
Introduction to mathematical cryptography
by Péter Maga

Contents

Preface v

1 Introduction 1

1.1 The principal goal of cryptography, Kerckhoff’s principle 1

1.2 Cryptanalysis . 2

1.3 Mathematics enters cryptography . 2

1.3.1 Transform texts to numbers . 2

1.3.2 The mathematical formulation of symmetric ciphers 3

1.3.3 The mathematical formulation of asymmetric ciphers 3

1.4 Computability . 4

1.5 The XOR cipher and pseudorandom sequences . 5

2 Discrete logarithms 7

2.1 The discrete logarithm problem . 7

2.2 The Diffie-Hellman key exchange . 8

2.3 The ElGamal cryptosystem . 8

3 Integer factorization and RSA 11

3.1 The RSA cryptosystem . 11

3.2 Primality testing . 11

3.2.1 Fermat’s little theorem and Carmichael numbers 12

3.2.2 The Miller-Rabin test . 12

3.2.3 The Agrawal-Kayal-Saxena polynomial test . 13

3.3 Multiplayer RSA – the bad way . 15

4 Probability and information theory 17

4.1 The Vigenère cipher and its cryptanalysis . 17

4.2 Collision and meet-in-the-middle attacks . 18

4.3 Perfect secrecy and entropy . 19

4.4 The redundancy of natural languages . 24

5 Elliptic curves and cryptography 27

5.1 Elliptic curves and their abelian group structure . 27

5.2 A sketch of the proof of Theorem 5.1.1 . 28

5.2.1 The resultant and Bézout’s theorem . 28

5.2.2 The Cayley-Bacharach theorem . 29

5.2.3 Completion of the sketch . 30

5.3 The elliptic curve discrete logarithm problem . 30

5.4 Elliptic curve cryptography . 31

5.4.1 The elliptic curve Diffie-Hellman . 31

5.4.2 The elliptic curve ElGamal . 31

iii

iv 0.

6 Attacking the underlying problems 33
6.1 The discrete logarithm problem . 33

6.1.1 A babystep-giantstep algorithm . 33
6.1.2 The Pohlig-Hellman algorithm . 33
6.1.3 The index calculus method . 34

6.2 Factorization algorithms . 35
6.2.1 Smooth numbers . 35
6.2.2 Pollard’s p− 1 method . 35
6.2.3 Factorization via difference of squares . 36
6.2.4 Lenstra’s elliptic curve factorization . 36

7 Additional topics 39
7.1 Interactive proofs . 39

7.1.1 How to store the last move in chess? . 39
7.1.2 A zero-knowledge proof of that a certain number is square modulo N 39
7.1.3 Using our password . 41

7.2 Identification . 41
7.2.1 An RSA-based digital signature . 41
7.2.2 Multiplayer RSA – the good way . 41

7.3 Secret sharing . 42

Appendices 45

A Algebraic structures 47
A.1 Groups . 47
A.2 Rings and fields . 49
A.3 Vector spaces and projective spaces . 50

B Number theory 53
B.1 The fundamental theorem of arithmetic . 53
B.2 Residue classes . 54
B.3 The multiplicative group of the residue class rings . 55

C Probability theory 57
C.1 Discrete probability spaces . 57

Preface

These lecture notes are written to provide a text to my Introduction to Mathematical Cryptography
course at Budapest Semesters in Mathematics. The main source is [1], even the structure is borrowed from
there. Note also that in [1], both the material and the collection of examples are much more extended.

As for prerequisities, needless to say, a general mathematical experience is indispensable. Also, even
for such an introductory material, some familiarity with algebra, number theory and probability theory is
necessary. For an overview of these subjects, I decided to include a detailed Appendix. Not so much
inherently, yet for a good understanding of the notion of entropy introduced in Chapter 4, classical
mathematical analysis might be useful, but certainly not beyond the level of [3].

v

Chapter 1

Introduction

1.1 The principal goal of cryptography, Kerckhoff’s principle

The principal goal of cryptography is to allow two people to exchange confidential information,
even if they can only communicate via a channel monitored by an adversary.

Assume for example that Bob wants to send a message to Alice in such a way that Eve – who
reads/listens/spies the communication of Alice and Bob – cannot understand the message (Alice, Bob
and Eve are the usual participants of the cryptographic setup).

The scheme of the solution is the following. Bob sends through the communication something else
than his original message. Eve can read only this something else. Alice knows how this something else
should be understood to get the original message.

Example 1.1.1 (an ancient method). We are in ancient times. Bob shaves the head of a slave. Then
tattoos the message on the bald head. After hair has regrown, he sends the slave to Alice. Alice shaves
the slave’s head again and reads the message. (Here the assumption on the monitoring of the channel is
that if Bob sent the slave with a letter to Alice, then Eve would steal the message from the slave and
would read it.)

Example 1.1.2 (another ancient method – Caesar cipher). Bob shifts the alphabet the following way:
he replaces each letter in his message with the letter which follows three later in the alphabet, e.g.

We attack the castle tomorrow.

Zh dwwdfn wkh fdvwoh wrpruurz.

which gives rise to the ciphertext (it is usual to rewrite the cipher in five-letter blocks, and leaving
punctuation):

ZHDWW DFNWK HFDVW OHWRP RUURZ.

He writes down only the message ’ZHDWW DFNWK HFDVW OHWRP RUURZ’, and sends this to Alice. Now Alice
knows that she has to count three characters back and gets the original message, at least, in the form
’WEATT ACKTH ECAST LETOM ORROW’, but it is obvious where words start and end. However,
even if Eve can read the ciphertext, it is just meaningless for her.

Example 1.1.3 (Caesar’s cipher improved – simple substitution ciphers). Set A = {a,b, c, . . . , z} for the
alphabet. Then assume Alice and Bob agree on a bijection π : A→ A (this is called a permutation of A).
Now if Bob wants to send a message to Alice, simply applies π to each letter, and sends the resulting text
to Alice. Again, this text is a gibberish for Eve, while Alice knows how to recover the original message.
Caesar cipher in Example 1.1.2 is just a special case of this when π is a shift of the letters.

What happens if Eve knows what the basic principle behind the encryption is? In Example 1.1.1,
she simply captures and shaves the slave, and the cryptosystem is broken. However, in Example 1.1.2,
the information that the encoding procedure is some shift of the alphabet still leaves 26 possibilities for
the size of the shift (and hence for the original message). Even worse, in Example 1.1.3, the number of
possibilities is 26! = 26 · 25 · . . . · 1 > 1026.

1

2 1. Introduction

Motivated by this phenomenon, Kerckhoff’s principle says that the security of a cryptosystem should
depend only on the secrecy of the key (this is the actual shift vector in Example 1.1.2 or the actual
permutation in Example 1.1.3), not on the secrecy of the encryption algorithm (this is the fact that Alice
and Bob use a shift in Example 1.1.2 or a permutation 1.1.3 of the alphabet to encode messages).

Already on this point, it is convenient to agree on the following ability of Eve (which is very natural
to assume): she is able to recognize the message when she sees that. For example, in the Caesar cipher
(Example 1.1.2), when she tries all the 26 possibilities for the translation vector, she will observe when
she hits it. Although in principle it could happen that some other key gives another meaningful message,
this is extremely unlikely (and its probability decreases very fast when the length of the message grows).

1.2 Cryptanalysis

In fact, Caesar’s cipher can be easily broken: it is just 26 trials for the shift vector, and this can be done
even by a human quite fast. Note that Eve has to try the first few characters in each possible shift, for
an incorrect guess, most likely the first few letters will give rise to a gibberish.

This is not the case with the simple substitution cipher, the number of possible keys is quite large,
26! > 1026, which is too many even for a modern PC. However, even such a ciphertext can be revealed
relatively easily. The point is that simple substitutions do not alter the characteristic of the underlying
natural language, say, English in our case.

So Eve can argue as follows. In a normal English text (which is supposed the message to be), the
most frequent characters are ’e’, ’t’, ’a’, ’o’, ’n’. Even their frequency can be easily computed (you can
find online tables telling them, or, by ”bare” hand, you can open a long pdf file and count the occurrences
of these letters). Also, you can consider the bigrams ’th’, ’he’, ’an’, ’re’, ’er’, and the trigrams ’the’, ’and’,
’ing’. Now given the ciphertext, if we count the often occurring letters, bigrams and trigrams, we may
have reasonable guesses on the substitution: the point is that, for example, no matter which letter stands
for ’e’, it will stand for ’e’ always, and since ’e’ is the most often letter in English, this unknown character
will be somewhat often in the cipher (and almost surely the most often, if the cipher is long enough).
The same is true for other frequent letters, and also for bigrams and trigrams. As soon as some parts of
the text are revealed, we can figure out further substitutions. After some trial and error, we can recover
the text. Although this might seem complicated, it works surprisingly fast, read [1, Section 1.1.1] to see
this in action.

As a historical note, we remark that cryptanalysis, letter frequency counts were known by Arab scholars
in the 14th and the 15th century. The same time, in Italian states, more complicated cryptosystems
were used than simple substitution ciphers, which suggests that cryptanalysis via frequency analysis was
known there as well.

1.3 Mathematics enters cryptography

1.3.1 Transform texts to numbers

Up to this point, messages and ciphers were both textual objects. This is natural, our communication is
textual, so most messages are simply texts. However, the communication of our computers (which deliver
the messages nowadays) are rather based on numbers, and – more importantly – fancy properties of
numbers provide us with extremely ingenious cryptosystems. For this reason, given any text, we – more
precisely: our softwares – transform it to numbers. Our computers use encoding schemes, e.g. ASCII
or UNICODE to convert characters to bytes. A byte consists of eight bits, where a bit is a 0 or a 1 (it
is the abbreviation of the binary digit). For example, 01000001 is a byte, and in ASCII, it stands for
the character ’A’. This encoding scheme is completely public, its purpose is not to hide information but
on the contrary: it guarantees that if we send an e-mail to somebody, our computer transforms it to a
number which can be transformed back to the same e-mail by his or her computer.

Of course, when Bob’s e-mail is encoded in ASCII, and is sent to Alice, when Eve captures it, she is
also able to read it. For this reason, Bob, after making the ASCII code, makes the message to a cipher
(both are numbers this time). Ideally, when Eve reads the cipher, and decodes its ASCII, she will see a
gibberish. Alice, who knows what to do, transforms the cipher back to the ASCII encoded version of the
original message, then decodes it.

1.3. Mathematics enters cryptography 3

1.3.2 The mathematical formulation of symmetric ciphers

Definition 1.3.1 (symmetric cryptosystem). By a symmetric cryptosystem, we mean a 5-tuple

(K,M, C, e, d),

where K,M, C are sets, and e : K ×M→ C, d : K × C →M are functions satisfying that for any k ∈ K
and m ∈M,

d(k, e(k,m)) = m.

Here, K is the set of possible keys, M is the set of possible messages, C is the set of possible ciphers.
The functions e and d are the encrypting and decrypting algorithms, respectively: for a given key k ∈ K,
e computes c ∈ C from m ∈ M, while d computes m ∈ M from c ∈ C. In practice, for a fixed k ∈ K,
e(k, ·) and d(k, ·) are often denoted by ek and dk, respectively.

In the realization, K,M, C, e, d are known to everyone (including Eve), while the paricular k ∈ K in
use is known only to Alice and Bob.

For example, in Example 1.1.2, the set of messages and ciphers are both the possible (finite) texts.
The set of keys are the positive integers up to 26: K = {1, 2, 3, . . . , 26}. Now ek, for an integer k ∈ K,
shifts each letter by k, while dk shifts it back.

In Example 1.1.3, the set of messages and ciphers are the same, but this time K is the set of all
permutations of the alphabet, a much bigger set than in Example 1.1.2.

We impose a few informal requirements on cryptosystems:

(1) knowing k ∈ K and m ∈M, ek(m) ∈ C must be easy to compute;

(2) knowing k ∈ K and c ∈ C, dk(c) ∈M must be easy to compute;

(3) given one or more encoded ciphertexts c1, . . . , cn ∈ C encrypted using the key k ∈ K, without knowing
k, it must be hard to compute any of the plaintexts dk(c1), . . . , dk(cn).

These are just natural conditions: the first two say that if Alice and Bob agree on the key, their
alogithms to encrypt and decrypt texts are fast; the third one says that Eve – not knowing the particular
key – cannot compute easily the original message.

A fourth condition is somewhat more complicated:

(4) for any fixed k ∈ K, given any number of pairs (m1, c1), . . . , (mn, cn) (i.e. for any 1 6 j 6 n, mj ∈M,
cj ∈ C, ek(mj) = cj , dk(cj) = mj), if c ∈ C \ {c1, . . . , cn}, then without knowing k, it must be hard
to compute dk(c). This is security against a chosen plaintext attack.

For example, the Caesar cipher and even its generalized version, the simple substitution cipher (recall
Examples 1.1.2, 1.1.3) satisfy the conditions (1), (2), but one can easily see that they do not satisfy
(4). Indeed, in the Caesar cipher, even a single given pair (m1, c1) determines k, while in the simple
substitution cipher, the pairs (’a’, k(’a’)), . . . , (’z’, k(′z′)) determine k. It is not that obvious what we
have seen in Section 1.2: even (3) does not hold for them, meaning that they are not secure in the sense
that Eve does not have to organize any ingenious attack on the cryptosystem (like the chosen plaintext
attack).

1.3.3 The mathematical formulation of asymmetric ciphers

In Examples 1.1.2 and 1.1.3, the role of Alice and Bob are symmetric. There is the key set K, and they
know which element k ∈ K they use (this has to be kept in secret). Such setups are the symmetric ciphers.

However, the relation of Alice and Bob is asymmetric (Bob sends, Alice reads the message), which
might be utilized.

Definition 1.3.2 (asymmetric cryptosystem). By an asymmetric cryptosystem, we mean a 7-tuple

(K,Kpub,Kpriv,M, C, e, d),

where K,Kpub,Kpriv,M, C are sets satisfying

K ⊆ Kpub ×Kpriv,

4 1. Introduction

and e : Kpub ×M → C, d : Kpriv × C → M are functions satisfying that for any (kpub, kpriv) ∈ K and
m ∈M,

d(kpriv, e(kpub,m)) = m.

Here, K is the set of possible keys, M is the set of possible messages, C is the set of possible ciphers.
The functions e and d are the encrypting and decrypting algorithms, respectively: for a given key
(kpub, kpriv) ∈ K, e computes c ∈ C from m ∈M, while d computes m ∈M from c ∈ C. In practice, for a
fixed (kpub, kpriv) ∈ K, e(kpub, ·) and d(kpriv, ·) are often denoted by ekpub and dkpriv , respectively.

