1),

which is −γ +O(ε) +O(1/N) + o(1), therefore letting ε→ 0, N →∞, we see c = γ.

Then Theorem 1.2.6 gives ∑
n6x

Λ(n)

n log n
= log log x+ γ + o(1).

The left-hand side can be rewritten to give

∑
p6x

∞∑
k=1

1

kpk
= log log x+ γ + o(1).

By the Taylor expansion of log(1− x), we obtain

−
∑
p6x

(
1− 1

p

)
= log log x+ γ + o(1).

Taking exponentials, the proof is complete.

1.3 Dirichlet characters

Definition 1.3.1 (Dirichlet character). Given a modulus q ∈ N, we say a function χ : Z → C is a
Dirichlet character, if

(a) for any n ∈ Z, χ(n+ q) = χ(n);

(b) for any n ∈ Z, χ(n) 6= 0 if and only if gcd(n, q) = 1;

(c) for any m,n ∈ Z, χ(mn) = χ(m)χ(n).

Proposition 1.3.2 (properties of Dirichlet character). Dirichlet characters of modulo q have the following
properties.

(a) The function χ can be considered as a function Zq → C.

(b) The function χ is a group homomorphism from Z×q to the multiplicative group of ϕ(q)th roots of
unity.

Proof. (a) This is obvious from the fact that χ has period q.

(b) By multiplicativity χ(1) = χ(1 · 1) = χ(1)χ(1), which implies χ(1) = 1, since χ(1) = 0 is excluded
by gcd(1, q) = 1. The fact that χ is a group homomorphism is a simple consequence of multiplicativity.
Assume a ∈ Z×q . Then by Euler-Fermat theorem, and by iterating the multiplicativity of χ,

(χ(a))ϕ(q) = χ(aϕ(q)) = χ(1) = 1,

which means that χ(a) is indeed a ϕ(q)th root of unity.
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Proposition 1.3.3 (the group of Dirichlet characters). The Dirichlet characters of modulo q form a
group under pointwise multiplication. The unit element is the principal character

χ0(a) =

{
1 if gcd(a, q) = 1,

0 if gcd(a, q) = 0;

and the inverse χ−1 of χ is the complex conjugate character

χ−1(a) = χ(a).

The group Ξ of characters has ϕ(q) elements, and it is isomorphic to the group Z×q .

Proof. The group properties (multiplication, unit element, inverse) follow easily. As for the structure of
Ξ, recall that

Z×q = Cq1 × . . .× Cqr
for some cyclic groups Cq1 , . . . , Cqr of order q1, . . . , qr, respectively, satisfying q1 · . . . · qr = ϕ(q). Take
some generators c1, . . . , cr of Cq1 , . . . , Cqr . Then a χ ∈ Ξ is determined by its values on c1, . . . , cr, which
must be q1th, . . ., qrth roots of unity, respectively. From this, both the order and the structure of Ξ are
clear.

Remark 1.3.4. More generally, for any finite abelian group G, its dual group Ĝ is isomorphic to G. Note
on the other hand that this isomorphism is not canonical (in the sense of universal algebra), since it
depends on the generators of the cyclic parts. The proof of the general statement is the same, starting
out from the fundamental theorem of finite abelian groups.

Proposition 1.3.5. For any n ∈ Z,

1

ϕ(q)

∑
χ∈Ξ

χ(n) =

{
1 if n ≡ 1 mod q;

0 if n 6≡ 1 mod q.

Proof. If n ≡ 1 mod q or if gcd(n, q) 6= 1, then the statement trivially holds. Assume that gcd(n, q) = 1
and n 6≡ 1 mod q. When writing

Z×q = Cq1 × . . .× Cqr ,
and taking the generators c1, . . . , cr, we have n ≡ cn1

1 · . . . · cnrr mod q, where for each 1 6 j 6 r,
0 6 nj 6 qj , and for some 1 6 i 6 r strictly 0 6 ni < qi. Then in that particular factor i, map ci to
a primitive qith root of unity, while at other factors j 6= i, map cj ’s to 1. Obviously the resulting χ′

satisfies χ′(n) 6= 1. Then ∑
χ∈Ξ

χ(n) =
∑
χ∈Ξ

(χ′χ)(n) = χ′(n)
∑
χ∈Ξ

χ(n).

Here, since χ′(n) 6= 1,
∑
χ∈Ξ χ(n) = 0, and the proof is complete.

Corollary 1.3.6. If gcd(a, q) = 1, then for any n ∈ Z,

1

ϕ(q)

∑
χ∈Ξ

χ(a)χ(n) =

{
1 if n ≡ a mod q;

0 if n 6≡ a mod q.

Proof. Apply Proposition 1.3.5 to the residue class a−1n.

Proposition 1.3.7. We have ∑
n mod q

χ(n) =

{
ϕ(q) if χ = χ0,

0 if χ 6= χ0.

Proof. If χ = χ0, the statement is obvious. If χ 6= χ0, then take a ∈ Z×q such that χ(a) 6= 1. When n
runs through the residue classes modulo q, so does an, which implies∑

n mod q

χ(n) =
∑

n mod q

χ(an) = χ(a)
∑

n mod q

χ(n).

Here, since χ(a) 6= 1,
∑
n mod q χ(n) = 0, and the proof is complete.
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1.4 The function L(s, χ) for s > 0 and the value L(1, χ)

Proposition 1.4.1. Let χ 6= χ0 be a character modulo q, and s > 0. Then∑
y6n6x

χ(n)

ns
= Oq

(
1

ys

)
.

There exists a complex number L(1, χ) satisfying∑
n6x

χ(n)

n
= L(1, χ) +O

(
1

x

)
,

∞∑
n=1

χ(n)

n
= L(1, χ).

Also, ∑
n6x

χ(n) log n

n
= Oq(1).

Proof. Let X(x) =
∑
n6x χ(n). Then clearly |X(x)| 6 q, and by partial summation,∑

y6n6x

χ(n)

ns
=

∑
y6n6x

1

ns
(X(n)−X(n− 1)) =

∑
y6n6x

(
1

ns
− 1

(n+ 1)s

)
X(n) +Oq

(
1

ys

)
= Oq

(
1

ys

)
,

and the first statement is established. The second one then follows from Proposition 1.1.2 and setting
s = 1. The third statement is proven along the same calculation by writing y = 1 and log n/n in place of
1/ns.

Remark 1.4.2. Instead of weights 1/n, log n/n, one can use other sequences which are monotone decreasing
from a certain point on. Of course, the resulting implied constant in Oq(1) depends not only on q, but
also on the sequence we have chosen.

Definition 1.4.3 (Dirichlet L-functions for s > 0). For a character χ modulo q, and s > 0, we define
L(s, χ) =

∑∞
n=1 χ(n)n−s.

Then Proposition 1.1.5 easily gives that the series defining L(s, χ) is absolutely convergent for s > 1
and conditionally convergent for s > 0. Also, we have, similarly to the ζ function that

L(s, χ) =
∏
p

(
1− χ(p)p−s

)−1
, logL(s, χ) = −

∑
p

log

(
1− χ(p)

ps

)
=

∞∑
n=1

Λ(n)χ(n)

ns log n
, s > 1,

where in the logarithm, we mean the principal branch (which is real for nonnegative numbers). We also
note

L(s, χ0) = ζ(s)
∏
p|q

(
1− 1

p

)
.

Proposition 1.4.4. We have, for χ 6= χ0,

L(s, χ) = L(1, χ) +Oq(s− 1).

Proof. First, L(s, χ) can be differentiated in s for s > 0, and we see that

L′(s, χ) = −
∞∑
n=1

χ(n) log n

ns
,

since the partial sums converge locally uniformly on (0,∞) by applying Remark 1.4.2 to the sequence
log n/ns (which, for any s in a compact subset of (0,∞), is a monotone decreasing sequence from a
certain point on), and the partial sums

∑
n6x χ(n)/ns converge on (0,∞).

Now consider the function L(u, χ) on the interval [1, s]. By Newton-Leibniz,

L(s, χ)− L(1, χ) =

∫ s

1

L′(u, χ)du,

∣∣∣∣∫ s

1

L′(u, χ)du

∣∣∣∣ 6 (s− 1) max
16u6s

|L′(u, χ)|.

Since L′(u, χ) = Oq(1), the proof is complete.
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Theorem 1.4.5. If χ 6= χ0, then L(1, χ) 6= 0.

Proof. First we prove that L(1, χ) can be zero for only at most one character χ modulo q. To this aim,
let Ξ be the set of all modulo q characters. Then Proposition 1.3.5 gives∑

χ∈Ξ

logL(s, χ) = ϕ(q)

∞∑
n=1

Λ(n)1n≡1 mod q

ns log n
.

Here, the right-hand side is nonnegative, therefore
∏
χ∈Ξ L(s, χ) > 1. We know that

L(s, χ0) = Oq

(
1

s− 1

)
,

and
L(s, χ) = L(1, χ) +Oq(s− 1), χ 6= χ0.

These would immediately contradict, if there were two χ’s with L(1, χ) = 0.
Therefore, at most one L(1, χ) vanishes, in particular, it can only correspond to a real character χ

(obviously L(1, χ) = L(1, χ)).
Let then χ be real, then its nonzero values are ±1 (and not always +1, since χ 6= χ0). Then, in

particaular, χ is quadratic, i.e. if gcd(n, q) = 1, then χ(n2) = χ(n)χ(n) = 1. We claim further that 1 ∗ χ
is a nonnegative number-theoretic function. Indeed, it is multiplicative (since it is the convolution of
multiplicative functions), therefore, it suffices to prove this for powers of primes. And indeed, if n = pk,
then

(1 ∗ χ)(n) = 1 + χ(p) + . . .+ χ(p)k,

which is obviously nonnegative, since χ(p0), χ(p2), . . . are all 1 for p - q, while if p | q, the nonnegativity
statement is obvious. It is also easy to check that (1 ∗ χ)(n) is at least 1 for all squares.

