
Final Exam Regulations – read them carefully

1. You have a continuous 120 minutes (no breaks) to take the exam.

2. The exam is closed books, no notes, no calculators, no internet. You can use only clean sheets, pens,
pencils.

3. Keep in mind that partial scores can be earned in any problem. So if you cannot solve a problem, but
you have some thoughts that you consider a good approach, hand them in.
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Final Exam

1. Prove that if U is a nonempty, open subset of Rd. then λd(U) > 0.

Solution. Since U is nonempty, we can take some x = (x1, . . . , xd) ∈ U . Since U is open, for some
r > 0, B(x, r) ⊆ U . Then

V =
(
x1 −

r

d
, x1 +

r

d

)
× . . .×

(
xd −

r

d
, xd +

r

d

)
⊆ B(x, r),

since any point of V differs from x by less than r/d in each coordinate, hence by the triangle-inequality,
altogether by less than r. Then V ⊆ U , and using that V is the product of intervals of positive length,
its Lebesgue measure is the product of its edge lengths (proven in class), that is,

λd(U) ⩾ λd(V ) =

(
2r

d

)d

> 0,

and the proof is complete.
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2. Let λ2 be the 2-dimensional Lebesgue measure on the plane R2. Consider the triangle

T =
{
(x, y) ∈ R2 : x ⩾ 0, y ⩾ 0, x+ y ⩽ 1

}
.

Prove that λ2(T ) = 1/2.

Preliminary. In the solutions, we will use the term Lebesgue measure for λ2, and will frequently use
that the Lebesgue measure of a rectangle is the product of its edges (proven in class).

Solution 1. Let us denote by T ′ the closed triangle which completes T to the unit square [0, 1]2, i.e.

T ′ = {(x, y) : x ⩽ 1, y ⩽ 1, x+ y ⩾ 1}.

Let D = T ∩ T ′ be the diagonal of the square. Then λ2(D) = 0 (proper subspaces and their shifted
copies have measure 0: mentioned in class, details were left to an elementary exercise in the notes).
Also observe that T ′ \D is a congruent copy of T \D, namely,

T ′ \D = (T \D)

(
−1 0
0 −1

)
+ (1, 1),

hence λ2(T \D) = λ2(T
′ \D) (we proved in the class how linear transformations and shifts change the

Lebesgue measure). Then in the pairwise disjoint union [0, 1]2 = (T \D) ∪ (T ′ \D) ∪D, the left-hand
side admits Lebesgue measure 1, so does the right-hand side, where the last term gives 0, and the first
two terms contribute the same value, hence both are 1/2. Then

λ2(T ) = λ2(T \D) + λ2(D) =
1

2
+ 0 =

1

2
,

and the proof is complete.

Solution 2. (In case one does not remember our results about the relation of linear transformations,
shifts and the Lebesgue measure. This is a little more computational. There will be some rectangles
defined, draw them for, say, n = 4, because the formulae are somewhat complicated, but the idea of them
is quite visible.) Observe that for any n ∈ N, T is covered with the following union of rectangles:

n−1⋃
j=0

[
j

n
,
j + 1

n

]
×
[
0, 1− j

n

]
.

The Lebesgue measure of the jth such rectangle is (n− j)/n2, which shows that

λ2(T ) ⩽
n−1∑
j=0

n− j

n2
=

n2 + n

2n2
=

1

2
+

1

2n
.

Also, T contains the pairwise disjoint union of rectangles

n−1⋃
j=0

(
j

n
,
j + 1

n

)
×
(
0, 1− j + 1

n

)
.

The Lebesgue measure of the jth such rectangle is (n− j − 1)/n2, which shows that

λ2(T ) ⩾
n−1∑
j=0

n− j − 1

n2
=

n2 − n

2n2
=

1

2
− 1

2n
.

Since the two estimates hold for any n ∈ N, we can take n → ∞ in both, resulting that λ2(T ) = 1/2.

Remark. One can proceed by computing the limit of Ln(1T ), where Ln’s are the positive, linear
functionals used in the class to define the Lebesgue measure. It leads to a similar, but slightly more
complicated calculation than the one in Solution 2.
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3. Let (X,A, µ) be a measure space. Assume that the measurable function f : X → C satisfies f ∈ L1(X)
and |f(x)| < 1 for almost every x ∈ X. (Recall, this means that µ({x ∈ X : |f(x)| ⩾ 1}) = 0.) Prove
that

lim
n→∞

∫
X

fn dµ = 0.