In the realization, Kpub,Kpriv,M, C, e, d are known to everyone (including Eve). It is only Alice who
knows K, and she picks a particular key (kpub, kpriv) ∈ K. Now she makes kpub public, and keeps kpriv in
secret. If Bob wants to send a message m ∈M to Alice, then he applies ekpub to m, and sends ekpub(m)
to Alice. Now Alice applies dkpriv

to the incoming cipher, obtaining

dkpriv(ekpub(m)) = m.

The requirements are modified the obvious way.
In this setup, there is nothing special about Bob, he has the same information as Eve has. Yet,

if the system works well, Eve is unable to read Bob’s messages to Alice. Although this seems more
complicated and somewhat artificial, this scheme is commonly used. Think for example of your e-mail
address: basically everyone knows it, none of your friends has a particular role, yet each of them can send
you an e-mail which is hidden from anyone else1.

1.4 Computability

In this section, we start to investigate the length of computations. Although a precise definition could
be as well given using the notion of Turing machine, for our purpose an informal description will be
completely sufficient.

Assume given an algorithm solving a problem. For example, let the problem be the addition of positive
integers (given in base 10), and the algorithm is what we learned in the elementary school. Basically, the
algorithm consists of two things: one is the addition table

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

and the other one is how to use this: the manipulation with the digits learned in the school. During this
manipulation, we perform the addition of digits using the table (call them basic additions). If there are
two numbers of n digits, then we have to use n basic additions (one at each digit). Also, there might be
1’s taken on, at most n times, so the number of basic additions is at most 2n. This means that given the
basic addition table and the school algorithm, they can add up two numbers of n digits in 2n many steps,
where by one step, we mean one reference to the basic addition table.

This is the general scheme: we can call anything a step, but that must be fixed once for all; also, we
give an algorithm which can use the step as many times as it is needed. Then the input comes, and the
algorithm computes the output. The running time (or time cost) of the algorithm (on the given input) is
the number of steps used to compute the output.

Assume that the input is the positive integer n. We say that an algorithm computes the output in
polynomial time, if the running time can be estimated from above by a polynomial of log n. Why log n?

1At least would be, in a world where webmail providers do not read clients’ mails – in ours they do.

1.5. The XOR cipher and pseudorandom sequences 5

Simply because the length of the input is just log10 n (and in other bases, just a constant times log10 n),
and not n. Similarly, the algorithm is exponential, if it is exponential in log n. If the input consists of
more than one numbers, say, n1, . . . , nk, then a polynomial algorithm is an algorithm whose running time
can be estimated by a polynomial of max(log n1, . . . , log nk).

From the school, we know that addition, subtraction, multiplication and euclidean division can be
performed by polynomial algorithms.

Proposition 1.4.1. With input a, b, the number gcd(a, b) can be computed in polynomial time.

Proof. Recall the notation of the proof of Proposition B.1.2: assume we have two numbers, a > b > 0,
and then the sequence (a, b, d1, . . . , dn, 0), where each di is defined via the euclidean division di−2 =
ci−1di−1 + di (with d−1 = a, d0 = b, dn+1 = 0) reproduces dn = gcd(a, b). If we take the remainder di in
each step such that |di| 6 |di−1|/2 (which can be done), then it is clear that the number of di’s is at most
1 + log2 a. Since each euclidean divisions can be performed in polynomial time, the time cost altogether is

Pol(log2 a) + Pol(log2 b) + Pol(log2 d1) + . . .+ Pol(log2 dn−1) 6 (1 + log2 a) Pol(log2 a) = Pol(log2 a).

The proof is complete.

In this proof, we spelled out that there are Pol(log) many euclidean divisions, and each of them can
be computed in Pol(log) many steps, hence the algorithm runs in Pol(log) time. From now on, for brevity,
when we have proved that something can be computed in polynomial time, we will use that something
as a step in more complex algorithms: since the product of polynomials is a polynomial again, this
simplification does not affect whether an algorithm is polynomial or not. For example, computing the
gcd can be handled as a single step in a complex algorithm. Note that this simplification refers only to
the polynomial being of the running time: the degree of the polynomial of course varies.

Proposition 1.4.2. With input a, b,N ∈ N, the residue class ab mod N can be computed in polynomial
time.

Proof. First of all, write b as

b =
∑

06j61+log2 b

εj2
j ,

where each εj is 0 or 1. (This can be done in polynomial time using only euclidean divisions: divide b by
20, 21, 22, 23, . . . , 21+log2 b. Alternatively, you may think of the input as numbers already given in base 2.)
Now

ab = a
∑

06j61+log2 b
εj2

j

=
∏

06j61+log2 b

aεj2
j

.

Here, each factor with εj = 0 is just 1. When εj = 1, then

aεj2
j

= a2j = (((a2)2)...)2︸ ︷︷ ︸
j many 2’s

.

Now raise a to square (this is polynomial, since it is just a multiplication), then reduce it modulo N (a
euclidean division). Then raise the result to square again, and reduce it modulo N . Doing this j many

times, we get aεj2
j

mod N in polynomial time. Now we have to multiply together the factors aεj2
j

for all
the j’s, this is polynomial many multiplications and modulo N reductions again.

1.5 The XOR cipher and pseudorandom sequences

Assume, the message is a number 0 6 m 6 2t − 1, i.e. a binary number on t bits. Now Alice and Bob
agree on a binary number k also on t bits. So in this case,

M = C = K = {0− 1 sequences of length t}.

6 1. Introduction

Define now the ⊕ operation as the bitwise addition, i.e. if a =
∑t−1
j=0 aj2

j , b =
∑t−1
j=0 bj2

j (where aj , bj ’s
are binary digits, 0 or 1 each), then let

a⊕b =

t−1∑
j=0

cj2
j ,

where cj = 0 if aj = bj , and cj = 1 if aj 6= bj .
Given m and k, let ek(m) = m⊕k. One can easily see that then dk = ek:

dk(ek(m)) = (m⊕k)⊕k = m⊕(k⊕k) = m⊕’ 0 . . . 0︸ ︷︷ ︸
t zeros

’ = m.

Since XOR addition can be computed fast, Bob can easily encrypt his message, and Alice can easily
decrypt it. However, since Eve does not know k, she essentially has to check all possible k’s between 0
and 2t − 1, which is hopeless, it t is large enough.

In some sense, this cryptosystem is as perfect as can be. However, there are a few problems. First, it
is vulnerable against a chosen plaintext attack, since even a single pair (m, c) reveals k = m⊕c.

Another problem is that if Alice sends to message with the same key, say c1 = ek(m1), c2 = ek(m2),
then Eve can XOR them to get

c1⊕c2 = (m1⊕k)⊕(m2⊕k) = m1⊕m2.

It is not obvious how Eve can use this information, yet she has managed to get rid of k, and this is
something that Alice and Bob would like to avoid.

Third, the key must be as long as the message is, which requires very long key sequences. And since
Alice and Bob would like to use different keys for each encryption, they have to generate many k’s. Their
security is the best possible, if they generate random k’s, for example, tossing a 0− 1 coin t times gives a
k, and they can repeat this as many times as they wish. But the setup is that they are at different places,
their t-long tosses will almost certainly result differently. How can they solve this problem? Is it possible
to securely and efficiently send long messages using only a single short key?

Assume there exists a function R : K ×N→ {0, 1} satisfying the following properties:

(1) for any k ∈ K, j ∈ N, it is easy to compute R(k, j);

(2) from any j1, . . . , jn and corresponding R(k, j1), . . . , R(k, jn), it is hard to figure out k;

(3) from any j1, . . . , jn and corresponding R(k, j1), . . . , R(k, jn), it is hard to guess the value of R(k, j)
with better than a 50% chance of success, if j /∈ {j1, . . . , jn}.

Now Alice and Bob agree on a key k (a number on 200 bits, say), and they agree that for the first message,
they will use R(k, 1), . . . , R(k, 1000000), for the second one, they will use R(k, 1000001), . . . , R(k, 2000000),
and so on.

Such functions R are called pseudorandom number generators, however, it is unknown at the moment
whether pseudorandom number generators exist.

Chapter 2

Discrete logarithms

Let us turn our attention back to asymmetric ciphers, those having a public and a private part. Their
significance in computer age is bigger than ever, since it may easily happen that Alice and Bob would
like to communicate although they have never met before (so they cannot be sure that any piece of
information exchanged by them is handled confidentially).

How can Alice build up her cryptosystem? Given the sets M and C, she would like to publish a
function kpub :M→ C in such a way that k−1

pub = kpriv can not be easily computed. For the first sight,
this does not make too much sense: if it is difficult to invert kpub for Eve (and Bob, and anyone else),
then so is for Alice herself.

However, this is not the case. When Alice constructs kpub, she uses some additional information,
a trapdoor. This trapdoor plays an essential role in the construction of kpub, and – ideally – has the
following two properties: without the trapdoor, it is difficult, while using the trapdoor, it is easy to invert
kpub (and hence to get kpriv).

The second condition is the simpler one. To know that something is computationally easy, it suffices
to have a good algorithm in hand, which solves the problem in little time. The critical point is the first
condition. How to ensure that something is computationally difficult? Possibly there is no available
method to invert a certain function but tomorrow there will be.

The cryptosystems presented below all depend on computational problems. Those which – according
to the current state of art – are computationally difficult (i.e. at the moment, there are no fast alogrithms
to solve them) are considered to be secure.

2.1 The discrete logarithm problem

One of such computational problems is the discrete logarithm problem (DLP from now on). It is basically
the following: given a finite abelian group G, and an element g generating it, for any a ∈ G, compute the
smallest positive k ∈ N such that

g · . . . · g︸ ︷︷ ︸
k times

= a.

This k is called the discrete logarithm of a (with base g), and we will denote it by logg a. The basic
principle is the following: if we can perform the group operation fast, then from k, it is easy to get a
(think of the repetitive squaring used in the proof of Proposition 1.4.2), while from a, it is not obvious to
get k. This asymmetry gives us some chance to come up with a public key cryptosystem.

Following this principle, we will see below that using a finite abelian group, we can build up certain
cryptosystems whose security rely a lot on the difficulty of the DLP. But is the DLP computationally
difficult? We do not know it in general, but certainly it depends very much on the group.

For example, assume that the group is the additive group of the prime field Fp. Then any 0 6= g ∈ Fp
generates Fp. Given a one may compute its logarithm as follows: if logg a = k, then

a ≡ g + . . .+ g︸ ︷︷ ︸
k times

≡ gk mod p.

7

8 2. Discrete logaithms and Diffie-Hellman

Now we see that k is nothing else but the multiplicative inverse of g multiplied by a (all understood
modulo p). And the multiplicative inverse of g can be computed in polynomial time: either we write
1 = gu+pv and then u mod g−1 mod p (and this can be done in polynomial time, since u is just produced
by a euclidean algorithm, recall the proof of B.1.5) or by Euler-Fermat (Corollary B.3.7), gp−2 mod p is
the inverse of g modulo p (and this can also be computed in polynomial time, since this is just raising to
a power with a modulus), recall Proposition 1.4.1 and Proposition 1.4.2. This altogether shows that the
DLP in the additive group of prime fields is an easy problem, so certainly the methods below are useless
with this group.

A much better choice is the multiplicative group F×p of the same field. We already know that F×p
is cyclic, therefore, it is generated by some element. However, for our methods below, this is not really
necessary, we can take an element g whose order modulo p is not too small, and can restrict to the
subgroup generated by g. Then the DLP is the following: given g and a, compute the smallest possible k
satisfying

gk ≡ a mod p.

Current methods cannot solve this problem in polynomial time. This will be the starting point of the
Diffie-Hellman key exchange and the ElGamal cryptosystem.

Later, we will learn how group structure can be attached to elliptic curves. It is also unknown but
widely believed that the DLP is even more difficult in those groups. This gives us the possibility to build
a cryptosystem on elliptic curves.

2.2 The Diffie-Hellman key exchange

In this section, we show how Alice and Bob can agree on a fixed number which is known only to them,
even if they can only use a completely public channel for their whole communication. This is not as
ambitious as sending complete encrypted messages, yet it is something: their common secret number can
be for example used for a symmetric cipher.

First of all, they agree on a prime p and an element g whose order modulo p is sufficiently large.
Now Alice takes a number a (and keeps it in secret), and Bob also takes a number b (and keeps it in
secret). Then Alice computes ga mod p, and sends it to Bob. Meanwhile, Bob computes gb mod p, and
sends it to Alice. Finally, Alice raises the incoming gb mod p to power a, while Bob raises the incoming
ga mod p to power b. Both of them obtains the number gab mod p, so they have the common number
(recall Proposition 1.4.2).

What happens to Eve? She just observes ga and gb (besides p, g). From this information, she should
compute gab (this is called the Diffie-Hellman problem (DHP)). If she could solve effectively the DLP,
she would immediately figure out the values a, b, and they lead to gab. Therefore, the DHP is not more
difficult than the DLP. The converse in unknown (in pricinple, there can be a polynomial algorithm
solving the DHP even if there is no algorithm solving the DLP in polynomial time).

2.3 The ElGamal cryptosystem

In this section, we describe a public key cryptosystem relying on the difficulty of the DLP for multiplicative
groups of prime fields.

Again, Alice chooses a prime number p, and an element g of sufficiently large order modulo p. Also,
she chooses a number a. Then she computes A ≡ ga mod p, and publishes p, g, A (and keeps a in secret).

Then Bob chooses a number k (and keeps it in secret), and sends Alice the following two values:

c1 ≡ gk mod p, c2 ≡ mAk mod p,

where 1 6 m 6 p− 1 is the message he wants to send.
Now Alice gets the pair (c1, c2), and computes c2(ca1)−1 modulo p. The result is

c2(ca1)−1 ≡ mAk((gk)a)−1 ≡ mgakg−ak ≡ m mod p,

so the message is recovered.

2.3. The ElGamal cryptosystem 9

This is called the ElGamal cryptosystem. It is clear what kpub is (note that it uses an external
parameter k chosen by Bob). Now kpriv is (with current methods) is difficult to compute from kpub,
however, using the trapdoor a, it can be done fast.

It is clear that solving the DLP breaks the ElGamal, since Eve can easily compute a from A, then she
can compute the same way m from (c1, c2) as Alice does.

Now we prove that breaking the ElGamal in general is essentially as difficult as solving the DHP.

Proposition 2.3.1. Assume p, g, A ≡ ga mod p are fixed. If there is an algorithm, which computes m
from (c1, c2) in polynomial time for any input (c1, c2), then there is an algorithm solving the DHP with
inputs ga, gb in polynomial time.

Conversely, if there is an algorithm solving the DHP in polynomial time for any input ga, gb, then
there is an algorithm computing the m-value from c1, c2 in polynomial time.

Proof. Assume we have to compute gab from ga, gb (all modulo p) in DHP. Set c1 ≡ gb mod p and c2 = 1.
The computed m-value is g−ab modulo p, its multiplicative inverse (computed in polynomial time) is gab

modulo p.
As for the converse, from A ≡ ga mod p and c1 ≡ gk mod p, we can compute c1 ≡ gak mod p by our

supposed algorithm. Now m ≡ c2g−ak mod p.