Consider then, for some x > 2, ∑
n6x

(1 ∗ χ)(n)√
n

.

First, each square n contributes at least 1/
√
n, giving∑

n6x

(1 ∗ χ)(n)√
n

� log x.

On the other hand,∑
n6x

(1 ∗ χ)(n)√
n

=
∑
d6
√
x

χ(d)√
d

∑
m6x/d

1√
m

+
∑
m6
√
x

1√
m

∑
√
x<d6x/m

χ(d)√
d
.

In the second term, applying Proposition 1.4.1,

∑
m6
√
x

1√
m

∑
√
x<d6x/m

χ(d)√
d

= Oq

 ∑
m6
√
x

1

m1/2x1/4

 = Oq(1).

In the first term, for some c ∈ C, by Remark 1.1.6,∑
m6x/d

1√
m

= 2

√
x√
d

+ c+O

(√
d√
x

)
.

Hence ∑
d6
√
x

χ(d)√
d

∑
m6x/d

1√
m

=
∑
d6
√
x

χ(d)√
d

(
2

√
x√
d

+ c+O

(√
d√
x

))
= 2
√
xL(1, χ) +Oq(1),

by applying again Proposition 1.4.1.
Altogether,

log x�
√
xL(1, χ) +Oq(1),

which, by choosing x large enough, guarantees L(1, χ) 6= 0.
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1.5 Dirichlet’s theorem

Theorem 1.5.1. Let χ 6= χ0 be a character modulo q. Then, for any x > 2,∑
n6x

Λ(n)χ(n)

n
= Oq(1).

Proof. Using Proposition 1.2.2, one can easily see that

χ(n) log n

n
=
χ(n)

∑
d|n Λ(d)

n
=
∑
d|n

Λ(d)χ(d)

d
· χ(n/d)

n/d
,

that is, ∑
n6x

χ(n) log n

n
=
∑
d6x

Λ(d)χ(d)

d

∑
m6x/d

χ(m)

m
.

The inner sum is, by Proposition 1.4.1, L(1, χ) +Oq(d/x), therefore, applying also∑
n6x

χ(n) log n

n
= Oq(1)

from Propostion 1.4.1, we obtain

L(1, χ)
∑
d6x

Λ(d)χ(d)

d
= Oq(1) +Oq

∑
d6x

Λ(d)

x

 = Oq(1),

by Theorem 1.2.1. Now the proof is complete by Theorem 1.4.5.

Now this immediately gives rise to the following.

Theorem 1.5.2. Let gcd(a, q) = 1. Then, for any x > 2,∑
n6x

Λ(n)1n≡a mod q

n
=

1

ϕ(q)
log x+Oq(1).

Proof. Denote by Ξ the set of modulo q characters. By Corollary 1.3.6,∑
n6x

Λ(n)1n≡a mod q

n
=

1

ϕ(q)

∑
χ∈Ξ

∑
n6x

Λ(n)χ(n)χ(a)

n
.

The terms on the right-hand side are evaluated via Theorem 1.2.3 (by noting that only finitely many
primes divide q) and Theorem 1.5.1.

Now the same way as Theorem 1.2.3 implies Theorem 1.2.5, we have the analogue for arithmetic
progressions.

Theorem 1.5.3. Let gcd(a, q) = 1. Then, for any x > 2,∑
p6x

1p≡a mod q

p
=

1

ϕ(q)
log log x+ ca,q + o(1).

Proof. The proof of Theorem 1.2.5 can be essentially repeated. This time we refer to Theorem 1.5.2 in
place of Theorem 1.2.3.

Finally we obtain what originally motivated Dirichlet.

Theorem 1.5.4. Let gcd(a, q) = 1. Then there are infinitely many prime numbers p ≡ a mod q.

Proof. Immediate from Theorem 1.5.3.



Chapter 2

The prime number theorem

2.1 Dirichlet series

Definition 2.1.1 (Dirichlet series). Let f : N→ C be a number-theoretic function. Then the associated
Dirichlet series is

Df(s) =
∞∑
n=1

f(n)

ns
, s ∈ C.

All our functions below satisfy
f(n) = O(no(1)),

hence we assume this from now on.

Proposition 2.1.2. If
f(n) = O(no(1)),

then the series defining Df(s) is absolutely convergent for <s > 1.

Proof. Let <s = σ > 1. Clearly

∞∑
n=1

∣∣∣∣f(n)

ns

∣∣∣∣ =

∞∑
n=1

|f(n)|
nσ

�
∞∑
n=1

1

n(1+σ)/2
= ζ((1 + σ)/2) <∞,

and the proof is complete.

It is easy to see that the partial sums

N∑
n=1

f(n)

ns
=

N∑
n=1

f(n)e−s logn

converge locally uniformly to Df(s). Then the derivative can be computed termwise to obtain

d

ds
Df(s) =

∞∑
n=1

(log n)f(n)n−s = D(−Lf)(s), <s > 1.

Another simple observation is that if f, g : N→ C are two such functions, then

Df(s) · Dg(s) = D(f ∗ g)(s), <s > 1,

where ∗ is the convolution of number-theoretic function. Indeed,

Df(s)Dg(s) =

∞∑
m=1

f(m)m−s
∞∑
k=1

g(k)k−s =

∞∑
n=1

∑
d|n

f(d)g(n/d)n−s,

and rearranging the terms is verified by absolute convergence, recalling the elementary fact that τ0(n) =
no(1), where τ0 stands for the divisor counting function.

13
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Proposition 2.1.3. Let y < x be real numbers, and f : [y, x]→ C a continuously differentiable function.
Then ∑

n∈Z:y6n6x

f(n) =

∫ x

y

f(t)dt+O

(∫ x

y

|f ′(t)|dt
)

+O(|f(y)|).

Proof. First observe that, by Newton-Leibniz,

f(x), f(y),

∫ dye
y

f(t)dt,

∫ x

bxc
f(t)dt = O

(∫ x

y

|f ′(t)|dt
)

+O(|f(y)|),

hence we can assume that x, y ∈ Z, and on the left-hand side of the statement, we take the summation
on y 6 n < x. Now let y 6 n < x be arbitrary. Then, again by Newton-Leibniz,

x−1∑
n=y

(∫ n+1

n

f(t)dt− f(n)

)
=

x−1∑
n=y

∫ n+1

n

f ′(t)dt�
x−1∑
n=y

∫ n+1

n

|f ′(t)|dt = O

(∫ x

y

|f ′(t)|dt
)
,

and the proof is complete.

2.2 Versions of Perron’s and Jensen’s formulae

Let

δ(y) =


0, if 0 < y < 1.
1
2 , if y = 1.

1, if y > 1.

Proposition 2.2.1. Let σ, T, y > 0. Then

1

2πi

∫ σ+iT

σ−iT
ys
ds

s
= δ(y) +

{
O(yσ min(1, T−1| log y|−1)), if 0 < y 6= 0,

O(σT−1), if y = 1.

Proof. Let first 0 < y < 1. Then we close the contour two different ways. One is σ−iT, S−iT, S+iT, σ+iT
with some very large S. On the horizontal segments, the integral is absolutely bounded by∫ S

σ

yu

T
du =

[
yu

T | log y|

]S
u=σ

6
yσ

T | log y|
.

On the vertical segment, the integral is absolutely bounded by∫ S+iT

S−iT

yS

S
|ds| 6 TyS

S
,

which is smaller than the previous, if S is large enough. The other one is the arc centered at the origin of
passing through σ− iT and σ+ iT , on the right of <s = σ. On the arc of this, we see that |ys| 6 yσ, and
the measure |ds|/|s| cancels the length O(T ). This gives the statement when y < 1. When y > 1, the
argument is similar, but we choose S to be a negative number of large absolute value and use the left arc.
Note that in this case, we have the pole at s = 0 of the integrand, where we apply the residue theorem,
noting that

ys

s
=
es log y

s
=

1

s
+ holomorphic in s ∈ C.

When y = 1, then one can easily see that the integral in question is θ/2π, where θ is the angle between
σ − iT and σ + iT . This angle differs from π by O(σT−1).

Corollary 2.2.2. Let f : N→ C satisfy f(n) = O(no(1)). Then, for any x > 2 and 1 < σ 6 3,

∞∑
n=1

f(n)δ(x/n) =
1

2πi

∫ σ+iT

σ−iT
Df(s)xs

ds

s
+O

xσ∑
n 6=x

|f(n)|
nσ

min

(
1,

1

T log x
n

)
+
|f(x)|
T

 .
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Further, if σ = 1 + 1/ log x, then, denoting by ‖x‖ the distance of x and the set Z \ {x}, the error term is

O

(
x

T

∞∑
n=1

|f(n)|
nσ

+

(
max

x/26n63x/2
|f(n)|

)(
min

(
1,

x

T‖x‖

)
+
x log x

T

))
.

