MIDTERM EXAM REGULATIONS - READ THEM CAREFULLY

- 1. You have a continuous 120 minutes to take the exam.
- 2. The exam is closed books, no notes, no calculators, no internet. You can use only clean sheets, pens, pencils.
- 3. Keep in mind that partial scores can be earned in any problem. So if you cannot solve a problem, but you have some thoughts that you consider a good approach, hand them in. This particularly applies to the last problem, which is significantly harder than the preceding ones.

MIDTERM EXAM

1. Define on **N** the collection τ as follows: for any $A \subseteq \mathbf{N}$,

 $A \in \tau$ if and only if $A = \emptyset$ or A^c is finite.

Prove that (\mathbf{N}, τ) is a topology.

2. Let (X, \mathcal{A}) be a measurable space. Assume that μ, ν are two measures on (X, \mathcal{A}) such that for any $A \in \mathcal{A}$,

$$\mu(A) \geqslant \nu(A).$$

Prove that for any measurable function $f \ge 0$,

$$\int_X f \ d\mu \ge \int_X f \ d\nu.$$

3. Consider the measure space $(\mathbf{N}, 2^{\mathbf{N}}, \#)$, where # denotes the counting measure. Consider the function f defined as

$$f(n) = \frac{(-1)^n}{2^n}, \qquad n \in \mathbf{N}.$$

Calculate $\int_{\mathbf{N}} f \ d\#$.

4. Let (X, \mathcal{A}, μ) be a measure space, and let $f_1, f_2, \ldots : X \to \mathbf{R}$ be a sequence of negative functions, i.e. $f_n(x) < 0$ for any $n \in \mathbf{N}$ and $x \in X$. Prove that

$$\limsup_{n \to \infty} \int_X f_n \ d\mu \leqslant \int_X \limsup_{n \to \infty} f_n \ d\mu.$$

5. Let (X, \mathcal{A}, μ) be a measure space. Let $f : X \to \mathbf{R}$ be a measurable function such that $f \ge 0$ and $\int_X f \ d\mu < \infty$. Prove that there exists some $\delta > 0$ with the following property: if $A \subseteq X$ is measurable and $\mu(A) < \delta$, then $\int_A f \ d\mu < 1$.