Chapter 3

Integer factorization and RSA

In Chapter 2, the invertibility of kpub reached by chosing the computationally complicated DLP: it is
easy to raise a certain power, but it is hard to difficult to figure out the power from the result. In this
chapter, we will use the following: it is easy to compute the product of prime powers, but it is hard to
figure out the prime factorization of a given number.

3.1 The RSA cryptosystem

Alice chooses two large prime numbers p, q, they will serve for her as the trapdoor. Now she computes
the product N = pq, and chooses a further number e coprime to ϕ(N). Then she publishes N, e. Alice
also computes the multiplicative inverse d of e modulo ϕ(N) (that is, de = ϕ(N)u+ 1). For her, this is
easy to do: ϕ(N) = (p− 1)(q − 1).

If Bob wants to send the message 1 6 m 6 N to Alice, then he computes c ≡ me mod N and sends it
to Alice.

Then Alice simply raises c mod N to power d, obtaining

cd ≡ (me)d ≡ med ≡ mϕ(N)u+1 ≡ m · (mϕ(N))u ≡ m mod N,

at least when gcd(m,N) = 1. For a randomly chosen message 1 6 m 6 N

Pr(gcd(m,N) = 1) =
ϕ(N)

N
=
N − p− q + 1

N
> 1− 1

p
− 1

q
,

which is very close to 1, if p, q are large.
Eve’s problem is the following: she knows only N and e. If she could factorize N to pq, then it would

immediately give ϕ(N), leading to d fast. But there is no known method to factorize large numbers fast.

3.2 Primality testing

To implement RSA, one needs large prime numbers, but how can we get them? To answer this question,
we first cite the prime number theorem:

lim
x→∞

π(x)

x/ log x
= 1,

where π(x) stands for the number of primes not exceeding x. Informally, we may say that up to x, there
are approximately x/ log x prime numbers. Reformulating this, we may say that if we pick a random
large integer n, then we expect a prime in the set

{n, n+ 1, . . . , n+ 2dlog ne}.

So we choose some n, and then we take the integers n, n+ 1, . . . until we bump into a prime. The number
of steps we have to take is estimated from above by the gap of consecutive primes. The prime number

11

12 3. Integer factorization and RSA

theorem suggests that this is something like log n on average. However, it is known that the prime
gap around X can be larger than any constant multiple of logX (it can be bigger than 100 logX, say).
Conjecturally, the gap is always smaller than a constant multiple of log2X and the truth of this would
suffice for a polynomial prime-generating algorithm.

But this is just one part of the problem. Okay, assume there is a prime between n and n+ 100 log2 n.
How will we recognize it? Given a large number, how fast can we decide if it is prime or not?

Of course, we can try any number up to
√
n and if none of them divides n (except for 1 of course),

then n is a prime. If n is large, this is awfully slow, so we need a better algorithm.

3.2.1 Fermat’s little theorem and Carmichael numbers

Assume a number n is given, and we have to decide if n is a prime or not.
First assume n is a prime. Recall Fermat’s little theorem (Corollary B.3.8), which tells us then that

an ≡ a mod n.

So if we pick a number a such that
an 6≡ a mod n,

then we can be sure that n is not a prime. This gives us a primality test: take some a, and if an 6≡ a mod n,
then n is composite.

Unfortunately, the converse is not true at all, for example,

2341 ≡ 2 mod 341,

but 341 = 11 · 31 is not a prime. Even worse, there exist composite integers n such that for any a ∈ N,

an ≡ a mod n.

Such numbers are called Carmichael numbers, and although they are rare compared to primes, there are
infinitely many of them (the smallest one is 561 = 3 · 11 · 17).

So if our randomly found number n is a Carmichael number, then it is not a prime, yet we have no
chance to prove its compositeness via Fermat’s little theorem.

3.2.2 The Miller-Rabin test

The fundament of the Miller-Rabin test is the following observation.

Proposition 3.2.1. Assume p is an odd prime, and write p− 1 as 2kq, where q is an odd number. Then
for any integer a coprime to p, one of the following two alternatives hold. Either aq ≡ 1 mod p or one of

aq, a2q, a4q, . . . , a2k−1q is −1 modulo p.

Proof. Fix an a as in the statement. If aq ≡ 1 mod p, then we are done. If not then consider the number

a2kq ≡ ap−1, which is 1 modulo p by Euler-Fermat (Corollary B.3.7). Since Fp is a field, the only residue

classes x satisfying x2 ≡ 1 mod p are ±1. Therefore since the square of a2k−1q is 1 mod p, it must be

either 1 or −1 modulo p. If it is −1, then we are done. If it is 1, we can go further and take a2k−2q: again,
since its square is 1, it is ±1 modulo p. We continue this, and since aq 6≡ 1 mod p, at some point, we
must get −1 modulo p.

Like Fermat’s little theorem, this immediately gives us a prime test. Assume n is given. If it is even,
then it is composite (unless it is 2). If it is odd, take n − 1 and halve it as many times as possible,
altogether getting n− 1 = 2kq for some odd number q and positive integer k.

Choose a random 1 6 a 6 n− 1. Check first if it is coprime to n (this can be done fast by Proposition

1.4.1). If gcd(a, n) > 1, then n is composite. If gcd(a, n) = 1, then compute aq, a2q, . . . , a2kq modulo n.
They are at most 1 + log2 n many numbers, and they can be computed in polynomial time by Proposition
1.4.2. If aq is not 1, and none of them is −1 modulo n, then we can be certain that n is composite.

But we have already experienced that things might go wrong: it can happen in principle that something

is a fake-prime, by which we mean that it is composite yet either aq ≡ 1 mod n or one of aq, a2q, . . . , a2kq

is −1 mod n for all possible choices for a. Why this method is better is the fact that there are no
fake-primes (i.e. there are no analogues for Carmichael numbers here).

3.2. Primality testing 13

Proposition 3.2.2. If n is an odd composite number, then there exists a coprime residue classe a such

that aq 6≡ 1 mod n and aq, a2q, a4q, . . . , a2k−1q 6≡ −1 mod n.

Proof. First, when n is a power of a prime, say, pα, then take a generator a of the cyclic group Z×n . Then,
since

gcd(ϕ(n), n− 1) = gcd(pα − pα−1, pα − 1) = (p− 1) gcd(pα−1, pα−1 + . . .+ p+ 1) = p− 1,

an−1 6≡ 1 mod n. Then obviously none of aq, a2q, . . . , a2k−1q is ±1 modulo n.
Now assume n is not a power of a prime, then write n = n1n2, where 1 < n1, n2 < n and gcd(n1, n2) = 1.

By the Chinese remainder theorem, there exists a residue class a modulo n such that a ≡ 1 mod n1 and
a ≡ −1 mod n2. This clearly implies a 6≡ ±1 mod n, and then aq 6≡ ±1 mod n. On the other hand, a2 ≡
1 mod n1 and a2 ≡ 1 mod n2, implying a2 ≡ 1 mod n. Then aq 6≡ ±1 mod n, and a2q, a4q, . . . , a2k−1q ≡
1 6≡ −1 mod n.

In fact, it can be proved that at least 75% of the residue classes do this job. This gives rise to a
random primality testing: take a convincing number of residue classes a1, . . . , ah mod n, and run the
Miller-Rabin test with them. If any of them shows n is composite, then we n is composite. If all of them
allows n to be prime, then we can say n is a prime with a high confidence. How high? Let us estimate
this using Bayes’s theorem.

Choose a number at random which is approximately n. Then denote by X the event that the chosen
number is composite, by X ′ that it is a prime, and by Y that it survives the Miller-Rabin test with h
numbers. Then

Pr(X | Y) =
Pr(Y | X)Pr(X)

Pr(Y | X)Pr(X) + Pr(Y | X ′)Pr(X ′)
.

Here, from the prime number theorem, we know that Pr(X ′) ≈ log n/n and Pr(X) ≈ 1− log n/n. Also,
if the number is composite, it survives Miller-Rabin by probability at most 4−h, so Pr(Y | X) 6 4−h,
while primes certainly survive Miller-Rabin, so Pr(Y | X ′) = 1. Then

Pr(X | Y) .
4−h(1− log n/n)

4−h(1− log n/n) + log n/n
.

We see that this converges to 0 very fast: even if h is chosen to be blog4 nc (which keeps the whole test
polynomial), the probability of judging a composite number to be a prime tends to 0 (as n tends to
infinity).

Also, it is known that if the Generalized Riemann Hypothesis is true, then for any composite number
n there is an a 6 2 log2 n which proves the compositeness of n in the Miller-Rabin test. Hence assuming
the Generalized Riemann Hypothesis, the Miller-Rabin test is not only a probabilistic, but a deterministic
test which decides the primality of a number in polynomial time.

3.2.3 The Agrawal-Kayal-Saxena polynomial test

However, even the classical Riemann Hypothesis is open, especially so are the generalized versions. In this
section, we present the AKS primality test, which decides primality in polynomial time unconditionally.
Note also that this has only theoretical significance: first, as we will see, the AKS test is very complicated,
while Miller-Rabin is easy to implement; second, almost all mathematicians strongly believe that the
Riemann Hypothesis (and all its reasonable generalizations) are true – all in all, for practical purposes,
Miller-Rabin is totally fine.

Assume n is a large number, fixed once for all.

Proposition 3.2.3. There exists a number 1 6 r = O(logO(1) n) such that the order of n in Z×r is greater
than log2

2 n.

Proof. For any 1 6 i 6 log2
2 n, consider the number ni − 1:

ni − 1 < ni 6 (2log2 n)log2
2 n = 2log3

2 n.

Therefore the number of prime divisors of ni − 1 for any 1 6 i 6 log2
2 n is O(logO(1) n).

14 3. Integer factorization and RSA

Then picking the first prime r which does not appear as a prime divisor of∏
16i6log2

2 n

(ni − 1),

r = O(logO(1) n) and the order of n modulo r is bigger than log2
2 n.

Now with this r in hand, for any 1 6 a 6 n, we can consider the polynomial (X + a)n in variable X.
If n is prime, then

(X + a)n ≡ Xn + an ≡ Xn + a mod n,

the second congruence holds because an ≡ a mod n by Fermat’s little theorem B.3.8, the first congruence
holds because in the binomial expression, all intermediate terms have a factor n.

This implies, in particular, that if n is a prime, then

(X + a)n ≡ Xn + a mod (n,Xr − 1). (3.2.1)

The point is that although the polynomial (X + a)n takes a long time to compute, its modulo Xr − 1
reduction can be computed in polynomial time. Indeed, write n in base 2, and apply repeated squarings
modulo Xr − 1 (like in the proof of Proposition 1.4.2).

Proposition 3.2.4. If n is not a prime or a power of a prime, then there exists a number 1 6 a =
O(logO(1) n) such that (3.2.1) fails or gcd(a, n) > 1.

Proof. We prove by contradiction. Assume n is not a prime, nor a power of a prime, yet gcd(a, n) = 1

and (3.2.1) are true for any a = O(logO(1) n). Then n has a prime divisor p > logC n with some number
C (bigger than the O(1) in the bound for a, in particular, we may assume p > r).

Now consider the field F = Fp(X), where X is a primitive rth root of unity, and from now on, we
compute in F. The hypothesis (3.2.1) gives

(X + a)n = Xn + a,

for any 1 6 a 6 A, where A = O(logO(1) n) (and we choose A to be bigger than 2r). Also, we have

(X + a)p = Xp + a,

for 1 6 a 6 A, as above, since p is a prime. Then, for 1 6 a 6 A,

(Xp)n/p + a = Xn + a = (X + a)n = ((X + a)p)n/p = (Xp + a)n/p.

Since Xp is a primitive rth root of unity again (and every primitive rth of unity is the pth power of a
primitive rth root of unity), this implies

Xn/p + a = (X + a)n/p,

for any 1 6 a 6 A.
For any 1 6 m 6 n coprime to r, we define the ring homomorphism φm : F→ F sending X to Xm,

and we say that m is nice, if (
X̃ + a

)m
= φm

(
X̃ + a

)
= X̃m + a

holds for all 1 6 a 6 A and for any X̃ = Xt, where t is coprime to r (i.e. X̃ runs through all the primitive
rth roots of unity).

Obviously, 1 is nice, and we have already seen that n, p, n/p are all nice. Also, if m and m′ are both
nice, then so is their product:(

X̃ + a
)mm′

=
((
X̃ + a

)m)m′
=
(
X̃m + a

)m′
= X̃mm′ + a.

Let G ⊆ F× denote the multiplicative group generated by the elements X + a with 1 6 a 6 A. Obviously,
for any z ∈ G, φm(z) = zm.

3.3. Multiplayer RSA – the bad way 15

Lemma 3.2.5. Assume that there are exactly t nice residue classes modulo r of the form pi(n/p)j for

i, j > 0. Then #G 6 n
√
t.

Proof of this lemma. For some 0 6 i, j, i′, j′ 6
√
t with (i, j) 6= (i′, j′), we have

m = pi(n/p)j ≡ pi
′
(n/p)j

′
= m′ mod r,

implying φm(z) = φm′(z) for any z ∈ G. The numbers m,m′ here are distinct positive integers not

exceeding n
√
t. Then for any z ∈ G, zm − zm′ = 0, which means that each z ∈ G is a root of the

polynomial Zm − Zm′ . Since a nonzero polynomial over a field cannot have more roots than its degree,
#G 6 max(m,m′) 6 n

√
t.

Lemma 3.2.6. Assume that there are at least t nice residue classes modulo r. Then #G > 2t.

Proof of this lemma. Make all the products with less than t factors from the elements X + a (with
1 6 a 6 A, and allowing repetitions). Since A > 2r > 2t, there are at least 2t many such products, and
we claim that they are distinct.

By contradiction, let P (X) = Q(X) for two such products, where P (Z), Q(Z) are distinct polynomials
of degree less than t. Since P (X), Q(X) ∈ G, for any nice m,

P (Xm) = φm(P (X)) = φm(Q(X)) = Q(Xm).

If m1, . . . ,mt are nice numbers of distinct remainders modulo r, then this means that Xm1 , . . . , Xmt are
all distinct roots of the polynomial P (Z)−Q(Z), which is a contradiction: the polynomial is nonzero
and has degree less than t, while it has at least t roots.

Since the order of n modulo r is at least log2
2 n, we see that the numbers pi(n/p)j fall into at least

log2
2 n residue classes modulo n. Then t > log2

2 n in the notation of the lemmas above. Then

2t = 2t−log2
2 n2log2

2 n = 2t−log2
2 n2log2

2 n = 2t−log2
2 nnlog2 n,

and
n
√
t = n

√
t−log2 nnlog2 n = 2

√
t log2 n−log2

2 nnlog2 n,

so
2t > n

√
t,

the lower bound beating the upper bound, which is obviously a contradiction.