Proof. Note that the sum on the left-hand side is actually a finite sum. Write each f(n)δ(n/x), for n ∈ N,
by Proposition 2.2.1, as

f(n)δ(n/x) =
1

2πi

∫ σ+iT

σ−iT
f(n)

xs

ns
ds

s
+

{
O(|f(n)|(x/n)σ min(1, T−1| log(x/n)|−1)), if n 6= x,

O(|f(n)|σT−1), if n = x.

Summing this over n ∈ N, we clearly get the first statement by the absolute convergence of Df(s) on
<s = σ.

As for the estimate of the error, note that setting σ = 1 + 1/ log x, we have xσ = ex = O(x). In the
sum over n, first consider the n’s satisfying |x− n| > x/2. Then | log(x/n)| > log(3/2), hence

xσ
∑

|n−x|>x/2

|f(n)|
nσ

min

(
1,

1

T log x
n

)
� x

T

∞∑
n=1

|f(n)|
nσ

.

When |n− x| < x/2, then we see from Taylor expansion that

1∣∣log x
n

∣∣ =
1∣∣log

(
1 + n−x

x

)∣∣ = O

(
x

n− x

)
.

In this case, xσ/nσ = O(1), therefore

xσ
∑

|n−x|<x/2,n6=x

|f(n)|
nσ

min

(
1,

1

T log x
n

)
�
(

max
x/26n63x/2

|f(n)|
)min

(
1,

x

T‖x‖

)
+
x

T

∑
k6x/2

1

k


�
(

max
x/26n63x/2

|f(n)|
)(

min

(
1,

x

T‖x‖

)
+
x log x

T

)
.

The term |f(x)|/T is clearly dominated by this, and the proof is complete.

Proposition 2.2.3. Let f be a not identically zero meromorphic function (with all removable singularities
removed) on a neighborhood of the closed disc D = {z ∈ C : |z − z0| 6 r} with no zeros or poles on the
boundary and at the center of D. Then

log |f(z0)| =
∫ 1

0

log |f(z0 + re2πit)|dt+
∑

ρ:|ρ−z0|<r

log
|ρ− z0|

r
−

∑
ζ:|ζ−z0|<r

log
|ζ − z0|

r
,

where ρ, ζ run through the zeros and poles of f in D, respectively, with multiplicity.

Proof. We may obviously take z0 = 0 and r = 1. First we consider the special case when f has no zero or
pole on D. Then, since D is simply connected, there is a holomorphic logarithm g = log f of f on D.
Then Cauchy’s integral formula shows (where ∂D stands for the unit circle, oriented counter-clockwise)

g(0) =
1

2πi

∫
∂D

g(z)

z
dz =

∫ 1

0

g(e2πit)dt.

Then taking the real part, we see

log |f(0)| = <g(0) =

∫ 1

0

<g(e2πit)dt =

∫ 1

0

log |f(e2πit)|.

Now take the general case, that is, f may have zeros and poles inside D. For any µ ∈ D, consider the
Blaschke factor

Bµ(z) =
z − µ
1− µz

.
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One can easily see that Bµ(z) is holomorphic on a neighborhood of D, its only (simple) zero is µ, and for
|z| = 1,

|Bµ(z)| =
∣∣∣∣Bµ(z)

z

∣∣∣∣ =

∣∣∣∣z − µz − µ

∣∣∣∣ = 1.

(In fact, one can prove that {Bµ : |µ| < 1} is the conformal automorphism group of D).
Then dividing f by Bρ for a zero ρ of f satisfying |ρ| < 1 subtracts log |ρ| from log |f(0)|, and cancels a

zero ρ of f . Similarly multiplying f by Bζ for a pole ζ of f satisfying |ζ| < 1 adds log |ρ| to log |f(0)|, and
cancels a pole ζ of f . Cancelling all the zeroes and poles, we arrive at the previously considered special
case (which is already proven), then adding back the zeros and the poles, the statement is proven.

Proposition 2.2.4. Let f be a not identically zero meromorphic function (with all removable singularities
removed) on a neighborhood of the closed disc D = {z ∈ C : |z − z0| 6 r} with no zeros or poles on the
boundary of D and at a certain point µ in the interior of D. Then

log |f(µ)| =
∫ 1

0

log |f(z0 + re2πit)|<re
2πit + (µ− z0)

re2πit − (µ− z0)
dt

+
∑

ρ:|ρ−µ|<r

log
|ρ− z0|∣∣∣r − (ρ−z0)(µ−z0)

r

∣∣∣
−

∑
ζ:|ζ−z0|<r

log
|ζ − z0|∣∣∣r − (ζ−z0)(µ−z0)

r

∣∣∣ ,
where ρ, ζ run through the zeros and poles of f in D, respectively, with multiplicity.

Proof. The proof is similar to that of Proposition 2.2.3. After normalizing to z0 = 0, r = 1, and taking
the special case of no zeros and poles in D, instead of Cauchy’s integral formula, we apply Poisson’s
formula, which states that for a harmonic function u on a neighborhood of D, we have

u(µ) =

∫ 1

0

u(e2πit)<e
2πit + µ

e2πit − µ
dt.

When eliminating the zeros and the poles, we use the same Blaschke factors as in the proof of Proposi-
tion 2.2.3.

Proposition 2.2.5. Assume that 0 < c2 < c1 < 1 are fixed numbers. Let f be a not identically zero
holomorphic function on a neighborhood of the closed disc D = {z ∈ C : |z − z0| 6 r}, satisfying that for
z ∈ ∂D, 0 6= |f(z)| 6MOc1,c2 (1)|f(z0)| for some M > 1. We have then

f ′(z)

f(z)
=

∑
ρ:|ρ−z0|6c1r

1

z − ρ
+Oc1,c2

(
logM

r

)

for every z which is not a zero of f , and satisfies |z − z0| 6 c2r. The ρ in the sum runs through the zeros
of f with multiplicity. Further, the number of such zeros satisfying |ρ− z0| 6 c1r is Oc1,c2(logM).

Proof. We normalize such that z0 = 0, r = 1. In the proof, all implied constants are allowed to depend
on c1, c2. First observe that f(0) 6= 0, since f(0) = 0 would imply that f vanishes on ∂D, and then that
f is identically zero by the maximum modulus principle.

First we apply Proposition 2.2.3 as follows. First, since each zero ρ with |ρ| < 1 contributes negatively
in Proposition 2.2.3, and we have no poles, we can record

log |f(0)| 6
∫ 1

0

log |f(e2πit)|dt.

Also, by the assumption 0 6= |f(z)| 6MO(1)|f(z0)|, we have

log |f(e2πit)| 6 log |f(0)|+O(logM),

∫ 1

0

log |f(e2πit)|dt 6 log |f(0)|+O(logM).
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These together give

log |f(0)| =
∫ 1

0

log |f(e2πit)|dt+O(logM),

which, compared with Proposition 2.2.3, gives∑
ρ:|ρ|<1

log
1

|ρ|
= O(logM).

This clearly implies that the number of zeros ρ with |ρ| 6 c1 is O(logM).
Also, if ρ is a zero, we may factor f as gBρ, where

Bρ(z) =
z − ρ
1− ρz

is again a Blaschke factor. Then

f ′(z)

f(z)
=
g′(z)

g(z)
+
B′ρ(z)

Bρ(z)
=
g′(z)

g(z)
+

1

z − ρ
− 1

z − ρ−1 .

For zeros satisfying c1 < |ρ| < 1, and for |z| 6 c2, we use that

1

z − ρ
− 1

z − ρ−1 = O

(
log

1

|ρ|

)
,

and recalling ∑
ρ:|ρ|<1

log
1

|ρ|
= O(logM),

we see that these contribute only the admissible O(logM). For zeros ρ with |ρ| 6 c1, the contribution of
each −1/(z − ρ−1) is O(1), and their number is O(logM), while the contribution of each 1/(z − ρ) is the
same as in the claim. Therefore, to complete the proof, it suffices to show that if f has no zeros in D,
then

f ′(z)

f(z)
= O(logM)

for all z satisfying |z| 6 c2. Normalize f such that f(0) = 1, and note that there exists a holomorphic
log f in a neighborhood of D (we choose the branch satisfying log f(0) = 0). Then by Proposition 2.2.3,
we see that ∫ 1

0

log |f(e2πit)|dt = 0,

and by assumption, log |f(e2πit)| 6 O(logM), implying∫
t∈[0,1]:log |f(e2πit)|>0

log |f(e2πit)|dt = O(logM),

∫
t∈[0,1]:log |f(e2πit)|<0

log |f(e2πit)|dt = O(logM).

The difference of these two is ∫ 1

0

| log |f(e2πit)||dt = O(logM).

Then from Proposition 2.2.4, we see that

log |f(z)| =
∫ 1

0

f(e2πit)<e
2πit + z

e2πit − z
dt

for |z| 6 c2. This implies, in particular, that log |f(z)| = O(logM), and further that its real and imaginary
partial derivatives (i.e. (∂/∂x) log |f(x+ iy)| and (∂/∂y) log |f(x+ iy)|) are also O(logM). Now recalling

< log f(z) = log |f(z)|,

we see that the (real and imaginary) partial derivatives of the real part of log f(z) are O(logM). Then by
the Cauchy-Riemann partial differential equations, the same holds also for the imaginary part of log f(z),
therefore,

f ′(z)

f(z)
= (log f(z))′ = O(logM),

and the proof is complete.
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2.3 Analytic properties of the ζ function

Definition 2.3.1 (Riemann ζ for <s > 1). We define ζ(s) to be D1(s) for <s > 1, where 1 stands for
the identically 1 number-theoretic function.