(To clarify, for any n ∈ N, the function fn is defined as fn(x) := (f(x))n.)

Solution. Let us denote by S the set where |f | < 1, by assumption, µ(X \S) = 0, hence for any n ∈ N,∫
X

fn dµ =

∫
S

fn dµ.

Note also that on S, |f | is an integrable majorant for the sequence f, f2, f3, . . ., hence dominated
convergence applies. Also, on S, fn tends pointwise to 0. Summing up,

lim
n→∞

∫
X

fn dµ = lim
n→∞

∫
S

fn dµ =

∫
S

lim
n→∞

fn dµ =

∫
S

0 dµ = 0,

and the proof is complete.
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4. Define the positive, linear functional L : Cc(R) → C as

Lf :=

∫ 1

−1

f(x) dx+ f(2021), f ∈ Cc(R).

Let µ be the measure associated to L via the Riesz representation theorem. Prove that µ(R) = 3. (In
R, we consider the standard, euclidean topology. The integral in the definition of L is the Riemann
integral, you can use without proof that it makes sense for every compactly supported, continuous
function. You can use without proof that L is indeed positive and linear.)

Preliminary. For any a, b ∈ R with a ⩽ b, define the function

Ha,b = (id− (a− 1)) · 1(a−1,a) + 1[a,b] + (b+ 1− id)1(b,b+1).

Again, draw an image: the formula is complicated, but the content is simple, the function is constant 0
up to a− 1 and above b+ 1, constant 1 between a and b, and in the remaining segments (a− 1, a) and
(b, b+ 1), it connects the constant pieces linearly. Note that Ha,b ∈ Cc(R) for any choice of a, b.

Solution 1. The set R is itself open, so from the definition of µ on open sets in the proof of the Riesz
representation theorem, we know that

µ(R) = sup{Lf : f ∈ Cc(R), 0 ⩽ f ⩽ 1}.

For any function f in the supremum, we have

Lf =

∫ 1

−1

f(x) dx+ f(2021) ⩽
∫ 1

−1

1 dx+ 1 = 3.

Also, for H−1,2021 ∈ Cc(R),

LH−1,2021 =

∫ 1

−1

H−1,2021(x) dx+H−1,2021(2021) =

∫ 1

−1

1 dx+ 1 = 3,

and the proof is complete.

Solution 2. (In case one does not remember how we defined µ in the proof of the Riesz representation
theorem.) Let n ⩾ 2022. Then

µ([−n, n]) =

∫
R

1[−n,n] dµ ⩽
∫
R

H−n,n dµ = LH−n,n

=

∫ 1

−1

H−n,n(x) dx+H−n,n(2021) =

∫ 1

−1

1 dx+ 1 = 3.

Also,

µ([−n, n]) =

∫
R

1[−n,n] dµ ⩾
∫
R

H1−n,n−1 dµ = LH1−n,n−1

=

∫ 1

−1

H1−n,n−1(x) dx+H1−n,n−1(2021) =

∫ 1

−1

1 dx+ 1 = 3.

Then µ([−n, n]) = 3 for n ⩾ 2022. We have proven in class that for monotone increasing union of sets,
the measure of the union equals the limit of the individual measures, i.e.

µ(R) = µ

( ∞⋃
n=2022

[−n, n]

)
= lim

n→∞
µ([−n, n]) = 3,

and the proof is complete.
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5. Does there exist a sequence of Lebesgue measurable functions f1, f2, . . . on the real line which satisfies
simultaneously

� that fn ∈ Lp(X) for any n ∈ N and any 1 ⩽ p ⩽ ∞;

� that for every 1 ⩽ p < ∞,
lim

n→∞
∥fn∥Lp → 0;

� and that
lim

n→∞
∥fn∥L∞ → ∞?

Solution. Yes, we construct such a sequence. Let

fn = n · 1[0,1/nn],

and we claim they do the job.

For any 1 ⩽ p < ∞,

∥fn∥Lp =

(∫
[0,1/nn]

np dλ

)1/p

= (np−n)1/p = n1−n/p.

In particular, each fn is in Lp for any 1 ⩽ p < ∞, and the limit, as n tends to ∞, is 0.

Also,
∥fn∥L∞ = n.

In particular, each fn is in L∞, and the limit, as n tends to ∞, is ∞.
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