Now the AKS test is the following. Given n, find r (as in Proposition 3.2.3) in polynomial time. Then
for each of the polynomially many 1 6 a 6 A (as in Proposition 3.2.4), check in polynomial time if
it is coprime to n and then if the identity (3.2.1) holds. If they always hold, then n is a prime power
(otherwise, it is composite). Now it is easy to check in polynomial time if n is in fact a prime: all the
possible square roots, cube roots etc. can be found by dyadic splits of [1, n] (this is polynomially many
steps), and the number of possible exponents is trivially at most log2 n.

3.3 Multiplayer RSA – the bad way

In this section, we make our first attempt to construct a secure way of communication between n
participants – based on RSA. Assume that a Trusted Authority takes two large prime numbers p, q,
and computes their product N = pq. Then also computes, for any 1 6 i 6 n, a pair (ei, di) such that
eidi ≡ 1 mod ϕ(N). Now each ei is made public, but the Trusted Authority sends only each decrypting
exponent di to the ith participant. Now we see that the participants can communicate as we have seen
above.

Unfortunately, there are several problems with this setup. First of all, the Trusted Authority is able
to read any message, but let us put this aside. An even bigger problem is that basically any participant
can read any message, even that ones which have been sent to other than her/him.

Assume the jth paricipant wants to decrypt a message sent to the kth participant. First, (s)he
computes a factorization uv of ejdj − 1 such that gcd(u, ek) = 1, and each prime factor of v divides ek.

16 3. Integer factorization and RSA

This is easy to do: first (s)he computes v1 = gcd(ek, ejdj − 1), then v2 = gcd(ek, (ejdj − 1)/v1), then
v3 = gcd(ek, (ejdj−1)/v1v2) and so on, until the gcd becomes 1. Then v = v1 · . . . ·vt and u = (ejdj−1)/v,
and it is easy to see that both conditions hold.

Now since gcd(ϕ(N), ek) = 1, gcd(ϕ(N), v) = 1. Since ϕ(N) | uv, this implies ϕ(N) | u. Then (s)he
can compute a d′k such that ekd

′
k ≡ 1 mod u, which in particular implies ekd

′
k ≡ 1 mod ϕ(N). Maybe

this d′k is not the same as dk but serves as well as dk for decryptions.
But even if the participants are honest, an external eavesdropper can make use of the fact that there are

several exponents in the setup. It is quite likely that in a long communication, it happens that a message
is sent to two different recipients, i.e. the eavesdropper can intercept a pair c1 ≡ me1 , c2 ≡ me2 mod N .
With a little luck, the exponents are coprime, and then u, v ∈ Z satisfying e1u+ e2v = 1 are computable.
But then

cu1c
v
2 ≡ me1ume2v ≡ me1u+m2v = m mod N.

So messages sent to many paricipants are simply readable.

Chapter 4

Probability and information theory

In this chapter, a little background in mathematical analysis can be useful. We advise the reader to
consult [3].

4.1 The Vigenère cipher and its cryptanalysis

For awhile, we return to alphabetic encryptions. In Chapter 1, we have already seen such ciphers: these
replace each character with some other fixed character – these are called monoalphatbetic ciphers. Now
we turn to the Vigenère cipher, an example of polyalphabetic ciphers, where each letter is replaced with
some other one, but this cipher letter may vary.

First Alice and Bob agree on a keyword. Then Bob encrypts his message as follows: he determines the
shift he uses on each letter of the message by using the letters of the keyword one by one. The keyword
letter a stands for no shift, b stands for a shift by one, and so on.

Example 4.1.1. Assume the keyword is ’CHESS’. Encrypt the message ’Learning mathematics is fun’.
Then

LEARN INGMA THEMA TICSI SFUN

CHESS CHESS CHESS CHESS CHES

NLEJF KUKES VOIES VPGKA UMYF,

so the ciphertext is NLEJF KUKES VOIES VPGKA UMYF.

The principle behind is the following. The letters of the keyword fix a variety of permutations of the
alphabet, so breaking the cipher via counting common characters, bigrams, trigrams (which breaks simple
substitution ciphers) is more difficult to perform in this case. Even if the length of the keyword has only
five characters (four different, one is doubled), the common letter ’e’ implies four common letters ’g’, ’l’,
’i’, ’w’ (’w’ appearing with double frequency because of the double ’s’ in the keyword), and the common
trigram ’the’ in a long text implies four common trigrams ’voi’, ’alw’, ’xzw’, ’lzg’, ’ljl’. All in all, the
characteristic of the language is totally mixed up.

For some time in history, the Vigenère cipher was considered to be unbreakable. Then in the 19th
century, when basic statistical tools were developed, this view turned out to be very far from truth. In
this section, we only describe the main methods to attack the cipher and suggest read [1, Section 4.2.2]
to see how these approaches work in action.

The first goal is to determine the length of the keyword. We present two methods to do this.
Consider the repeated fragments (bigrams and trigrams) in the ciphertext, and list all the distances

between the repetitions. Some of the repetitions may occur only by chance, but the length of the keyword
is likely to divide many of the distances. This method depends on the fact that certain fragments are
very frequent in natural languages (think of trigrams ’the’ or ’ing’ in English). In a not too short cipher,
there is a considerable amount of occurrences of ’the’, and if the key is not too long, some of them will be
encrypted the same way. This method is known as the Kasiski test.

17

18 4. Probability and information theory

Another method is the index of coincidence test, which relies on individual letters rather than on
two- or three-letter fragments. For each letter of the alphabet i ∈ A = {a,b, c, . . . , z}, let Fi(s) be its
frequency, i.e. the number of occurrences of i in a given string s. With this notation, define, for any
string s, the index of coincidence

IndCo(s) =
1

length(s)(length(s)− 1)

∑
i∈A

Fi(s)(Fi(s)− 1).

If a very long string is completely random, then all Fi(s) are essentially length(s)/26, so we expect

IndCo(s) ≈ 1

26
≈ 0.0385.

However, if you consider a long text t written in English, then you will find that

IndCo(t) ≈ 0.0685.

Although the difference of these two numbers seems small, it can be applied in practice. Assume there is
a ciphertext c1, . . . , cn. Now for some k ∈ N, split the ciphertext into k pieces s0, . . . , sk−1:

si = cici+kci+2k . . . ci+bn/kck.

For each 0 6 i 6 k − 1, compute IndCo(si). If k is the length of the keyword, then characters in si are
the encrypted versions of the plaintext using the same encryption, i.e. IndCo(si) is close to the index of
coincidence 0.0685 of a natural English text (provided that si is not too short). On the other hand, if k is
not the right guess for the keyword, then IndCo(si)’s are expected to be close to the index of coincidence
0.0385 of a random text. All in all, if the cipher is long enough, and the key is short enough, this method
is expected to tell us the right key length.

Having figured out the key length, we introduce another coefficient which can help to figure out the
difference between the shifts applied to get the si’s. This is the mutual index of coincidence, defined as

MutIndCo(s, t) =
1

length(s) length(t)

∑
i∈A

Fi(s)Fi(t),

for any strings s and t. Again, if s and t are encrypted with the same shift, then their mutual index of
coindidence is large, otherwise, it is small. For any si created above and any σ ∈ A, we define si + σ,
which is a further shift of each character of si by σ (as in the Vigenère cipher: a stands for no shift, b
stands for a shift by one, and so on). For any 0 6 i < j 6 k − 1, and any σ ∈ A, compute

MutIndCo(si, sj + σ).

Denoting the keyword by β1 . . . βk, and singling out the large values of MutIndCo(si, sj + σ), we find a
linear system of equations of the form βi − βj = σ. This system can easily be overdetermined, when we
have to leave out a few equations, but after some trial and error, we can determine β1 . . . βk up to a shift
which is uniform at all the k places. This leaves 26 possibilities, and trying them all, we arrive at the
original plaintext.

4.2 Collision and meet-in-the-middle attacks

Proposition 4.2.1. Assume A1, . . . , An are independent events such that

Pr(A1), . . . ,Pr(An) > p.

Then
Pr((A1 ∪ . . . ∪An)c) 6 e−np.

Proof. First, we claim, for any x ∈ [0, 1],
1− x 6 e−x.

4.3. Perfect secrecy and entropy 19

Indeed, equality holds for x = 0, and the derivative (with respect to x) of the left-hand side is −1, while
that of the right-hand side is not less than −1 for any x ∈ [0, 1]. (Alternatively, writing −x in place of x
in the Taylor expansion ex =

∑∞
j=0 x

j/j!,

e−x = 1− x+
x2

2!
− x3

3!
± . . . ,

and for 0 6 x 6 1, this is indeed at least 1− x, since for any j > 1, x2j/(2j)!− x2j+1/(2j + 1)! > 0.)
Then from the independeny of A1, . . . , An,

Pr((A1 ∪ . . . ∪An)c) = Pr(Ac1 ∩ . . . ∩Acn) =

n∏
i=1

Pr(Aci) 6 (1− p)n 6 (e−p)n = e−np.

The proof is complete.

This statement enables us to attack certain problems with probabilistic algorithms. We illustrate this
phenomenon via the DLP.

Proposition 4.2.2. Assume G is a finite abelian group on N elements, and g is a generator. Let a ∈ G
be given. Then the DLP gx = a can be solved in O(

√
N) steps with high probability (O(C

√
N) steps lead

to probability 1 − e−C2

for any C > 0), where a step is an exponentiation in the group (which can be
computed in O(logN) group multiplications, recall the repetitive squaring from Proposition 1.4.2).

Proof. For some fixed 1 6 n 6 N , pick the elements y1, . . . , yn and z1, . . . , zn, and compute

gy1 , . . . , gyn , agz1 , . . . , agzn .

If there is a match, i.e.
gyi = agzj

for some 1 6 i, j 6 n, then a = gyi−zj . We claim that such a match occurs with high probability, if n is
on the magnitude

√
N , the yi’s are chosen independently and the zj ’s are chosen to be distinct.

As soon as z1, . . . , zn are fixed, each yi gives a match with probability n/N . Since the yi’s are
independent, by Proposition 4.2.1,

Pr(there is no match) 6 e−n
2/N .

Here, if n is chosen to be dC
√
Ne, the probability of not getting a match is at most e−C

2

.

4.3 Perfect secrecy and entropy

Now we try to understand how much information a given ciphertext reveals about the plaintext. For a
proper formalization, we introduce the random variables M,K,C: M is a random plaintext (M : Ω→M),
K is a random key (K : Ω→ K), and C is a random ciphertext (C : Ω→ C). We denote by fM , fK , fC
their density functions, i.e.

fM (m) = Pr(M = m), fK(k) = Pr(K = k), fC(c) = Pr(C = c).

Assume that each fM (m), fK(k), fC(c) is positive, i.e. drop the possible messages, keys and ciphers
of zero probability. (Although theoretically, impossibility does not mean the same as zero probability.)

Also, we may introduce the conditional probabilities

fM |K(m | k) = Pr(M = m | K = k), fM |C(m | c) = Pr(M = m | C = c),

fK|C(k | c) = Pr(K = k | C = c), fK|M (k | m) = Pr(K = k |M = m),

fC|M (c | m) = Pr(C = c |M = m), fC|K(c | k) = Pr(C = c | K = k).

Definition 4.3.1 (perfect secrecy). We say that the cryptosystem has perfect secrecy, if for all m ∈M
and c ∈ C,

fM |C(m | c) = fM (m).

20 4. Probability and information theory

This definition indeed grabs the notion that c does not reveal information on m: intercepting the
ciphertext c, Eve has the same chance when guessing m as a priori.

Proposition 4.3.2. If a cryptosystem has perfect secrecy, then #K > #M.

Proof. Assume #K < #M. Take any m ∈M. Since for each k ∈ K, ek(m) is a well-defined element of
C, we see that by assumption, there exists an element c ∈ C which does not appear as ek(m) when k runs
through K. This means that

fM |C(m | c) = 0.

On the other hand, fM (m) > 0, which excludes perfect secrecy.

In efficient cryptosystems, however, a single key is used many times and for many plaintexts, therefore,
perfect secrecy is impossible to reach. Alice and Bob still have the endeavor to build a cryptosystem
which gives Eve the least possible information.

To measure information, Shannon introduced the notion of entropy in communication theory.

Definition 4.3.3 (entropy). Given a random variable X taking the values x1, . . . , xn with probabilities
p1, . . . , pn, respectively, the entropy is defined as

H(X) = H(p1, . . . , pn) = −
n∑
i=1

pi log2 pi,

with the convention that 0 log2 0 is understood as 0 (note that this is in perfect accordance with
limx→0+ x log2 x = 0, which can be easily seen from l’Hôpital’s rule).

For any n ∈ N, set

Un = {(x1, . . . , xn) ∈ Rn : x1, . . . , xn > 0 and x1 + . . .+ xn = 1},

and

U =

∞⋃
n=1

Un.

With this notation, we may think of the entropy function H as a function from U to R. It is also
symmetric, by which we mean that restricted to any Un, it is invariant under any permutation of the n
coordinates.

Proposition 4.3.4. The function H satisfies that

(H1) H is continuous on any Un;

(H2) H is monotonically increasing on the uniform distributions, i.e. for any m,n ∈ N, if m > n, then

log2m = H

 1

m
, . . . ,

1

m︸ ︷︷ ︸
m many

 > H

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many

 = log2 n;

(H3) H is decomposable, i.e. if (p0, p1, . . . , pn) ∈ Un+1, and q1, . . . , qm ∈ Um, then

H(q1p0, . . . , qmp0, p1, . . . , pn) = H(p0, p1, . . . , pn) + p0H(q1, . . . , qm)

(obviously (q1p0, . . . , qmp0, p1, . . . , pn) ∈ Un+m).

Proof. All are straight-forward.

Proposition 4.3.5 (characterization of the entropy). Assume that H ′ is a symmetric function from U
to R) such that

(H1) H ′ is continuous on any Un;

4.3. Perfect secrecy and entropy 21

(H2) H ′ is monotonically increasing on the uniform distributions, i.e. for any m,n ∈ N, if m > n, then

H ′

 1

m
, . . . ,

1

m︸ ︷︷ ︸
m many

 > H ′

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many

 ;

(H3) H ′ is decomposable, i.e. if (p0, p1, . . . , pn) ∈ Un+1, and q1, . . . , qm ∈ Um, then

H ′(q1p0, . . . , qmp0, p1, . . . , pn) = H ′(p0, p1, . . . , pn) + p0H
′(q1, . . . , qm)

(obviously (q1p0, . . . , qmp0, p1, . . . , pn) ∈ Un+m).

Then H ′ = cH for some c > 0.

Proof. For any n ∈ N, set

f(n) = H ′

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many

 .