Proposition 2.3.2. Let s ∈ C such that <s > 1, s = O(1). Then

ζ(s) =
1

s− 1
+O(1), ζ ′(s) = − 1

(s− 1)2
+O(1).

Proof. To see the first statement, we apply Proposition 2.1.3 with the function n 7→ n−s to obtain, with
σ = <s > 1, ∑

16n6x

n−s =

∫ x

1

t−sdt+O

(∫ x

1

|s|t−σ−1dt

)
+O(1) =

1

s− 1
(1− x1−s) +O(1),

and letting x→∞, we obtain the statement.
The proof of the second statement is similar by noting the following. The primitive function of

(log t)t−s is

− t
1−s((s− 1) log t+ 1)

(s− 1)2
,

and substituting t = 1, we obtain the main term −(s− 1)−2. The derivative of (log t)t−s is

t−s−1(1− s log t),

and the absolute integral on [1,∞) of this is unformly bounded on <s > 1.

Corollary 2.3.3. We have, on <s > 1, s = O(1), that

ζ ′(s)

ζ(s)
= − 1

s− 1
+O(1).

Proposition 2.3.4 (Euler product). On the domain <s > 1, we have

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

where the product on the right-hand side is a locally uniformly convergent product.

Proof. We have, by fundamental theorem of arithmetic and the summation of geometric series,

ζ(s) =

∞∑
n=1

1

ns
= lim
N→∞

∑
n has no prime divisor bigger than N

1

ns

= lim
N→∞

∏
p6N

(
1 +

1

ps
+

1

p2s
+ . . .

)
= lim
N→∞

∏
p

(
1− 1

ps

)−1

.

Noting that for any σ > 1, if <s > σ,∣∣∣∣∣∣
∞∑
n=1

1

ns
−

∑
n has no prime divisor bigger than N

1

ns

∣∣∣∣∣∣ 6
∞∑

n=N+1

1

nσ
= oσ(1), N →∞,

the proof is complete.

Proposition 2.3.5. The function ζ extends to {s : <s > 0} as a meromorphic function with a unique,
simple pole at 1. More specifically, ζ(s)− 1/(s− 1) is holomorphic on {s : <s > 0} after its removable
singularity at 1 is removed.

Also, for any ε > 0, if <s > ε and |s− 1| > ε, then

log |ζ(s)| 6 Oε(log(2 + |s|)).
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Proof. Let first s 6= 1 from the half-plane {s : <s > 0}. By Proposition 2.1.3 again with the function
n 7→ n−s, we obtain, for any 1 6 y < x that∑

y6n6x

n−s =
y1−s − x1−s

s− 1
+O

(
|s|
σ
y−σ

)
.

Then by Proposition 1.1.2, we obtain that there exists some ζ(s) ∈ C such that

∑
n6x

n−s = ζ(s)− x1−s

s− 1
+O

(
|s|
σ
x−σ

)
.

When <s > 1, this ζ(s) must coincide with the earlier defined D1(s), since both x1−s/(s−1) and the error
term tend to 0 as x→∞. Therefore, we really have the extension, our goal is to prove its meromorphic
nature and what we claimed about the pole.

Rearranging, we obtain∑
n6x

n−s +
x1−s − 1

s− 1
= ζ(s)− 1

s− 1
+O

(
|s|
σ
x−σ

)
.

Here, the left-hand side is holomorphic on {s : <s > 0} \ {1} for any fixed x > 1, and converges there
locally uniformly to the function ζ(s)−1/(s−1) as x→∞, which is therefore holomorphic there, implying
in particular the holomorphy of ζ on the domain {s : <s > 0} \ {1}. Applying again Proposition 2.1.3,
we see that ∑

16n6x

n−s =
1− x1−s

s− 1
+O

(
|s|
σ

)
,

therefore, ∑
n6x

n−s +
x1−s − 1

s− 1

is locally uniformly bounded on the indicated domain, so is its limit ζ(s) − 1/(s − 1). Therefore, the
isolated singularity of ζ(s)− 1/(s− 1) at 1 is removable, which completes the proof of the first statement.

As for the second one, observe that our calculations also give

ζ(s)− 1

s− 1
= O

(
|s|
σ

)
,

from which the claim follows immediately.

In fact, ζ can be meromorphically continued to the whole complex plane with the only pole at 1
(where we have already analyzed it). Since we do not need it for our number-theoretic investigations, we
assume all along that <s > 0 whenever ζ is evaluated. Note also that

ζ(s) = ζ(s),

which follows immediately from the uniqueness principle of complex analysis.

Proposition 2.3.6. If <s > 1, then ζ(s) 6= 0.

Proof. Since the convolution 1 ∗ µ is the characteristic function of 1, we see that

1

ζ(s)
= Dµ(s) =

∞∑
n=1

µ(n)

ns
,

from which the statement is obvious.

Proposition 2.3.7. For any ε > 0 and t0 ∈ R, the number of zeros of ζ (counted with multiplicity) in
the domain {σ + it : σ > ε, |t− t0| 6 1} is Oε(log(2 + |t0|)).
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Proof. By Proposition 2.3.6, each zero we have to count belongs in fact to the rectangle {σ + it : ε 6 σ 6
1, |t− t0| 6 1}. We can clearly assume that t > 0 by conjugation, and also that t > 10 (say), since there
is only a concrete number of zeros of ζ up to height 10.

For any t1 ∈ [t0 − 1, t0 + 1], consider the disc D of radius 2− ε/2 centered at 2 + it1, and assume ∂D
contains no zero of ζ. Set further D′ for the smaller disc of the same center and radius 2− 3ε/4. Clearly,

log |ζ(2 + it1)| 6 log |ζ(2)| = O(1),

and similarly,

log |ζ(2 + it1)| > log

(
1− 1

22
− 1

32
− . . .

)
= O(1),

therefore, log |ζ(2 + it1)| = O(1). Also, s ∈ ∂D, log |ζ(s)| 6 Oε(log(2 + |t0|)) by Proposition 2.3.5. Now
we apply Proposition 2.2.3, noting that no poles contribute, and we obtain

O(1) = Oε(log(2 + |t0|)) +
∑

ρ:|ρ−(2+it1)|<2−ε/2

log
|ρ− (2 + it1)|

2− ε/2
.

The contribution of each zero is negative, and for each zero ρ satisfying |ρ− (2 + it1)| < 2− 3ε/4, the
contribution is negative and Ωε(1). This means that the number of zeros ρ with |ρ− (2 + it1)| < 2− 3ε/4
is Oε(log(2 + |t0|)). Clearly, we can cover our rectangle in question with Oε(1) such discs D′, and this
completes the proof.

Proposition 2.3.8. For any 0 < ε < C, we have

−ζ
′(s)

ζ(s)
= −

∑
|ρ−s|<ε/2

1

s− ρ
+

1

s− 1
+OC,ε(log(2 + |t|))

for s = σ + it, ε 6 σ 6 C, where ρ runs through the zeros of ζ with multiplicity.

Proof. First assume that C 6 4−ε. Let f(s) = (s−1)ζ(s). Then f is holomorphic on <s > 0, and we may
apply Proposition 2.2.5 with discs of center 2+ it and radii 2−ε/4, 2−ε/2, 2−ε, and M = 2+ |t| (for this
M , we need log |ζ(2 + it)| = O(1), which follows immediately from |ζ(2 + it)| > 1− 1/22 − 1/32 − . . . > 0,
and on the boundary of the outermost disc, we use Proposition 2.3.5). Bounding the number of zeros
away from s by at least ε/2 by Proposition 2.3.7, we obtain

f ′(s)

f(s)
=

∑
|ρ−s|<ε/2

1

s− ρ
+Oε(log(2 + |t|)).

Writing this back to ζ, we obtain the statement for any s being in the (2− ε)-neighborhood of 2 + it. For
C > 4− ε, we can do the same, using (C + ε)/2 + it as a center instead of 2 + it.

Corollary 2.3.9. For any C, ε > 0, t0 ∈ R, we have∫ C

ε

∫ t0+1

t0−1

∣∣∣∣ζ ′(σ + it)

ζ(σ + it)

∣∣∣∣ dtdσ �C,ε log(2 + |t0|).

Proof. This follows immediately from Proposition 2.3.8, by noting that the error term there is obviously
admissible here, also that 1/s is locally integrable in a small neighborhood of 0, implying that 1/(s− ρ),
1/(s− 1) are locally integrable, and finally bounding the number of zeros by Proposition 2.3.7.

2.4 Zero-free regions

We have already seen that there are no zeros of ζ in the domain <s > 1. In this section, we are going to
prove stronger results on zero-free regions.

Proposition 2.4.1. For any θ ∈ R,

3 + 4 cos θ + cos(2θ) > 0.
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Proof. One can readily check the identity

1− cos(2θ) = 4(1 + cos θ)− 2(1 + cos θ)2,

which implies
1− cos(2θ) 6 4(1 + cos θ),

which is clearly equivalent to the statement.

Proposition 2.4.2. If <s > 1, then ζ(s) 6= 0.

Proof. In view of Proposition 2.3.6 and the fact that ζ has a pole at 1, it suffices to show that ζ(1+ it) 6= 0
for any 0 6= t ∈ R. Fix such a t.

Assume, by contradiction, that 1 + it is a zero of order k > 1. At 1 + 2it, we may have a zero or not,
let the order be l there, the only thing we are going to use about it is l > 0. Then, for 1 < σ < 2, we
have, from the Laurent expansion of ζ ′/ζ about 1, 1 + it, 1 + 2it,

−ζ
′(σ)

ζ(σ)
=

1

σ − 1
+O(1), −ζ

′(σ + it)

ζ(σ + it)
= − k

σ − 1
+Ot(1), −ζ

′(σ + 2it)

ζ(σ + 2it)
= − l

σ − 1
+Ot(1).

This means that for σ close enough to 1,

−3<ζ
′(σ)

ζ(σ)
− 4<ζ

′(σ + it)

ζ(σ + it)
−<ζ

′(σ + 2it)

ζ(σ + 2it)
< 0.

On the other hand, if we apply Proposition 2.4.1 with θ being the angle of n−it,

3 + 4<n−it + <n−2it > 0.

Multiplying this inequality by Λ(n)/nσ, then summing it over n ∈ N, we obtain

−3<ζ
′(σ)

ζ(σ)
− 4<ζ

′(σ + it)

ζ(σ + it)
−<ζ

′(σ + 2it)

ζ(σ + 2it)
> 0,

a contradiction.

Proposition 2.4.3. There exists a constant c > 0 such that if σ > 1− c/ log(2 + |t|), then ζ(σ + it) 6= 0.

Proof. Let c > 0 be chosen later, and assume that

ζ(β + it) = 0,

for some β > 1− c/ log(2 + |t|). Since at 1, ζ has a pole, we clearly have t� 1 (if c is chosen sufficiently
small).

We apply Proposition 2.3.8 with ε = 1/2 to see that

−ζ
′(s)

ζ(s)
= −

∑
|ρ−s|<1/4

1

s− ρ
+

1

s− 1
+O(log(2 + |t|))

on 1/2 < <s < 2. Then, for 1 < σ < 2,

−<ζ
′(σ + it)

ζ(σ + it)
6 − 1

σ − β
+O(log(2 + |t|)).

Since at 1 + 2it, ζ has no pole,

−<ζ
′(σ + 2it)

ζ(σ + 2it)
6 O(log(2 + |t|)),

and recall also

−ζ
′(σ)

ζ(σ)
=

1

σ − 1
+O(1).
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In the proof of Proposition 2.4.2, we proved

−3<ζ
′(σ)

ζ(σ)
− 4<ζ

′(σ + it)

ζ(σ + it)
−<ζ

′(σ + 2it)

ζ(σ + 2it)
> 0,

which implies
3

σ − 1
− 4

σ − β
> O(log(2 + |t|)).

Take σ = 1 + 4(1− β), say. Then (
3

4
− 4

5

)
1

1− β
> O(log(2 + |t|)).

This is a contradiction for some small enough c.

2.5 The prime number theorem

Proposition 2.5.1. For any 0 < ε < 1 and any 2 6 T 6 x, we have

∑
n6x

Λ(n) = x−
∑

ρ:<ρ>ε,|=ρ|6T

xρ

ρ
+Oε

(
xε log2 T +

x log2 x

T

)
,

where ρ runs through the zeros of ζ with multiplicity.

Proof. First we pick some T ′ ∈ [T, T + 1] such that∫ 2

ε/4

∣∣∣∣ζ ′(σ ± iT )

ζ(σ ± iT )

∣∣∣∣ dσ �ε log T.

The existence of such a T ′ is guaranteed by Corollary 2.3.9.
We apply Corollary 2.2.2 to see that, with σ = 1 + 1/ log x,

∞∑
n=1

Λ(n) = − 1

2πi

∫ σ+iT ′

σ−iT ′

ζ ′(s)

ζ(s)
· x

s

s
ds+O

(
x log2 x

T

)
,

where in the estimate of the error term, we use T 6 x, and also

∞∑
n=1

Λ(n)

n1+1/ log x
= −ζ

′(1 + 1/ log x)

ζ(1 + 1/ log x)
= O(log x).

Now we shift the contour to [σ − iT ′, ε′ − iT ′], [ε′ − iT ′, ε′ + iT ′], [ε+ iT ′, σ + iT ′] in such a way that
<s = ε′ avoids the poles of ζ ′/ζ and also to satisfy∫ ε′+iT ′

ε′−iT ′

∣∣∣∣ζ ′(s)ζ(s)
· x

s

s

∣∣∣∣ ds�ε x
ε log2 T.

The existence of such an ε′ ∈ [ε/2, ε] is again guaranteed by Corollary 2.3.9. The contribution of zeros of
ζ with T ′ 6 |=ρ| 6 T + 1 is O(x log T/T ), and for zeros ε′ 6 <ρ 6 ε is O(xε log2 T ), borh follow from
Proposition 2.3.7. Collecting all the error terms, and noting that passing through the pole of ζ gives the
term x, while zeros ρ give the terms −xρ/ρ, the proof is complete.

Theorem 2.5.2. For some c > 0, we have, for any x > 2,∑
n6x

Λ(n) = x+O(xe−c
√

log x).
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Proof. If we apply Proposition 2.5.1 in such a way that ε = 1− c/ log T is chosen with an appropriate
c > 0, Proposition 2.4.3 excludes zeros, that is,

∑
n6x

Λ(n) = x+O

(
x1−c/ log T log2 T +

x log2 x

T

)
.

Taking now T = e−c
√

log x, we obtain the statement with an adjusted c.

Theorem 2.5.3. For some c > 0, we have, for any x > 2,

π(x) =

∫ x

2

dt

log t
+O(xe−c

√
log x),

where π(x) is the number of primes up to x.

Proof. Introduce θ(n) = Λ(n) · 1primes(n). Then one can easily see that∑
n6x

θ(n) =
∑
n6x

Λ(n) +O(x1/2 log x) = x+O(xe−c
√

log x),

by Theorem 2.5.2. Then, with the notation
∑
n6x θ(n) = x+ E(x),

π(x) =

∫ x

3/2

1

log t
d

∑
n6t

θ(n)

 =

∫ x

3/2

dt

log t
+

∫ x

3/2

dE(t)

log t

=

∫ x

3/2

dt

log t
+
E(x)

log x
− E(3/2)

log(3/2)
+

∫ x

3/2

E(t)

t log2 t
dt.

In the last integral, E(t)� xe−c
√

log x uniformly for 3/2 6 t 6 x by Theorem 2.5.2, and
∫ x

3/2
(t log2 t)−1dt =

O(1). Switching 3/2 to 2 is admissible.

Corollary 2.5.4. We have, for x > 2,

π(x) =
x

log x
+O

(
x

log2 x

)
.

Proof. Assume that x > 4, say. The error term of Theorem 2.5.2 is clearly admissible, so we are left with
the integral there. Integrating by parts,∫ x

2

dt

log t
=

x

log x
− 2

log 2
+

∫ x

2

dt

log2 t
.

Here, ∫ x

2

dt

log2 t
=

∫ √x
2

dt

log2 t
+

∫ x

√
x

dt

log2 t
= O(

√
x) +O

(
x

log2 x

)
,

and the proof is complete.

Remark 2.5.5. With further integrations by parts, we get similarly that for any K ∈ N,

π(x) = x

K∑
k=1

(k − 1)!

logk x
+OK

(
x

logK+1 x

)
.





Chapter 3

Primes in arithmetic progressions

3.1 Primitive characters

Definition 3.1.1 (quasiperiod of Dirichlet characters). Given a Dirichlet character χ modulo q, we say
it has quasiperiod d, if χ(m) = χ(n) for any integers m,n satisfying m ≡ n mod d and gcd(mn, q) = 1.

Proposition 3.1.2. Assume χ is a Dirichlet character modulo q. If d is a quasiperiod of χ, then gcd(d, q)
is also a quasiperiod of χ.

Proof. Let m,n be integers coprime to q which satisfy that gcd(d, q) | (m− n). Fix some integers u, v
such that m− n = du+ qv. Then

χ(m) = χ(m− qv) = χ(n+ du) = χ(n),

and only the last equality requires explanation: we have to show that n+ du is coprime to q. And this
indeed holds, since n+ du = m− qv, and m− qv is coprime to q.

Proposition 3.1.3. Assume χ is a Dirichlet character modulo q. If d1, d2 are quasiperiods of χ, then so
is d = gcd(d1, d2).

Proof. Given integers m,n which are both coprime to q and congruent to each other modulo d, our
strategy is to construct a certain k such that m ≡ k mod d1, n ≡ k mod d2 and gcd(k, q) = 1. This
suffices, since

χ(m) = χ(k) = χ(n).

To this aim, seek for k in the form k = m+ d1w1 = n+ d2w2, that is, we have to solve the diophantine
equation

m− n = d2w2 − d1w1

for w1, w2. Clearly there are solutions, since gcd(d1, d2) | (m−n), and focusing on, say, w1, it is determined
modulo d2/ gcd(d1, d2). Now choose an integer w1 such that it is from the prescribed residue class modulo
d2/ gcd(d1, d2), and that for any prime divisor p of q not dividing d1d2, w1 6≡ −m/d1 mod p. The existence
of such integers is guaranteed by the Chinese Remainder Theorem. Then let k = m+ d1w1 = n+ d2w2

(with w2 accompanying w1), and we claim this does the job. The only thing we have to check is that no
prime divisor of q divides k. And indeed, if a prime divisor p of q is coprime to d1d2, then k 6≡ 0 mod p,
since w1 6≡ −m/d1 mod p; while if p | d1d2, then p | d1 implies k ≡ m mod p, and p | d2 implies
k ≡ n mod p, any of these excludes p | k by the assumption gcd(mn, q) = 1.