We claim that for any m,n ∈ N, f(mn) = f(m) + f(n). Indeed, applying (H3) m times:

H ′

 1

mn
, . . . ,

1

mn︸ ︷︷ ︸
mn many

 = H ′

 1

m
,

1

mn
, . . . ,

1

mn︸ ︷︷ ︸
(m− 1)n many

+
1

m
H ′

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many



= H ′

 1

m
,

1

m
,

1

mn
, . . . ,

1

mn︸ ︷︷ ︸
(m− 2)n many

+
2

m
H ′

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many


. . .

= H ′

 1

m
, . . . ,

1

m︸ ︷︷ ︸
m many

+H ′

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many

 ,

which gives f(mn) = f(m) + f(n).
Writing here m = n = 1, we obtain f(1) = H ′(1) = 0 immediately. Then 0 < f(2) < f(3) < . . . by

(H2). We claim that f(n)/ log n is constant. To this aim, assume p > 2 is a prime number. For a large
number k ∈ N, sandwich pk between two consecutive powers of 2:

2blog2 p
kc < pk < 2dlog2 p

ke.

Applying f and f(mn) = f(m) + f(n), we obtain

blog2 p
kcf(2) < kf(p) < dlog2 p

kef(2).

Then

(log2 p
k − 1)f(2) < kf(p) < (log2 p

k + 1)f(2),

which gives

(k log2 p− 1)f(2) < kf(p) < (k log2 p+ 1)f(2).

Dividing by k log p,
f(2)

log 2
− f(2)

k log p
<
f(p)

log p
<
f(2)

log 2
+

f(2)

k log p
.

22 4. Probability and information theory

Letting k →∞, this implies that f(p)/ log p is the same positive number for each prime p. This clearly
implies that f(n)/ log n is a fixed positive constant. From this, it is clear that for some c > 0,

H ′

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many

 = cH

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many


holds for all n ∈ N.

In the next step, we would like to extend this H ′ = cH from uniform distributions via (H3) to all
distributions in Un ∩Qn for any n ∈ N. First, for any 1 6 a 6 n− 1, we have

H ′

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many

 = H ′

a

n
,

1

n
, . . . ,

1

n︸ ︷︷ ︸
n− a many

+
a

n
H ′

1

a
, . . . ,

1

a︸ ︷︷ ︸
a many

 .

The left-hand side and the second term on the right-hand side equals cH on the corresponding distributions,
so is the first term on the right-hand side, i.e. H ′ = cH for distributions of the form (a/n, 1/n, . . . , 1/n):

H ′

a

n
,

1

n
, . . . ,

1

n︸ ︷︷ ︸
n− a many

 = H ′

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many

− a

n
H ′

1

a
, . . . ,

1

a︸ ︷︷ ︸
a many



= cH

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many

− a

n
cH

1

a
, . . . ,

1

a︸ ︷︷ ︸
a many



= c

H
 1

n
, . . . ,

1

n︸ ︷︷ ︸
n many

− a

n
H

1

a
, . . . ,

1

a︸ ︷︷ ︸
a many




= cH

a

n
,

1

n
, . . . ,

1

n︸ ︷︷ ︸
n− a many

 ,

where we used Proposition 4.3.4. Secondly, for any 1 6 a 6 n− 1, we have

H ′

a

n
,

1

n
, . . . ,

1

n︸ ︷︷ ︸
n− a many

 = H ′
(
a

n
,
n− a
n

)
+
n− a
n

H ′

 1

n− a
, . . . ,

1

n− a︸ ︷︷ ︸
n− a many

 ,

and again H ′ = cH for the left-hand side and the second term on the right-hand side implies the same
for first term of the right-hand side, i.e. H ′ = cH for U2 ∩Q2. Now for any (p1, . . . , pn) ∈ Un ∩Qn with
n > 3,

H ′(p1, . . . , pn) = H ′(p1 + p2, p3, . . . , pn) + (p1 + p2)H ′
(

p1

p1 + p2
,

p2

p1 + p2

)
,

and if H ′ = cH on the right-hand side, then so is on the left, hence induction completes the proof of the
fact that H ′ = cH on Un ∩Qn for any n ∈ N.

Now since Un ∩Qn is dense in Un for any n ∈ N, (H1) completes the proof.

Definition 4.3.6 (equivocation (conditional entropy)). Assume there are two random variables X,Y
with values x1, . . . , xm and y1, . . . , yn, respectively. Their equivocation (conditional entropy) is defined as

H(X | Y) = −
m∑
i=1

n∑
j=1

Pr(Y = yj)Pr(X = xi | Y = yj) log2 Pr(X = xi | Y = yj).

4.3. Perfect secrecy and entropy 23

Proposition 4.3.7. We have
H(X,Y) = H(Y) +H(X | Y), (4.3.1)

where by X,Y , we mean the random variable X × Y , which takes the value (x, y) with probability
Pr(X = x, Y = y) (and analogously to more variables). Also, if X and Y are independent, then

H(X,Y) = H(X) +H(Y). (4.3.2)

Proof. We prove (4.3.1) first. Assuming the values of X are x1, . . . , xm and those of Y are y1, . . . , yn, we
introduce the notation pi,j = Pr(X = xi, Y = yj) for any 1 6 i 6 m, 1 6 j 6 n. Then for any 1 6 j 6 n,

Pr(Y = yj) =

m∑
u=1

pu,j ,

and for any 1 6 i 6 m, 1 6 j 6 n,

Pr(X = xi | Y = yj) =
pi,j

Pr(Y = yj)
=

pi,j∑m
u=1 pu,j

The left-hand side of (4.3.1) is, by definition,

H(X,Y) = −
m∑
i=1

n∑
j=1

pi,j log2 pi,j .

On the right-hand side

H(X | Y) = −
m∑
i=1

n∑
j=1

pi,j log2

(
pi,j∑m
u=1 pu,j

)
.

Then

H(X,Y)−H(X | Y) = −
m∑
i=1

n∑
j=1

pi,j log2

(
m∑
u=1

pu,j

)
= −

n∑
j=1

Pr(Y = yj) log2 Pr(Y = yj) = H(Y),

and the proof of (4.3.1) is complete.
Now assume X and Y are indpendent random variables with values x1, . . . , xm, y1, . . . , yn, respectively.

Let Pr(X = xi) = pi, Pr(Y = yj) = qj , by independency, Pr(X = xi, Y = yj) = piqj then. Now

H(X | Y) = −
m∑
i=1

n∑
j=1

piqj log2 pi = −
m∑
i=1

pi log2 pi = H(X),

and then (4.3.2) follows from (4.3.1).

Proposition 4.3.8. We have
H(X | Y) 6 H(X).

Proof. Assuming the values of X are x1, . . . , xm and those of Y are y1, . . . , yn, we introduce the notation
pi,j = Pr(X = xi, Y = yj) for any 1 6 i 6 m, 1 6 j 6 n. The difference H(X) − H(X | Y) can be
written as

H(X)−H(X | Y) = −
m∑
i=1

 n∑
j=1

pi,j

 log2

(
n∑
v=1

pi,v

)
−

− m∑
i=1

n∑
j=1

pi,j log2

(
pi,j∑m
u=1 pu,j

)
= −

m∑
i=1

n∑
j=1

pi,j log2

(∑m
u=1 pu,j

∑n
v=1 pi,v

pi,j

)

> − log2

 m∑
i=1

n∑
j=1

pi,j ·
∑m
u=1 pu,j

∑n
v=1 pi,v

pi,j


= − log2

 n∑
j=1

m∑
u=1

pu,j

m∑
i=1

n∑
v=1

pi,v

 = − log2 1 = 0,

by applying Jensen’s inequality in the penultimate line, combined with the concavity of t 7→ log2 t.

24 4. Probability and information theory

Definition 4.3.9 (mutual information). Given random variables X and Y , their mutual information is
defined as

I(X,Y) = H(X)−H(X | Y).

Proposition 4.3.10. The mutual information is symmetric and nonnegative, i.e. for any random
variables X and Y , I(X,Y) = I(Y,X) > 0.

Proof. Nonnegativity is clear from Proposition 4.3.8. As for symmetry, by Proposition 4.3.7,

I(X,Y) = H(X)−H(X | Y) = H(X)− (H(X,Y)−H(Y)) = H(X) +H(Y)−H(X,Y),

which clearly implies the statement.

In the cryptographic setup, we would like to measure the information that the cipher gives on the key,
and define H(K | C) to be the key equivocation. The higher its value is, the less information the cipher
reveals about the key.

Proposition 4.3.11. If M and K are independent, then

H(K | C) = H(M) +H(K)−H(C).

Proof. First, by (4.3.1), we have

H(M,K,C) = H(C |M,K) +H(M,K).

Here, since C is determined by M and K, H(C |M,K) = 0, and by (4.3.2),

H(M,K) = H(M) +H(K).

Similarly, since M is determined by K and C,

H(M,K,C) = H(M | K,C) +H(K,C) = H(K,C).

Then

H(K | C) = H(K,C)−H(C) = H(M,K,C)−H(C) = H(M,K)−H(C) = H(M) +H(K)−H(C).

The proof is complete.

4.4 The redundancy of natural languages

If L is a language, denote by L the random variable where the values are the letters of the language, and
the probabilities are the relative frequencies. Set L2 for the bigrams, L3 for the trigrams and so on. Then
the entropy of the language is defined to be

H(L) = lim
n→∞

H(Ln)

n
.

Proposition 4.4.1. For any L, H(L) exists.

Proof. For any m,n ∈ N, we have

H(Lnm)

nm
6
H(

m many︷ ︸︸ ︷
Ln, . . . , Ln)

nm
=
H(Ln)

n
.

Now for a fixed n, and letting m→∞, introducing m = ncm + dm, where 0 6 dm < n,

H(Lm)

m
=
H(Lncm+dm)

m
6
H(Ln)

n
+ o(1).

4.4. The redundancy of natural languages 25

Clearly the sequence (H(Ln)/n)n∈N is bounded (each element is between 0 and H(L)). Assume

S = lim sup
n→∞

H(Ln)

n
, I = lim inf

n→∞

H(Ln)

n

are different. Fix n such that H(Ln)/n < I + (S − I)/3. Now take m’s tending to infinity such that
H(Lm)/m > S − (S − I)/3. This obviously gives a contradiction, when o(1) in the above calculation gets
smaller than (S − I)/3.

Experimentally, it seems that
1 6 H(English) 6 1.5.

Note also that
log2 26 ≈ 4.7.

This means that the English language (like any other natural language) admits a high redundancy:
everything which is expressed, could be expressed on less than one third of the used space. This explains
the phenomenenon that when you apply cryptanalysis to a simple substitution cipher (recall Section 1.2),
you do not have to decrypt all the characters, the plaintext becomes readable earlier.

Chapter 5

Elliptic curves and cryptography

5.1 Elliptic curves and their abelian group structure

Given a field F of characteristic bigger than 3, and elements A,B ∈ F such that 4A3 + 27B2 6= 0, the
elliptic curve defined by them is defined on the projective plane is

E = {[X,Y, Z] ∈ P2(F) : Y 2Z = X3 +AXZ2 +BZ3}.

On the subset {Z 6= 0}, this is the set (with affine coordinates x = XZ−1, y = Y Z−1)

EZ 6=0 = {(x, y) ∈ F2 : y2 = x3 +Ax+B},

and when Z = 0, then automatically X = 0, giving

EZ=0 = {[0, 1, 0]},

from now on, this point [0, 1, 0] will be denoted by O.
Given two different points P = [XP , YP , ZP] and Q = [XQ, YQ, ZQ] on E, they determine a line

passing through both of them, namely, when P 6= Q, then

LP,Q = {λ1[XP , YP , ZP] + λ2[XQ, YQ, ZQ] : [λ1, λ2] ∈ P1(F)},

while if P = Q, then it is the tangent line of E at P . To understand this tangent line, let us use the affine
coordinates. On EZ 6=0, at a point (x, y) ∈ E (assume for a moment that y 6= 0),

d

dx
y2 =

d

dx
(x3 +Ax+B),

2ydy

dx
= 3x2 +A,

dy

dx
=

3x2 +A

2y
.

This gives that the tangent line at (xP , yP) ∈ EZ 6=0,Y 6=0 is{
(x, y) ∈ F2 : y =

3x2
P +A

2yP
x− 3x2

P +A

2yP
xP + yP

}
.

Taking the projectivization, we obtain the line{
[X,Y, Z] ∈ P2(F) : 2yPY = (3x2

P +A)X + ((−3x2
P −A)xP + 2y2

P)Z
}
,

and we see that this definition gives the tangent line even for yP = 0: it contains the point [XP , YP , ZP],
and also any point with coordinates [XP , Y, ZP], which is just the vertical line on the xy-plane (and this
is the tangent line, when the slope is infinity, i.e. when we divide by yP = 0 above).

At the point O, we see that the tangent line is {Z = 0}: indeed, setting Z = 0, we obtain the equation
0 = X3, which has a triple root at X = 0, so O is a triple intersection point of E and LO,O.

All in all, given any two point P,Q ∈ E, we can attach a line LP,Q passing through them, and if
P = Q, then further being tangent to E.

27

28 5. Elliptic curves and cryptography

We claim this line intersects E in a further point of E. We go by cases.
If P = Q = O, then O is the third intersection point (recall that O is a triple intersection of E and

LO,O).
If P = O, and Q = [XQ, YQ, ZQ] 6= O, then we have two subcases. If YQ 6= 0, then [XQ,−YQ, ZQ] is

the third intersection point. If YQ = 0, then LO,Q is the tangent line at Q, so the third intersection point
is Q itself.

If P = [XP , YP , ZP] 6= O, Q = [XQ, YQ, ZQ] 6= O, and xQ = xP , yQ = −yP in the affine notation
(including the case YP = YQ = 0, i.e. P = Q), then LP,Q is a vertical line on the xy-plane, which
intersects E further in O.

Now assume P = [XP , YP , ZP] 6= O, Q = [XQ, YQ, ZQ] 6= O, and their x-coordinates (on the xy-plane)
are different. Then the line passing through them is y = mx+ c for some m, c ∈ F. Then

(mx+ c)2 = x3 +Ax+B

has two roots xP , xQ (counted with multiplicity, when P = Q). Then factoring them out, we obtain a
third solution, giving rise to a third intersection point.

Then we may define an addition on E. Given two points P,Q ∈ E, take the third intersection point
of LP,Q and E (call it R), and then the third intersection point of LR,O and E. This will be the point
P +Q.

Theorem 5.1.1. Under this addition, the points of E form an abelian group with unit element O.

One can easily check that the third intersection point R is nothing else but −P −Q.

5.2 A sketch of the proof of Theorem 5.1.1

In this section, we are goint to sketch the proof of Theorem 5.1.1. Commutativity, unit element and
invertibility are easy to see, the difficult (and deep) part is the associativity. To this aim, we assume that
the underlying field F is algebraically closed: we are free to do this, since the points are always defined as
third intersection points, and if two intersection points are in a certain subfield, then so is the third one.