Definition 3.1.4 (induction of characters). Let χ∗ be a Dirichlet character modulo d. Then for a
multiple q of d, we can consider the Dirichlet character χ defined as

χ(n) =

{
χ∗(n) if gcd(n, q) = 1,

0 if gcd(n, q) > 1.

Then χ is the character induced by χ∗.

25
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Proposition 3.1.5. Let χ be a Dirichlet character modulo q, and assume d is the smallest quasiperiod
of q. Then there is a unique Dirichlet character χ∗ modulo d which induces χ.

Proof. For any n coprime to d, choose k ∈ Z such that n+ kd is coprime to q, and let χ∗(n) = χ(n+ kd)
(the d-quasiperiodicity cancels the ambiguity in the choice of k, hence this is well-defined). For n not
coprime to d, let χ∗(n) = 0. Clearly χ∗ induces χ. Uniqueness follows from that χ determines χ∗ on
residue classes coprime to d.

Definition 3.1.6 (conductor, primitive character). Given a Dirichlet character χ modulo q, its smallest
quasiperiod d is called its conductor. We say that χ is primitive, if d = q.

Proposition 3.1.7. Assume χ is a Dirichlet character modulo q. Then the following are equivalent:

(i) χ is primitive;

(ii) for any d | q, d < q, there exists c ≡ 1 mod d, gcd(c, q) = 1 such that χ(c) 6= 1;

(iii) for any d | q, d < q, and any residue class a mod d,∑
16x6q

x≡a mod d

χ(x) = 0.

Proof. Assume first that (i) holds. Then for any d | q, d < q, since d is not a quasiperiod, there exist
m,n coprime to q, congruent modulo d such that χ(m) 6= χ(n). Clearly c ≡ mn−1 ≡ 1 mod d, and
χ(c) = χ(m)/χ(n) 6= 1, so (ii) holds.

Assume now that (ii) holds. Given the input as in (iii), take c guaranteed by (ii). Then∑
16x6q

x≡a mod d

χ(x) =
∑

16x6q
x≡a mod d

χ(cx) = χ(c)
∑

16x6q
x≡a mod d

χ(x),

so the sum must vanish, as χ(c) 6= 1, that is, (iii) holds.
Assume finally that (iii) holds. By contradiction, assume that d | q, d < q is a quasiperiod. Then

setting a ≡ 1 mod d, ∑
16x6q

x≡1 mod d

χ(x) = #{1 6 x 6 q : gcd(x, q) = 1, x ≡ 1 mod d},

which is strictly positive, since x = 1 is an element of the set on the right-hand side. This is a contradiction,
so (i) holds.

Proposition 3.1.8. Let q1, q2 be coprime integers, and χ1, χ2 Dirichlet characters modulo q1, q2, respec-
tively. Then the character χ modulo q = q1q2 defined via χ(n) = χ1(n)χ2(n) is primitive if and only if
χ1, χ2 are both primitive.

Proof. It is easy to see that if χ1, χ2 have quasiperiods d1, d2, respectively, then χ has quasiperiod d1d2,
which shows that primitivity of χ implies that of χ1, χ2.

As for the converse, assume χ1, χ2 are primitive, and that d is a quasiperiod of χ. Set d1 = gcd(q1, d)
and d2 = gcd(q2, d). Now take any integers m,n coprime to q1 and congruent modulo d1. Choose
m′ ≡ m mod q1, m′ ≡ 1 mod q2, n′ ≡ n mod q1, n′ ≡ 1 mod q2. Then m′ ≡ n′ mod d, gcd(m′n′, q) = 1,
hence χ(m′) = χ(n′). Then the calculation

χ1(m) = χ1(m′) = χ1(m′)χ2(m′) = χ(m′) = χ(n′) = χ1(n′)χ2(n′) = χ1(n′) = χ1(n)

shows that χ1 has quasiperiod d1. By primitivity of χ1, this implies d1 = q1. Similarly, d2 = q2.

Therefore, to describe the primitive characters, it suffices to describe them for prime power moduli.
This is not hard, using the explicit description of the multiplicative group of residue classes modulo prime
power moduli (using their cyclic or “almost” cyclic structure).
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3.2 Analytic properties of Dirichlet L-functions

For any Dirichlet character χ modulo q ∈ N, we may define, for <s > 1,

L(s, χ) = Dχ(s) =

∞∑
n=1

χ(n)

ns
,

since the Dirichlet series on the right-hand side is absolutely convergent in the indicated domain. Then,
analogously to the ζ function, we have

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

, <s > 1.

Proposition 3.2.1. Let y 6 x be real numbers, and assume f : R → C is continuously differentiable.
Then, for χ 6= χ0, we have

∑
y6n6x

χ(n)f(n)� q

∫ x

y

|f ′(t)|dt+ q|f(x)|.

If χ = χ0, then ∑
y6n6x

χ(n)f(n)− ϕ(q)

q

∫ x

y

f(t)dt� q

∫ x

y

|f ′(t)|dt+ q|f(x)|.

Proof. First we consider the case when χ 6= χ0. Write, for n ∈ N, X(n) =
∑
j6n χ(j), then χ(n) =

X(n)−X(n− 1). Then∑
y6n6x

χ(n)f(n) =
∑

y6n6x

(X(n)−X(n−1))f(n) =
∑

y+16n6x

X(n)(f(n)−f(n−1))+qO(|f(y)|)+qO(|f(x)|),

using that |X(n)| 6 q. Here, by Newton-Leibniz, f(n)− f(n− 1) =
∫ n
n−1

f ′(t)dt, that is, applying again
|X(n)| 6 q, the above is at most

q

∫ x

y

|f ′(t)|dt+ qO(|f(y)|) + qO(|f(x)|).

Clearly |f(y)− f(x)| 6
∫ x
y
|f ′(t)|dt, hence we can drop the term qO(|f(y)|).

When χ = χ0, we can repeat the above argument with the function χ̃(n) = χ(n)−ϕ(q)/q, which sums
to 0 over a period of length q, and over all intervals, its sum in absolute value is at most q. We evaluate

∑
y6n6x

ϕ(q)

q
f(n)

via Proposition 2.1.3.

Proposition 3.2.2. For any Dirichlet character χ 6= χ0 modulo q, L(s, χ) extends to <s > 0 as a
holomorphic function.

Also, for any ε > 0, if <s > ε, then

log |L(s, χ)| 6 Oε(log(q(2 + |s|))).

If χ = χ0, then L(s, χ0) = ζ(s)
∏
p|q(1 − p−s). In particular, L(s, χ0) extends meromorphically to

<s > 0 with a unique, simple pole at s = 1, where the residue is ϕ(q)/q. Also, for any ε > 0, if <s > ε
and |s− 1| > ε,

log |L(s, χ0)| 6 Oε(log(q(2 + |s|))).
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Proof. Let first χ 6= χ0. By Proposition 3.2.1 with the function n 7→ n−s, we obtain, for any 1 6 y < x
that ∑

y6n6x

n−s = qO

(
|s|
σ
y−σ

)
.

Then by Proposition 1.1.2, we obtain that there exists some L(s, χ) ∈ C such that

∑
n6x

n−s = L(s, χ) + qO

(
|s|
σ
x−σ

)
.

When <s > 1, this L(s, χ) must coincide with the earlier defined Dχ(s). Therefore, we really have the
extension, and its holomorphic nature follows from the local uniform convergence of

∑
n6x n

−s to L(s, χ).

To see the estimate, write x = 1, and then

L(s, χ) = qO

(
|s|
σ

)
,

from which estimate claim follows immediately.

If χ = χ0, for <s > 1, we obtain the relation to ζ(s) from the Euler products, and then we apply
Proposition 2.3.5 to extend ζ(s). As for the estimate, observe that each factor 1− p−s is at most 2 in
absolute value, and the number of such factors (i.e. the number of prime divisors of q) is at most log2 q,
which together give the claim.

One can easily check that

1

L(s, χ)
=

∞∑
n=1

µ(n)χ(n)

ns
, <s > 1,

which in particular implies that L(s, χ) does not vanish on <s > 1 (recall Proposition 2.3.6).

For convenience, introduce

E0(χ) =

{
1, if χ = χ0,

0, if χ 6= χ0.

Proposition 3.2.3. Let χ be a Dirichlet character modulo q. Then for any ε > 0, t0 ∈ R, the number of
zeros of L(s, χ) (counted with multiplicity) in {s : <s > ε, |=s− t0| 6 1} is Oε(log(q(2 + |t0|))).

Proof. This follows the same way as Proposition 2.3.7.

Proposition 3.2.4. Let χ be a Dirichlet character modulo q. For any 0 < ε < C, we have

−L
′(s, χ)

L(s, χ)
= −

∑
|ρ−s|<ε/2

1

s− ρ
+
E0(χ)

s− 1
+OC,ε(log(q(2 + |t|)))

for s = σ + it, ε 6 σ 6 C, where ρ runs through the zeros of L(s, χ) with multiplicity.

Proof. This follows the same way as Proposition 2.3.8.

Corollary 3.2.5. Let χ be a Dirichlet character modulo q. For any C, ε > 0, t0 ∈ R, we have∫ C

ε

∫ t0+1

t0−1

∣∣∣∣L′(σ + it, χ)

L(σ + it, χ)

∣∣∣∣ dtdσ �C,ε log(q(2 + |t0|)).