5.2.1 The resultant and Bézout’s theorem

For fixed n ∈ N ∪ {0}, denote by Pn ⊂ F[Z] the vector space of polynomials of degree smaller than n
(completed with the zero polynomial). Define the linear map

%(A,B) = PA+QB, % : Pn × Pm → Pm+n,

where P (Z) = amZ
m + . . .+ a1Z + a0 and Q(Z) = bnZ

n + . . .+ b1Z + b0 are fixed polynomials (with
am, bn 6= 0). Taking the basis (Zn−1, . . . , Z, 1, Zm−1, . . . , Z, 1) in Pn×Pm and the basis (Zm+n−1, . . . , Z, 1)
in Pm+n, we see that the matrix of % is

S =



am am−1 . . . a0 0 . . . 0
0 am . . . a1 a0 . . . 0

. . .
0 . . . 0 am am−1 . . . a0

bn bn−1 . . . b0 0 . . . 0
0 bn . . . b1 b0 . . . 0

. . .
0 . . . 0 bn bn−1 . . . b0


.

Now % is singular if and only if detS = 0. Singularity is also equivalent to that P and Q share a
common root: if deg gcd(P,Q) > 0, then % is not surjective (since deg(gcd(P,Q)) divides all elements of
%(Pn × Pm)), while if deg gcd(P,Q) = 0, then % is surjective (since all elements of Pm+n is a polynomial
combination of P and Q).

Therefore, detS is zero if and only if P and Q share a common root. This quantity detS is called the
resultant of P and Q.

5.2. A sketch of the proof of Theorem 5.1.1 29

Proposition 5.2.1. Let A be a unique factorization domain, and assume f, g ∈ A[x] are nonzero
polynomials. Then f and g have a common nonconstant factor if and only if the equation uf + vg = 0
has a nontrivial solution such that deg v < deg f and deg u < deg g.

Proof. First, if f and g share a nonconstant factor h ∈ A[x]. Then setting (g/h)f + (−f/h)g = 0, and
obviously deg(f/h) < deg f , deg(−g/h) < deg g. For the converse, take an admissible pair (u, v), then
each irreducible factor of f divides vg. Since deg v < deg f , there must be an irreducible factor of f which
appears as a divisor of g.

Theorem 5.2.2 (Bézout). Assume f, g ∈ F[x, y] are polynomials such that their degrees are m,n,
respectively. If f, g do not share common factors, then they have at most mn common zeros.

Proof. Assume the corresponding projectivizations are F (X,Y, Z) = a0Z
m + . . . + am−1Z + am, and

G(X,Y, Z) = b0Z
n + . . .+ bn−1Z + b0, where aj , bj are the degree j part of f, g, respectively. It is easy

to see that no common factor of f, g implies the same for F,G. Then there are no nontrivial solutions
of uF + vG = 0 such that deg v < degF , deg u < degG. This means that the resultant S made of
the coefficients a0, . . . , am, b0, . . . , bn (note that these are now polynomials) is not constant zero. Then
deg detS 6 mn, and by the fundamental theorem of algebra, we may factorize detS as

∏
(ξx− ζy), and

the number of factors is at most mn. Each such factor gives at most max(m,n) possibilities for Z, so
there are finitely many common zeros [X : Y : Z]. Changing coordinates, we may choose a base point
which is not a common zero, neither lies on a line connecting to common zeros (since F is infinite). With
this base point as [0 : 0 : 1], and repeating the above argument, each factor (ξx− ζy) gives at most one
Z.

5.2.2 The Cayley-Bacharach theorem

If F (X,Y, Z) is a homogeneous polynomial of degree 3 over the base field F, then its zero set γ = {[X :
Y : Z] ∈ PF2} is called a cubic curve.

Theorem 5.2.3 (Cayley-Bacharach). Assume γ1 and γ2 are two cubic curves sharing exactly nine
intersection points P1, . . . , P9. Then if γ is a further cubic curve passing thorugh the first eight intersection
points P1, . . . , P8, then γ is a linear combination of γ1 and γ2 (by this we mean that if γ1, γ2, γ are the
vanishing sets of F1, F2, F , respectively, than for some λ, µ ∈ F2, λF1 +µF2 = F). In particular, γ passes
through P9.

Proof. We prove by contradiction, assume F1, F2 are given as in the statement, and F is a degree 3
homogeneous polynomial vanishing at P1, . . . , P8, which is not a linear combination of F1 and F2.

First we claim that no four of P1, . . . , P9 lie on any line l (the vanishing set of the homogeneous degree
1 polynomial L), since by Bézout’s theorem, this would mean that this L is a factor of F1, F2, leading to
infinitely many common points of γ1, γ2. Similarly, no seven of P1, . . . , P9 can lie on any conic q (the
vanishing set of the homogeneous degree q polynomial Q), since by Bézout’s theorem, this would mean
that this Q is a factor of F1, F2, leading to infinitely many common points of γ1, γ2.

Then we claim that any five of P1, . . . , P9 determine a unique conic passing through them. First, for
the existence, observe that a conic has an equation

aX2 + bXY + cZ2 + dXZ + eY Z + fZ2 = 0,

with not all of a, b, c, d, e, f being zero. Observe that fixing a point is nothing else but a linear condition
on the coefficients a, b, c, d, e, f . Giving five such conditions still leaves a nonzero solution. Now assume
there are two conics q1, q2 passing through the same five points. By Bézout’s theorem, the corresponding
polynomials Q1, Q2 must share a common factor L (with vanishing set l, a line). This line l can contain
at most three of the points, so the line containing the remaining two points must be another common
factor of Q1, Q2, leading to q1 = q2.

Case 1: three of the first eight points, say, P1, P2, P3 are collinear. Let the line containing
them be l. Let q be the conic containing P4, . . . , P8. Now let X be a further point on l, and Y be a
further point not on either l or q. Since F, F1, F2 are linearly independent, there is a nonzero linear
combination of them G = aF + bF1 + cF2 which vanishes at both X and Y . Then the vanishing set of G
passes through P1, . . . , P8, X, so it must be the union of l and q (because it has 4 common points with l,

30 5. Elliptic curves and cryptography

and Bézout applies: 4 > 3 · 1; so the vanishing set of G must be the union of l and a conic, and this conic
must be q, because of 5 common points. However Y /∈ l ∪ q, which is a contradiction.

Case 2: Case 1 does not hold, and six of the first eight points, say, P1, . . . , P6 are on a
conic. Let the conic containing them be q. Let l be the line containing P7, P8. Now let X be a further
point on q, and Y be a further point not on either q or l. Since F, F1, F2 are linearly independent, there
is a nonzero linear combination of them G = aF + bF1 + cF2 which vanishes at both X and Y . Then
the vanishing set of G passes through P1, . . . , P8, X, so it must be the union of l and q (because it has
7 common points with q, and Bézout applies: 7 > 3 · 2; so the vanishing set of G must be the union
of q and a line, and this conic must be l, because of 2 common points). However Y /∈ q ∪ l, which is a
contradiction.

Case 3: none of Case 1 and Case 2 holds. Let l be the line passing through P1, P2, and q the
conic passing through P3, . . . , P7. In this case then, by assumption, P8 /∈ l ∪ q. Let X and Y be further
points on l but not on q. Since F, F1, F2 are linearly independent, there is a nonzero linear combination
of them G = aF + bF1 + cF2 which vanishes at both X and Y . Then, as above, the vanishing set of G
must be l ∪ q. The contradiction follows from that on the one hand, G vanishes at P8 (since it is a linear
combination of F, F1, F2), but on the other hand, P8 /∈ l ∪ q.

The proof is complete.

5.2.3 Completion of the sketch

Assume P,Q,R are points on the elliptic curve, and assume the points O, P,Q,R, P +Q,Q+R,−(P +
Q),−(Q+R),−((P +Q) +R) are all different. Now consider the following cubics c1, c2, c3. Let c1 = E
itself. Let

c2 =line passing through P and Q and −(P +Q)

∪ line passing through P +Q and R and −((P +Q) +R)

∪ line passing through O and Q+R and −(Q+R).

Finally, let

c3 =line passing through Q and R −(Q+R)

∪ line passing through P and Q+R

∪ line passing through O and P +Q and −(P +Q).

One can prove that c1 and c2 have exactly 9 common points (by the condition, it follows that E cannot
contain a line, so by Bézout’s theorem, the number of intersection points is at most 9), and c3 passes
through 8 of them. Then it passes through −((P +Q)+R) as well, so it has to be equal to −(P +(Q+R)).

Of course, there can be many coincidences among the points. Having some topology in hand (e.g.
over the complexes), this can be handled by continuity. As soon as we have the theorem in hand for
the complex field, we might say that the intersection (or tangent) points are computed from algebraic
formulae, and the coincidence giving associativity must be a formal coincidence, which then must hold in
all fields.

5.3 The elliptic curve discrete logarithm problem

Letting Fp the prime field for some p > 3, we may consider an elliptic curve defined by the equation
y2 = x3 +Ax+B over it (with the discriminant condition 4A3 + 27B2 6= 0).

Let us estimate the number of points on E. There is one point at infinity, so restrict to the solutions
of y2 = x3 + Ax+ B in F2. Now for any x, x3 + Ax+ B is either square or not, and it is a square by
probability ≈ 50%. This is because

F× 3 x 7→ x2 ∈ F×2

is a two-folded cover of the quadratic residues (indeed, x2 = (−x)2, and for any a ∈ F , x2 − a has at
most two solutions). Since x3 +Ax+B = 0 has at most three solutions, we may say that essentially for
half of the possible x’s, there are two y’s, so the number of points on E should be around #F .

A deep theorem of Hasse tells us that this is the truth.

5.4. Elliptic curve cryptography 31

Theorem 5.3.1 (Hasse). We have

|#F + 1−#E| 6 2
√

#F.

Proof omitted.

As we have seen earlier, from any x, the value x3 +Ax+B mod p can be computed in polynomial
time. To get a point on E, we should compute its square-root. Using random algorithms, this can be
done fast with high probability, but if p ≡ 3 mod 4, then we also have a simple deterministic way. We
will return to this question later.

Using this, we may find points of E by random methods: pick a random x, compute x3 + Ax+B,
compute its (p+ 1)/4th power, and check if its square is x3 +Ax+B or not. With high probability, after
a few trials, we find a point P ∈ E. Having some points P and Q in hand, it is easy to compute P +Q
(the coefficients determining LP,Q come from simple algebraic manipulations, leading to R = −P −Q,
then LR,O and P +Q come similarly).

Given a point P ∈ E on an elliptic curve, we may consider

nP = P + . . .+ P︸ ︷︷ ︸
n many

∈ E.

Then nP can be computed in polynomial time with the same trick we applied in the proof of
Proposition 1.4.2. Indeed, write

n =
∑

06j61+dlog2 ne

εj2
j , εj ∈ {0, 1}.

Then P, 2P = P + P, 4P = 2P + 2P, . . . , 21+dlog2 neP = 2dlog2 neP + 2dlog2 neP can be computed in
polynomial time, so is their weighted sum (with weights εj).

The elliptic curve discrete logarithm problem (ECDLP from now on), is the following: given P,Q ∈ E,
provided that Q = nP for some n ∈ N, compute the smallest such n. Since even the DLP for multiplicative
groups over prime fields seems to be a computationally difficult problem, and the group operation in
an elliptic curve is much more complicated than that of multiplicative groups of prime fields, we expect
that the ECDLP is also computationally difficult. So far, this seems to be the truth, there is no known
algorithm which would solve the problem in fewer than O(

√
p) steps (and this can be achieved by a

meet-in-the-middle attack, using the collision phenomenon).

5.4 Elliptic curve cryptography

5.4.1 The elliptic curve Diffie-Hellman

Alice and Bob agree on a prime p, an elliptic curve E, and a point P ∈ E. They make them public (they
can agree on it publicly). Now Alice chooses a number nA and Bob chooses a number nB , and they keep
them in secret. Then Alice sends QA = nAP to Bob, and Bob sends QB = nBP to Alice. Now Alice
computes nAQB , and Bob computes nBQA, and this will be their secret key. Observe that

nAQB = nAnBP = nBnAP = nBQA,

so they have the same point nAnBP ∈ E in hand. However, Eve known only nAP and nBP , and from
this, she should compute somehow nAnBP , i.e. she should solve the Diffie-Hellman problem over elliptic
curves.

5.4.2 The elliptic curve ElGamal

It starts similarly, p,E, P ∈ E are fixed and public. Now Alice chooses a number nA and keeps it in
secret. Now she computes Q = nAP and makes it public. If Bob wants to send a message M ∈ E to
Alice, he chooses an ephemeral key k ∈ N and computes the following two points:

C1 = kP, C2 = M + kQ.

32 5. Elliptic curves and cryptography

Then Alice computes C2 − nAC1, obtaining

C2 − nAC1 = M + kQ− nAkP = M + kQ− kQ = M.

For Eve, to break the cipher in general, should solve a problem not easier than the elliptic curve
Diffie-Hellman problem (recall Proposition 2.3.1).

Chapter 6

Attacking the underlying problems

6.1 The discrete logarithm problem

6.1.1 A babystep-giantstep algorithm

Proposition 6.1.1. Assume g generates the abelian group G of order N . Then the DLP gx = h can be
solved in O(

√
N) Pol(logN) steps.

Proof. For n >
√
N + 1 Make the following two lists:

1, g, . . . , gn, h, hg−n, . . . , hg−n
2

.

We claim that the two lists have a common element. Ineed, the solution x satisfies x = nq + r for some
0 6 q, r 6 n. Then h = gqn+r, which implies h−qn = hr.

Therefore, the two lists indeed intersect nontrivially. Assume hence gi = hg−jn for some 0 6 i, j 6 n.
Then x = i+ jn is a solution to the DLP gx = h.

6.1.2 The Pohlig-Hellman algorithm

The following proposition reduces the DLP in a group to the DLP in its Sylow subgroups.

Proposition 6.1.2. Assume G is a cyclic group of order N , where N =
∏r
j=1 p

αj
j . Assume we can solve

the DLP in O(S(pα)) time for any element, whose order is pα. Then for G, we can solve the DLP in
O(
∑r
j=1 S(p

αj
j)) Pol(logN) time.

Proof. For any 1 6 j 6 r, set gj = gN/p
αj
j , and hj = hN/p

αj
j . Now for any 1 6 j 6 r, solve the problem

g
yj
j = hj

in O(S(p
αj
j)) time.

Then in O(logN) time, using the Chinese remainder theorem (Corollary B.2.8), we get

x ≡ yj mod p
αj
j for each 1 6 j 6 r.

Then, for any 1 6 j 6 r, for some zj ∈ Z, x = yj + p
αj
j zj , and then

(gx)N/p
αj
j =

(
gyj+p

αj
j zj

)N/pαjj
= hj = hN/p

αj
j .

This means that
N

p
αj
j

x ≡ N

p
αj
j

logg(h) mod N,

which implies
x ≡ logg(h) mod p

αj
j .

Since this holds for any 1 6 j 6 r, x ≡ logg(h) modulo N .

33

34 6. Attacking the underlying problems

Further, the prime power groups can be reduced to prime groups.

Proposition 6.1.3. Assume G is a cyclic group on pe elements. Assume we can solve the DLP in
O(S(p)) time for any element, whose order is p. Then in G, we can solve the DLP in O(eS(p)) Pol(e log p)
time.

Proof. Assume we have to solve gx = h. We know that for some 0 6 x0, x1, . . . , xe−1 6 p− 1

gx0+x1p+...+xe−1p
e−1

= h.

Then raising to power pe−1,
(gp−1)x0 = hp−1,

and we obtain x0 in O(S(p)) steps. Recursively, assume x0, x1, . . . , xj−1 are already determined. Then

gxjp
j+...+xe−1p

e−1

= hg−x0−x1p−...−xj−1p
j−1

,

and raising to power pe−1−j , we obtain

(gp−1)xj =
(
hg−x0−x1p−...−xj−1p

j−1
)p−1

,

and xj is computed in O(S(p)) time.

6.1.3 The index calculus method

In this section, we present the index calculus method, which solves the DLP in the multiplicative group
of Fp.

First of all, fix a parameter B, and solve the discrete logarithm problem for any prime q 6 B, i.e.
compute logg(q). How to do this? For some random numbers 1 6 i 6 p− 1, compute

gi ≡ gi mod p.

If gi has a prime factor bigger than B, then discard it, otherwise factorize it as

gi =
∏
q6B
q prime

quq,i .

Then by Euler-Fermat (Corollary B.3.7),

i ≡
∑
q6B
q prime

uq,i logg(q) mod p− 1.

Here, if the number of congruences is large enough, then we may be able to solve this congruence system
for logg(q) (be careful: Zp−1 is not a field).

Now in the DLP gx ≡ h mod p, compute, for k = 1, 2, . . ., the value hg−k mod p until we arrive at a
value which has only prime factors not exceeding B. Then

hg−k =
∏
q6B
q prime

qeq ,

which immediately gives

logg(h) = k +
∑
q6B
q prime

eq logg(q).

Of course, the algorithm depends on the choice of the parameter B. For any 0 6 ε 6 1, introduce the
notation

Lε(X) = e(logX)ε(log logX)1−ε .

It turns out that to find enough congruences, B has to run up to L1/2(p)1/
√

2 which altogether gives rise to
a subexponential algorithm (which is still far worse than polynomial, but much better than exponential).
With further improvements, the running time can be decreased to L1/3(p) (still subexponential).

6.2. Factorization algorithms 35

6.2 Factorization algorithms

6.2.1 Smooth numbers

Definition 6.2.1 (B-smooth numbers). For a fixed number B > 1, we say that a positive integer is
B-smooth, if none of its prime factors exceed B. Given X,B > 1, we denote by ψ(X,B) the number of
B-smooth positive integers not exceeding X.

Example 6.2.2. The 3-smooth numbers up to 20 are: 1, 2, 3, 4, 6, 8, 9, 12, 16, 18. Therefore, ψ(20, 3) = 10.

We introduce the notation

L(X) = e
√

logX log logX .

How large L(X) is? On the one hand, it grows faster than any power of logX:

(logX)c = elog logXc = ec log logX ,

and clearly c log logX <
√

logX log logX (for any fixed c > 0), if X is large enough. On the other hand,
it grows slower than any power of X:

Xc = elogXc = ec logX ,

and clearly c logX >
√

logX log logX (for any fixed c > 0), if X is large enough.

Theorem 6.2.3 (Canfield-Erdős-Pomerance). For any 0 < c < 1, we have

ψ(X,L(X)c) = XL(X)−
1
2c (1+o(1)).

Proof omitted.

6.2.2 Pollard’s p− 1 method

When attacking RSA, there is a given large number N = pq, where we do not know the prime factors p
and q.

Starting out from a small number a, say, a = 2, consider the following sequence

gcd
(
a1! − 1, N

)
, gcd

(
a2! − 1, N

)
, gcd

(
a3! − 1, N

)
, . . .

If n! in the exponent is not too large, then these numbers can be computed in a reasonable time. Now
assume that for some not too large n, (p− 1)|n!. Then, by Euler-Fermat (Corollary B.3.7),

an! = (ap−1)n!/(p−1) ≡ 1n!/(p−1) = 1 mod p.

If we are lucky enough that q does not divide an! − 1, then gcd(an! − 1, N) will be p, which gives the
factorization of N .

How difficult it is to compute gcd(an! − 1, N)? First, an! is uncomputably large (with current tools)
even for n = 200. However, we need it only modulo N , and the modulo N powering can be done fast,
think of Proposition 1.4.2. Even better, for an actual calculation, we may get use of the identity

a(n+1)! = (an!)n+1,

so when we are interested in a(n+1)! (modulo N), we only have to raise an! (modulo N) to power n+ 1
(modulo N). Altogether, this means that even n ≈ logN is an acceptable number for the number of trials
in a polynomial algorithm.

This means that prime numbers p, q are insecure for the aim of RSA, if one of p− 1 and q − 1 has
only small prime factors, i.e. one of them is B-smooth for a not too large B.

36 6. Attacking the underlying problems

6.2.3 Factorization via difference of squares

Assume we would like to factorize a large odd integer N . In factorization via difference of squares, we try
to find to squares, say, b2 and a2, such that their difference is divisible by N . If none of b− a and b+ a is
divisible by N itself, then, since

kN = b2 − a2 = (b− a)(b+ a),

both b− a and b+ a share a common factor with N . Therefore, computing, say, gcd(N, b− a) (which can
be done in polynomial time), we obtain a nontrivial factor of N .

If we find to squares a2 ≡ b2 mod N , then we expect that the other condition (i.e. b 6≡ ±a mod N)
fails with probability 21−ω(N), where ω(N) is the number of prime divisors of N (this is not completely
obvious, but not too difficult as well). In RSA, when N has two different prime factors, so as soon as we
find b2 ≡ a2 mod N , it has probability 50% that gcd(N, b− a) gives a nontrivial prime factor of N . The
factorization algorithm consists of three phases.

In the first one, we build relations: take random numbers, until we find a1, . . . , ar such that c ≡
a2
j mod N has only small prime factors. Letting p1, . . . , pt be the first t primes, we can compute the

factorizations
c1 = pe111 · . . . · pe1tt

. . .
cr = per11 · . . . · pertt .

Now we arrive at the second step: we find a certain (nonempty) product cu1
1 · . . . · curr , where each

uj ∈ {0, 1}. We solve the matrix equation
UE = 0

over the field F2, where
U =

(
u1 . . . ur

)
, E = (eij)16i6r,16j6t,

and 0 stands for the 1× t zero matrix. Finding a nontrivial solution (by Gauss elimination over the field
F2), we have

a2 = cu1
1 · . . . · curr = p2α1

1 · . . . · p2αt
t ,

and also
b2 = a2u1

1 · . . . · a2ur
r .

Now obviously b2 ≡ a2 mod N , and because of the modulo N reductions (when computing cj ≡ a2
j mod N),

we have a good chance that none of b− a and b+ a is divisible by N .
The final step is to compute gcd(N, b− a), which can be done polynomially. If by accident it is N , we

take more aj ’s, find other solutions and do the same again.
How long does this procedure take (expectedly)? Letting pt = B, for a singular system of equations,

we need essentially π(B) (or more precisely, π(B) + 1) equations. Of course, a random cj is B-smooth
with probability essentially ψ(N,B)/N . In order to apply Theorem 6.2.3, set B = L(N)c, and optimize at
the end. The number of numbers to be checked is then, expectedly, using also the prime number theorem,

L(N)c/ logL(N)c

L(N)−1/2c
= L(N)c+1/2c 1

c logN
.

The size of this is essentielly determined by the first factor, and the exponent c+ 1/2c is minimized at
c = 1/

√
2.

That is, we have to check

B = e
√

logN log logN/2

numbers to find π(B) B-smooth numbers. This altogether gives a subexponential running time, i.e. a
polynomial of L(N).

6.2.4 Lenstra’s elliptic curve factorization

Given N to be factorized, consider an elliptic curve y2 = x3 +Ax+B modulo N . For the first sight, this
seems nonsense, since N is not a prime, so ZN is not a field. Nevertheless, when computing the sum of
two points, we just add, subtract, multiply and divide, and all these make sense, at least if the number
we divide by is coprime to N .

6.2. Factorization algorithms 37

For a point P ∈ E, its multiples

P, 2P, 3P, . . .

can be computed in most cases. What happens, when we cannot compute nP for some n ∈ N? It means
that during its computation (n− 1)P + P , we draw the line of slope (y(n−1)P − yP)(x(n−1)P − xP)−1,
and this slope does not make sense, meaning that x(n−1)P − xP is not coprime to N . Assuming that it is
divisible by p, this means that nP = O when considered over Fp.

This gives us an algorithm: take a point P on E, and compute

P, 2!P, 3!P,

When n! gets divisible by the order of P modulo p, the resulting point is O over Fp. If we cannot perform
the calculation, it means that we tried to divide by a number (the difference of two x-coordinates) not
coprime to N , that is, we have some d > 1 such that d | N . Computing gcd(d,N), we either find a proper
divisor of N , or we find N itself. In the former case, we are done, in the latter one, we pick a new curve
and a new point.

Again, an actual computation can be made faster by utilizing

(n+ 1)!P = (n+ 1) · n!P.

There is a technical subtlety in the choice of the curve and the point on it. Earlier, we agreed that
given a curve, a random trial gives a good x-coordinate by 50% chance, and then computing the square
root is easy. However, this is not true now, since we do not know the factorization of N : if we compute
x3 +Ax+B, we cannot tell if it a square. Instead, choose the point P first, and adjust the elliptic curve:
pick a random A, then set B such that y2 = x3 +Ax+B holds for P .

Chapter 7

Additional topics

In this chapter, our main source is [2].

7.1 Interactive proofs

7.1.1 How to store the last move in chess?

Assume now Alice and Bob play chess via phone (they tell each other their moves using the chessboard
coordinates). After some time, they decide to adjourn the game. In tournament chess, the player on
move writes her/his move to a piece of paper, and gives it to the arbiter in a closed envelope. The next
day the arbiter opens the envelope and makes the assigned move on the board, then the game continues.
The goal is to deprive both players from clear advantage over each other1.

Of course, Alice and Bob could go for a Trusted Authority and use the same scheme. Nevertheless,
they can solve this problem on their own. Alice generates two large primes p, q such that the first few,
say, ten digits of p (which is the smaller prime by their agreement) defines her move in a previously fixed
way. Then she sends the product N = pq to Bob. Bob is unable to read out Alice’s move, but the next
day, when they continue their game, Alice tells the factorization. Of course, Bob checks it, so that Alice
cannot alter her move.

This way it is possible to create ”electronic envelopes”: Alice can put a certain piece of information in
a deposit, which cannot be altered even by herself, but cannot be read by anyone else until she lets them.

7.1.2 A zero-knowledge proof of that a certain number is square modulo N

First assume p and q are large prime numbers, which Peggy (the prover) keeps in secret. She publishes
their product N = pq, and also claims that a certain residue class y mod N is a square modulo N , i.e.
there exists a residue class x mod N satisfying x2 ≡ y mod N . Her goal is to prove this to Victor (the
verifier) without telling him an actual square root. Of course, she could in principle tell the prime factors,
but doing so would actually tell the square roots.

Proposition 7.1.1. Assume p is an odd prime number, and gcd(a, p) = 1. Then

a
p−1
2 ≡

{
1 mod p, if a is a square modulo p,

−1 mod p, if a is not a square modulo p.

Proof. Assume first that a ≡ b2 mod p for some resiude class b modulo p. By Euler-Fermat (Corollary
B.3.7), we have

a
p−1
2 ≡ (b2)

p−1
2 ≡ bp−1 ≡ 1.

Assume then a is not a square modulo p. Again, by Euler-Fermat (Corollary B.3.7), we certainly have(
a
p−1
2

)2

≡ 1 mod p,

1In competitive chess, there are essentially no adjourned games any more, because of the fast development of engines in
the last few decades.

39

40 7. Additional topics

and we see that a(p−1)/2 is a root of the polynomial x2 − 1 over Fp, hence it must be ±1. Therefore, it
suffices to exclude a(p−1)/2 ≡ 1 mod p in this case. Observe that x 7→ x2 is a two-folded cover from F×p
to the nonzero squares: indeed, if x2

1 ≡ x2
2 mod p, then

0 ≡ x2
1 − x2

2 ≡ (x1 − x2)(x1 + x2) mod p, x1 ≡ ±x2 mod p.

Then the number of nonzero square residue classes is exactly (p− 1)/2. Then consider the polynomial
x(p−1)/2 − 1 over Fp. It has at most (p− 1)/2 roots, since the number of roots cannot exceed the degree
(over a field), and recall that we have already found that many roots: namely, the nonzero squares. This
means that nonsquare residue classes are not roots, so a(p−1)/2 cannot be 1 modulo p.

Proposition 7.1.2. If p is a prime such that p ≡ 3 mod 4, and a ∈ N is coprime to p such that it is a
square modulo p, then a(p+1)/4 is a square root of a.

Proof. We have the following simple calculation (using Proposition 7.1.1):(
a
p+1
4

)2

≡ a
p+1
2 ≡ a · a

p−1
2 ≡ a mod p,

and the proof is complete.

This already tells us how to compute the square root modulo a prime number congruent to 3 modulo
4. When a prime number is 1 modulo 4, we may use Cipolla’s algorithm, which relies on the following
proposition.

Proposition 7.1.3. Assume p is an odd prime, and a is coprime to p such that it is a square modulo p.
Choose b ∈ F×p such that b2 − a is not a square in Fp. Then

(
b+

√
b2 − a

) p+1
2

is a square root of a, where the element b+
√
b2 − a is understood in the field Fp2 .

Proof. Set ω =
√
b2 − a. We will calculate in the field Fp2 = Fp(ω). Then the Frobenius automorphism

σ : x 7→ xp maps ω to −ω: indeed, σ(ω)2 = σ(ω2) = σ(b2 − a) = b2 − a by Corollary B.3.8, therefore,
σ(ω)2 = ±ω (its square is fixed under σ); and the polynomial xp − x has at most p roots, so σ cannot fix
anything outside Fp. Then(

(b+ ω)
p+1
2

)2

= (b+ ω)p+1 = (b+ ω)p(b+ ω) = (b− ω)(b+ ω) = b2 − ω2 = b2 − (b2 − a) = a,

and the proof is complete.

So when p ≡ 1 mod 4, we may compute the square root as follows: we pick random b’s, apply
Proposition 7.1.1 to decide if b2 − a is a square or not modulo p, until we arrive at a nonsquare (it is
likely that this happens fast: note that we win by probability 1/2 in each trial). This nonsquare (or
rather, its square root in the bigger field) gives us a square root of a modulo p.