Proof. This follows the same way as Corollary 2.3.9.
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3.3 Convolutions with quadratic characters

Proposition 3.3.1. Let χ be a real nonprincipal character of modulus q. Then, for any 1/2 6 s < 1 and
x > 2, ∑

n6x

(1 ∗ χ)(n)

ns
= ζ(s)L(s, χ) +

x1−s

1− s
L(1, χ) +O

(
q

1− s
x1/2−s

)
.

Proof. We start by Dirichlet’s hyperbola method to see that the quantity in question is∑
d6
√
x

χ(d)

ds

∑
m6x/d

1

ms
+
∑
m6
√
x

1

ms

∑
√
x<d6x/m

χ(d)

ds
.

In the proof of Proposition 2.3.5 and that of Proposition 3.2.2, we proved that∑
n6x

1

ns
= ζ(s)− x1−s

s− 1
+O(x−s),

∑
n6x

χ(n)

ns
= L(s, χ) + qO(x−s).

Then on the one hand,∑
d6
√
x

χ(d)

ds

∑
m6x/d

1

ms
=
∑
d6
√
x

χ(d)

ds

(
ζ(s)− (x/d)1−s

s− 1
+O

((x
d

)−s))

= L(s, χ)ζ(s) +O(qx−s/2) +
x1−s

1− s
L(1, χ) +O

(
qx1−3s/2

1− s

)
+O(x1/2−s)

= L(s, χ)ζ(s) +
x1−s

1− s
L(1, χ) +O

(
qx1/2−s

1− s

)
.

On the other hand,∑
m6
√
x

1

ms

∑
√
x<d6x/m

χ(d)

ds
=
∑
m6
√
x

1

ms
·O(qx−s/2) = O

(
qx1/2−s

1− s

)
,

and the proof is complete.

Proposition 3.3.2. There exists some c > 0 with the following property. If χ, χ′ are distinct real
primitive characters of moduli q, q′ > 1, respectively, then for any 1− c 6 s < 1 and x > 2,∑

n6x

(1 ∗ χ ∗ χ′ ∗ χχ′)(n)

ns

= ζ(s)L(s, χ)L(s, χ′)L(s, χχ′) +
x1−s

1− s
L(1, χ)L(1, χ′)L(1, χχ′) +O

(
(qq′)2x1−c−s

1− s

)
.

Proof. Record first that the distinct and primitive being of χ, χ′ guarantees that none of χ, χ′, χχ′ is
principal. Then we have to evaluate∑

n6x

∑
d1d2d3m=n

χ(d1)

ds1
· χ
′(d2)

ds2
· (χχ′)(d3)

ds3
· 1

ms
.

The evaluation of this sum is based on a higher-dimensional version of Dirichlet’s hyperbola method.
Namely, we separate the part when d1, d2, d3 6 x1/4:∑

d1,d2,d36x1/4

χ(d1)

ds1
· χ
′(d2)

ds2
· (χχ′)(d3)

ds3

∑
m6x/(d1d2d3)

1

ms
.

From ∑
n6x

1

ns
= ζ(s)− x1−s

s− 1
+O(x−s),

∑
n6x

χ(n)

ns
= L(s, χ) + qO(x−s),
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one can easily check that∑
d1,d2,d36x1/4

χ(d1)

ds1
· χ
′(d2)

ds2
· (χχ′)(d3)

ds3

∑
m6x/(d1d2d3)

1

ms

= ζ(s)L(s, χ)L(s, χ′)L(s, χχ′) +
x1−s

1− s
L(1, χ)L(1, χ′)L(1, χχ′) +O

(
(qq′)2x1−c−s

1− s

)
,

if c > 0 is a sufficiently small fixed constant.
In the remaining part, we crudely apply dyadic decomposition as follows. For any 0 6 A,B,C < 1,∑

xA6d1<2xA

χ(d1)

ds1
= O(qx−As),

∑
xB6d2<2xB

χ′(d2)

ds2
= O(q′x−Bs),

∑
xC6d3<2xC

(χχ′)(d3)

ds3
= O((qq′)x−Cs),

and since in the remaining part, max(A,B,C) > 1/4, the proof is complete by the trivial bound∑
m6x1−(A+B+C) m−s = O(x1−s/(1− s)).

3.4 Zero-free regions and zero repulsions

Proposition 3.4.1. There exists a constant c > 0 such that for any Dirichlet character χ modulo q,
L(s, χ) has no zeros in the region {

β + it : β > 1− c

log(q(2 + |t|))

}
,

with the possible exception of a single real zero 1− c/ log(2q) < β < 1. If this exceptional real zero exists,
it necessarily belongs to a real character.

Proof. We may freely assume that χ is nonprincipal, in particular, q > 2. All along, when we evaluate
L(s, χ) or its logarithmic derivative, etc., we will assume that <s < 2.

First consider the case when χ is complex, i.e. χ2 is nontrivial. Assume, by contradiction, that
L(β + it, χ) = 0 for some β > 1− c/ log(q(2 + |t|)). Then by Proposition 3.2.4, we have, for σ > 1

−<L
′(σ + it, χ)

L(σ + it, χ)
6 − 1

σ − β
+O(log(q(2 + |t|))).

Also, since χ2 is nonprincipal,

−<L
′(σ + 2it, χ2)

L(σ + 2it, χ2)
6 O(log(q(2 + |t|))),

and clearly

−L
′(σ, χ0)

L(σ, χ0)
6

1

σ − 1
+O(1).

Applying Proposition 2.4.1 to θ equaling the angle of χ(n)n−it, then summing it up over n ∈ N coprime
to q with weights Λ(n), we obtain

−3<L
′(σ, χ0)

L(σ, χ0)
− 4<L

′(σ + it, χ)

L(σ + it, χ)
−<L

′(σ + 2it, χ2)

L(σ + 2it, χ2)
> 0.

This means that
3

σ − 1
− 4

σ − β
> O(log(q(2 + |t|))).

Setting σ = 1 + 4(1 − β), this is a contradiction, if c > 0 is small enough (just like in the proof of
Proposition 2.4.3). To sum up this part: if χ is nonreal, then there is no zero in the domain in question.

Assume now χ2 = χ0. Then, for σ > 1

−<L
′(σ + 2it, χ2)

L(σ + 2it, χ2)
= −<ζ

′(σ + 2it)

ζ(σ + 2it)
−<

∑
p|q

log p

pσ+2it − 1
,
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and here, ∑
p|q

log p

pσ+2it − 1
= O

∑
p|q

log p

 = O(log q),

hence, by Proposition 2.3.8,

−<L
′(σ + 2it, χ2)

L(σ + 2it, χ2)
6 < 1

σ + 2it− 1
+O(log(q(2 + |t|))).

Now take some c1 > 0, and assume that there are two zeros of L(s, χ) in the region{
β + it : |t| 6 c1

log q
: β > 1− c

log(q(2 + |t|))

}
,

where the only assumption on c is 0 < c < c1. Letting these zeros be β1 + it1, β2 + it2, we have, by
Proposition 3.2.4,

−<L
′(σ, χ)

L(σ, χ)
6 −< 1

σ − β1 − it1
−< 1

σ − β2 − it2
+O(log q).

We also have, in the indicated domain,∣∣∣∣L′(σ, χ)

L(σ, χ)

∣∣∣∣ 6 1

σ − 1
+O(1),

therefore,

< 1

σ − β1 − it1
+ < 1

σ − β2 − it2
6

1

σ − 1
+O(log q).

Here, |1− (β1,2 + it1,2)| 6 2c1/ log q, hence if we take, say, σ = 1 + 10c1/ log q, the left-hand side is at
least log q/c1 · 20/122, while the right-hand side is log q/c1 · 1/10 +O(log q), which is a contradiction, if c1
is small enough. To sum up this part: if χ is real, there might be at most one zero up to height c1/ log q,
this potential zero will be referred as the exceptional zero.

Fix such a c1, and now consider the domain{
β + it : |t| > c1

log q
: β > 1− c

log(q(2 + |t|))

}
,

and assume there is a zero β + it of L(s, χ) here. Recalling the above-proven

−3<L
′(σ, χ0)

L(σ, χ0)
− 4<L

′(σ + it, χ)

L(σ + it, χ)
−<L

′(σ + 2it, χ2)

L(σ + 2it, χ2)
> 0

and

−<L
′(σ + 2it, χ2)

L(σ + 2it, χ2)
6 < 1

σ + 2it− 1
+O(log(q(2 + |t|))),

this means, by Proposition 3.2.4,

3

σ − 1
− 4

σ − β
+ < 1

σ + 2it− 1
> O(log(q(2 + |t|))).

Setting here σ = 1 + 4(1− β), this gives

− 1

20(1− β)
+ < 1

4(1− β) + 2it
> O(log(q(2 + |t|))).

This can be easily seen to give a contradiction, if we make c > 0 small enough. To sum up this part: even
if χ is real, the indicated domain is zero-free above height c1/ log q.

To complete the proof we still have to see that the exceptional zero (if exists) is necessarily real. But
this is clear from the fact that for real characters χ, L(s, χ) = L(s, χ), hence zeros come in conjugate
pairs.
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Proposition 3.4.2. There is an absolute constant c > 0 such that the following holds. For any two
distinct, primitive characters χ, χ′ of moduli q, q′, respectively, there is at most one real zero of L(s, χ)
and L(s, χ′) on the segment [1− c/ log(qq′), 1].

Proof. First observe that for any n ∈ N,

1 + χ(n) + χ′(n) + χχ′(n) = (1 + χ(n))(1 + χ′(n)) > 0.

Multiplying this by Λ(n)/nσ for any 1 < σ < 2, and summing up over n ∈ N, we see that

−ζ
′(σ)

ζ(σ)
− L′(σ, χ)

L(σ, χ)
− L′(σ, χ′)

L(σ, χ′)
− L′(σ, χχ′)

L(σ, χχ′)
> 0.

On the other hand, assuming that L(s, χ) has a zero β, and that L(s, χ′) has a zero β′ on the segment
[1− c/ log(qq′), 1], we obtain, via Proposition 2.3.8 and Proposition 3.2.4,

−ζ
′(σ)

ζ(σ)
=

1

σ − 1
+O(1), −L

′(σ, χ)

L(σ, χ)
6 − 1

σ − β
+O(log q), −L

′(σ, χ′)

L(σ, χ′)
6 − 1

σ − β′
+O(log q′).

Also, since χ and χ′ are distinct and primitive, χχ′ is nonprincipal, therefore

−L
′(σ, χχ′)

L(σ, χχ′)
6 O(log(qq′)).

Summing up, we see that
1

σ − 1
− 1

σ − β
− 1

σ − β′
> O(log(qq′)).

If, say, σ = 1 + 10c/ log(qq′), this is a contradiction, if c is small enough.

Proposition 3.4.3. For any c > 0, the following holds. If for a real character χ modulo q, L(s, χ) has a
zero β on the segment [1− c/ log q, 1], then L(1, χ)�c (1− β) log2 q.

There exists an absolute c > 0 with the following property. If L(1, χ) 6 c/ log q for a real character χ
modulo q, then there is a real zero β of L(s, χ) with β > 1−O(L(1, χ)).

Proof. We start with the proof of the first statement. Fix c > 0, and all the implied constants in O(. . .)
below depend only on c. Recall from the proof of Proposition 3.2.2 that∑

n6x

n−s = L(s, χ) + qO

(
|s|
σ
x−σ

)
.

Writing x = q, and n−s = O(n−1) for <s > 1− c/ log q, we see that

L(s, χ) = O

∑
n6q

1

n

+O(1) = O(log q)

for |s− 1| 6 2c/ log q. Then by Cauchy’s integral formula, we have

L′(s, χ) = O(log2 q)

for |s− 1| 6 c/ log q. Then if L(β, χ) = 0 for some β ∈ [1− c/ log q, 1], the proof is completed by

L(1, χ) =

∫ 1

β

L′(s, χ)ds.

Now we prove the second statement. Take some large C > 0 (to be specified later) and some c > 0
small (to be specified later). Let s = 1−CL(1, χ), then 3/4 6 s < 1, if c is small enough (in terms of C).
It is easy to check that (1 ∗ χ)(n) > 0, and (1 ∗ χ)(1) = 1, therefore,∑

n6x

(1 ∗ χ)(n)

ns
> 1.
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Also, from Proposition 3.3.1, we see that the left-hand side here is

ζ(s)L(s, χ) +
xCL(1,χ)

C
+O(x−1/4q/L(1, χ)).

Now if L(1, χ) 6 c/ log q, then by choosing C > 0 large, c > 0 small, this gives, for x = q10/L(1, χ)10,
that

ζ(s)L(s, χ) > 1/2.

It is easy to see that ζ(s) < 0 on a segment [1− a, 1] for some a > 0 (in fact, it it not hard to prove that
this holds even for a = 1), hence L(s, χ) < 0 either, if s > a (forced by choosing c small enough after
choosing C). Then the proof is complete by recalling L(1, χ) > 0 and the fact that L(s, χ) is real-valued
and continuous for s > 0.

Proposition 3.4.4. There exists some c > 0 with the following property. Let χ be a primitive real
character of modulus q. Suppose that L(β, χ) = 0 for some 1− c 6 β < 1. Then for any primitive real
character χ′ of modulus q′, we have

L(1, χ)L(1, χ′)� 1− β
(qq′)O(1−β) log(qq′)

.

Proof. First, observe that

(1 ∗ χ ∗ χ′ ∗ χχ′)(n) > 0, (1 ∗ χ ∗ χ′ ∗ χχ′)(1) = 1.

Let c > 0 be small enough such that from Proposition 3.3.2, we obtain, if χ in the statement exists,

x1−β

1− β
L(1, χ)L(1, χ′)L(1, χχ′) +O

(
(qq′)2

1− β
x1−2c−β

)
=
∑
n6x

(1 ∗ χ ∗ χ′ ∗ χχ′)
nβ

> 1.

Writing x = (qq′/(1− β))C for some C > 0, the error term is

O((qq′)2+(1−c−β)C(1− β)(c+β−1)C−1),

which is less than 1/2, if C is large enough. Also, x1−β � (qq′)O(1−β) with the implied constants
depending only on C. Then the statement follows from L(1, χχ′) = O(log(qq′)), which follows from∑

n6x

(χχ′)(n)

n
+ qq′O(x−1),

by setting x = qq′.

Theorem 3.4.5 (Siegel). For any ε > 0, there exists a constant cε > 0 such that

L(1, χ) > cεq
−ε.

For any ε > 0, there exists a constant cε > 0 such that L(s, χ) has no zero on the segment [1− cεq−ε, 1]
for any primitive real character of modulus q.

Proof. By Proposition 3.4.3, it suffices to prove the first statement. Let first c′ε > 0 effectively computable
(to be chosen later). If there is no primitive real character χ with a zero of L(s, χ) on the segment
[1− c′εq−ε, 1], then Proposition 3.4.3 gives the statement immediately.

Assume hence that there is a primitive real character χ with a zero β of L(s, χ) on the segment
[1 − c′εq−ε, 1]. Choose χ among such characters in such a way that q is minimal. Then for q′ < q, χ′

primitive real character of modulus q′, we see that L(s, χ′) has no zero on [1− c′εq′−ε, 1]. Let then q′ > q
be arbitrary, χ′ primitive real character of modulus q′.

By Proposition 3.4.3, we see that

L(1, χ)� (1− β) log2 q.
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Then by Proposition 3.4.4, we obtain that

L(1, χ′)� 1

q′O(1−β) log3(q′)
= q′O(β−1) log−3(q′),

and here, the exponent of q′ can be made arbitrarily close to 0, by choosing c′ε sufficiently small, since
0 > β − 1 > −c′ε.

We finally adjust cε to make the statement true for L(1, χ). Indeed, we know it is nonzero from
Theorem 1.4.5, and then its positive being follows from the following facts: L(s, χ) ∈ R for s > 1,
limR3s→+∞ L(s, χ) = 1, L(s, χ) 6= 0 for s > 1, and L(s, χ) is continuous.

3.5 Prime number theorem for arithmetic progressions

Theorem 3.5.1. There exists an absolute constant c > 0 with the following property. For any x > 2, if
χ0 is the principal Dirichlet character modulo q = O(ec

√
log x), then∑

n6x

Λ(n)χ0(n) = x+O(xe−c
√

log x).

Proof. The proof is the same as that of Theorem 2.5.2 (see also Proposition 2.5.1, the only difference is
that we refer to Propisition 3.2.3 and Corollary 3.2.5).

Theorem 3.5.2. There exists an absolute constant c > 0 with the following property. For any x > 2, if χ
is a nonprincipal Dirichlet character modulo q = O(ec

√
log x) with no zero on the segment [1− c/ log q, 1],

then ∑
n6x

Λ(n)χ(n) = O(xe−c
√

log x).

Proof. The same as that of Theorem 3.5.1, this time with no pole at 1.

Theorem 3.5.3. There exists an absolute constant c > 0 with the following property. For any x > 2, if χ
is a nonprincipal Dirichlet character modulo q = O(ec

√
log x) with a zero β on the segment [1− c/ log q, 1],

then ∑
n6x

Λ(n)χ(n) = −x
β

β
+O(xe−c

√
log x).

Proof. The same as that of Theorem 3.5.2, this time with a pole at β.

Corollary 3.5.4. There exists an absolute constant c > 0 with the following property. For any x > 2,
q 6 ec

√
log x and any a coprime to q,

∑
n≡a mod q

Λ(n) =
x

ϕ(q)
− χ(a)

ϕ(q)

xβ

β
+O(xe−c

√
log x),

where β is the exceptional zero of L(s, χ) on the segment [1 − c/ log q, 1] (if c is small enough, χ is
well-defined by Proposition 3.4.2). If there is no such character, then∑

n≡a mod q

Λ(n) =
x

ϕ(q)
+O(xe−c

√
log x).

Theorem 3.5.5. Let c > 0 be the minimum of the constants from Theorems 3.5.1-3.5.3. Then for any
A > 0, there exists a constant x0(A) such that if x > x0(A), and χ is a nonprincipal character modulo q,
then ∑

n6x

Λ(n)χ(n) = O(xe−c
√

log x).
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Proof. We use the notation of Theorem 3.5.3, assuming that χ has a Siegel zero β. Then for any ε > 0,
by Theorem 3.4.5,

xβ = xe−(1−β) log x 6 xe−cεq
−ε log x

for some cε > 0. Since q 6 (log x)A, if we choose ε < 1/(2A), then the above is

xe−cεq
−ε log x 6 xe−cε(log x)1−Aε 6 xe−c

√
log x,

if x is large enough. Then the claim follows from Theorem 3.5.3.

Corollary 3.5.6 (Siegel-Walfisz). For any A > 0, there exists a constant cA > 0, such that for any
x > 2, q 6 (log x)A and any a coprime to q,∑

n≡a mod q

Λ(n) =
x

ϕ(q)
+O(xe−cA

√
log x).
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