All in all, if Victor learns p and q, he can easily compute a square root x of y ≡ x2 mod N .
To solve this problem, Peggy generates another square, s ≡ r2 mod N , and sends s to Victor. Now

Victor chooses a random bit β ∈ {0, 1} and sends it to Peggy. If β = 0, Peggy sends r to Victor, who
checks s ≡ r2 mod N . If β = 1, Peggy sends xr to Victor, who checks ys ≡ (xr)2 mod N . Observe that
in none of the cases Peggy tells too much information on x to Victor: indeed, when β = 0, then r has
nothing to do with y; while if β = 1, the original square root x is perturbed by a random square root.
This means basically that Peggy does not inform Victor about x. However, Victor still learns something,
at least with some probability: if one of y and s is not a square, then Peggy fails his check with probability
1/2. This is not very much convincing, but Victor can tell Peggy in advance: ”I will challenge you one
hundred times. In each challenge, give me another square s, and I will ask you to send me the square
root of either s or ys, chosen at random. If you fail any of the challenges, I will refuse to believe that
your number y is a square. If you pass all the challenges, I will believe that your number y is indeed a
square, since the probability 1− 2−100 is more than enough for me.”

7.2. Identification 41

7.1.3 Using our password

When we withdraw cash from an ATM, we use our password, and the computer system of the bank checks
it. There is a weak point in this procedure: if a hacker gets access to the files of the bank, (s)he can learn
our password.

Using the complexity of factorization, we may find a solution to this weakness. Assume our password
is a large prime p. We also generate another large prime number q, and tell the bank their product
N = pq (and, as usual, we keep p, q in secret). The computer system of the bank stores only N , and
when withdrawing cash, we tell p to the ATM, and the system checks if p divides N , but does not store p.

Now even if the hacker manages to get access to the files of the bank, and learns our number N , (s)he
is still unable to use our password p without factorizing N .

What happens if we cannot trust that the bank indeed does not store our prime number p? Then
after the first withdrawal, p is available for the bank – and also for the skillful hacker.

A version of the RSA can solve this problem, namely, instead of telling the bank the prime divisor p,
we only prove to the bank that we know the prime factorization of N . To this aim, we tell the bank not
only N , but also a number e, and at cash withdrawals, the following protocol can be applied. The ATM
generates a random number 1 6 x 6 N , and tells us y ≡ xe mod N . We can easily tell what the original
x was: letting d be the multiplicative inverse of e (which is easily computable for us), yd ≡ x mod N
(recall Section 3.1). Now the ATM checks if we really recovered x, and if yes, it accepts that we know the
factorization of N .

7.2 Identification

There are certain situations when it is important for Alice to be able to check whether the incoming
message have been really encrypted Bob. In this section we present a few situtions where such issues are
addressed.

7.2.1 An RSA-based digital signature

In the following setup, we turn the RSA upside down. Now Bob chooses two large primes p, q and
exponents d, e such that de ≡ 1 mod ϕ(N), where N = pq. Then publishes N and e and keeps the
remaining numbers in secret. If his message is 1 6 m 6 N , a number coprime to N , he computes
md mod N , and sends it to Alice. Then Alice raises the incoming message to power e, obtaining

(md)e ≡ m mod N,

recall Section 3.1. For a random number, its eth power is most likely a gibberish, so if Alice gets a
meaningful message, she learns that it must have been sent by Bob indeed. This way Bob’s md is not
only a message, but it also serves as a personal identifier of him, an example of a digital signature.

7.2.2 Multiplayer RSA – the good way

In this section, we assume that there are n participants, each of them using a public key cryptosystem
(let us index them by 1 6 i 6 n). To this aim, each of them chooses two large prime numbers pi, qi, and
exponents di, ei such that diei ≡ modϕ(Ni), where Ni = piqi. Now each of them publishes Ni, ei.

Since the moduli are different, this time they cannot use residue classes, so the possible messages
are positive integers. Now assume the ith participant wants to send the message m ∈ N to the jth
participant. First of all, (s)he writes m in base Ni:

m =

t∑
k=0

m(i, k)Nk
i .

Now (s)he applies her/his own decryption function di to each digit m(i, k). They altogether give rise to a
certain number, say,

Di(m) =

t∑
k=0

(m(i, k)di mod Ni)N
k
i .

42 7. Additional topics

Now (s)he rewrites this number Di(m) in base Nj :

Di(m) =

t∑
k=0

Di(m)(j, k)Nk
j ,

and applies the addressee’s encryption function ej to each digit Di(m)(j, k), giving, say

Ej(Di(m)) =

t∑
k=0

((Di(m)(j, k))ej mod Nj)N
k
j .

Then the (s)he sends the number Ej(Di(m)) to the addressee.
Now the recipient applies her/his own decryption function dj to each digit, this gives back Di(m)(j, k),

as usual:
((Di(m)(j, k))ej)dj ≡ Di(m)(j, k) mod Nj ,

at least when gcd(Di(m)(j, k), Nj) = 1, but this holds with high probability (at least when t is much
smaller than all the pi, qi’s, which we assume from now on). Now these Di(m)(j, k)’s give rise to Di(m):

Di(m) =

t∑
k=0

Di(m)(j, k)Nk
j .

Finally, the recipient rewrites Di(m) in base Ni,

Di(m) =

t∑
k=0

(m(i, k)di mod Ni)N
k
i .

then applies sender’s encryption function to each digit, giving back, as usual:

(m(i, k)di)ei ≡ m(i, k) mod Ni,

at least when gcd(m(i, k), Ni) = 1, but this holds with high probability. Then

m =

t∑
k=0

m(i, k)Nk
i ,

so the reader obtains the original message. But this is not the only outcome of the method. Simultaneously,
the jth participant can be almost certain that the sender was the ith participant, so the method provides
digital signatures as a by-product.

7.3 Secret sharing

The basic problem of secret sharing is the following: given some information, share certain pieces of it
among n people such that when they get together, they can read out the information, but no subgroup of
n− 1 people can do so.

A simple solution is the following. Let the secret be a residue class S modulo m. Choose then n− 1
random values D1, . . . , Dn−1 modulo m, and set

Dn ≡ S −D1 − . . .−Dn−1 mod m.

Now the ith participant receives the value Di for 1 6 i 6 n. It is clear that together they can reveal S,
since

S ≡ D1 + . . .+Dn mod m.

However, if n− 1 of them gets together, and share their knowledge, they still cannot have a good guess
on S, which can be any residue class modulo m.

A more general problem is the following: there are n participants and the goal is to give each of them
some piece of the given secret S such that any t of them can reveal the whole S, but no t− 1 of them can
do so. The following idea is due to Shamir.

7.3. Secret sharing 43

Let the secret S be a number in any fixed field F. Set a0 = S, and choose random numbers a1, . . . , at−1.
Construct the polynomial

f(x) = a0 + a1x+ . . .+ at−1x
t−1 ∈ F[x].

We see that f(0) = S. Take random nonzero elements x1, . . . , xn ∈ F× and let the ith participant receive
the value yi = f(xi).

Proposition 7.3.1. Let F be a field. Assume that a1, . . . , am, b1, . . . , bm ∈ F such that the ai’s are
distinct. Then there exists a unique polynomial f ∈ F[x] such that it is either the zero polynomial or its
degree is at most m− 1 which satisfies f(ai) = bi for any 1 6 i 6 m.

Proof of uniqueness. Assume f(x) and g(x) are two such polynomials. Then consider the polynomial
h(x) = f(x)− g(x). Then either h(x) = 0 or deg h(x) 6 m− 1. Note on the other hand that a1, . . . , am
are all roots of h(x), and the number of roots cannot exceed the degree of a polynomial over a field. Then
the possibility deg h(x) 6 m− 1 is excluded, so h(x) = 0, and then f(x) = g(x).

Proof of existence via Lagrange’s interpolation. Consider the polynomial

f(x) =

m∑
i=1

bi
∏

16j6m
j 6=i

x− aj
ai − aj

.

It is clear that f(x) = 0 or deg f(x) 6 m− 1. Also, for a single monomial,

∏
16j6m
j 6=i

x− aj
ai − aj

≡

{
1, if x = ai,

0, if x = ai′ for some 1 6 i′ 6 m with i′ 6= i.

From this, the statement is obvious.

Proof of existence via Newton’s interpolation. We induct on m ∈ N. The statement for m = 1 is obvious,
since the polynomial can be chosen to be the constant b1. Now assume that g(x) is an appropriate
polynomial for the first m − 1 pairs in the input: g(x) = 0 or deg g(x) 6 m − 2, and g(ai) = bi for
1 6 i 6 m− 1. Then set

f(x) = g(x) + (bm − g(am))

m−1∏
j=1

x− aj
am − aj

.

Clearly f(x) satisfies the degree conditions, f(ai) = g(ai) = bi for 1 6 i 6 m− 1, while at am, we have

f(am) = g(am) + (bm − g(am))

m−1∏
j=1

am − aj
am − aj

= g(am) + bm − g(am) = bm,

and the proof is complete.

Although both proofs provide an algorithm, Newton’s one is faster in practice (although it is not as
explicit as Lagrange’s one).

With this tool in hand, it is clear that t people can figure out the shared secret: they simply interpolate
the value f(0) = S. However, given only t− 1 pieces of the secret, the polynomial can still take any value
of F at 0.

Appendices

45

Chapter A

Algebraic structures

A.1 Groups

Definition A.1.1 (group). Assume G is a set, and there is a binary operation on it, e.g. a function ·
from G×G to G, which satisfies the following conditions (for a better notation, we write x · y in place of
·(x, y)):

• for any x, y, z ∈ G, (x · y) · z = x · (y · z) (associativity);

• there exists e ∈ G satisfying that for any x ∈ G, x · e = e · x = x (unit element);

• for any x ∈ G, there exists y ∈ G satisfying x · y = y · x = e (inverse).

Then we say that (G, ·) is a group (or G is a group, if the operation is clear).

Notational convention: the inverse of an element x is often denoted by x−1.
In most applications below, our groups will be abelian.

Definition A.1.2 (abelian (commutative) group). Assume (G, ·) is a group such that for any x, y ∈ G,

x · y = y · x.

Then we say that G is an abelian (commutative) group.

Example A.1.3. The structures (Z,+), (Q,+), (R,+), (C,+), (Q×, ·), (R×, ·), (C×, ·), (Q+, ·), (R+, ·)
are all abelian groups.

Example A.1.4. Given any set S, denote by Perm(S) the set of its permutations. Two permutations
π, σ ∈ Perm(S) can be concatanated by the composition

π ◦ σ ∈ Perm(S) : ∀x ∈ S : (π ◦ σ)(x) = π(σ(x)).

Then (Perm(S), ◦) is a group: composing functions is associative, the identical permutation is the unit
element, and the inverse permutation of each permutation is its inverse. Note that this group is not
abelian if #S > 3.

Proposition A.1.5. Assume G is a group. Then its unit element is unique. Also, the inverse of each
element of G is unique.

Proof. Assume e, f are unit elements. Then

e = ef (since f is a unit element)

= f (since e is a unit element),

and the proof of the uniqueness of the unit element is complete.

47

48 A. Algebraic structures

Similarly, let x ∈ G, and assume y, z are both inverses of x. Then (denoting by e the unit element)

y = ye (since e is the unit element)

= y(xz) (since z is the inverse of x)

= (yx)z (by associativity)

= ez (since y is the inverse of x)

= z (since e is the unit element),

and the proof of the uniqueness of the inverse is complete.

Proposition A.1.6. Assume G is a group, and a, b ∈ G are fixed elements. Then the equation ax = b
has a unique solution. The same holds for the equation ya = b.

Proof. In the first equation, observe that x = a−1b is a solution: indeed, a(a−1b) = (aa−1)b = b, where
we used associativity and that aa−1 is the unit element. Also, if x is any solution, then multiplying both
sides of the equation by a−1 on the left, we obtain x = a−1b.

The proof is similar for the equation ya = b: y = ba−1 is a solution, and it must be the only one,
which can be seen by multiplying the both sides on the right by a−1.

Proposition A.1.7. Assume G is a finite group, and x ∈ G. Then for any n ∈ N, (xn)−1 = (x−1)n.

Proof. Assume the unit element is e. By associativity,

xn(x−1)n = x · . . . · x︸ ︷︷ ︸
n times

·x−1 · . . . · x−1︸ ︷︷ ︸
n times

= e,

and the proof is complete.

Therefore, the conventions x0 = e (the unit element) and x−n = (xn)−1 for n ∈ N are completely
consistent, so the notation xn makes sense for n ∈ Z.

Proposition A.1.8. Assume G is a finite group with unit element e. Then for any element x ∈ G, there
is a positive integer n ∈ N such that

xn = x · . . . · x︸ ︷︷ ︸
n times

= e.

Proof. Consider the elements x = x1, x2, x3, . . . ∈ G. Since G is finite, there exist positive integers k < l
such that xk = xl. Multiplying both sides by (xk)−1 = x−k, we obtain e = xl−k, and here, l− k ∈ N.

Definition A.1.9 (order of element). Assume G is a finite group with unit element e. For any element
x ∈ G, we define its order (o(x) in notation) the smallest positive integer n satisfying xn = e.

Proposition A.1.10. Assume G is a finite group with unit element e, and x ∈ G. Then for any k ∈ N,
xk = e if and only if k is a multiple of o(x).

Proof. First assume o(x) | k, i.e. k = lo(x), where l ∈ N. Then

xk = (xo(x))l = el = e.

Conversely, assume o(x) - k. Then by Proposition B.1.1, for some c ∈ N ∪ {0} and 0 < d < o(x),
k = co(x) + d. Then

xd = xk−o(x) = xkx−o(x) = ee−1 = e,

which contradicts the minimal choice of o(x).

Definition A.1.11 (subgroup). Assume (G, ·) is a group. If H ⊆ G, and (H, ·) is a group, then we say
that H is a subgroup of G. In notation: H 6 G.

Example A.1.12. We have (Z,+) 6 (Q,+) 6 (R,+) 6 (C,+). Also (Q+, ·) 6 (Q×, ·).

Proposition A.1.13. Assume G is a group, and Hi (i ∈ I) are subgroups of G. Then H = ∩i∈IHi is
also a subgroup of G.

A.2. Rings and fields 49

Proof. Associativity just follows from the associativity of G. We have to check that H is closed under
multiplication and taking inverses. First, if x, y ∈ H, then for each i ∈ I, x, y ∈ Hi, and then xy ∈ Hi,
since Hi is a subgroup. Therefore, xy ∈ Hi for each i ∈ I, implying xy ∈ H. The proof for inverses goes
similarly: if x ∈ H, then x ∈ Hi for each i ∈ I, and since Hi is a subgroup, x−1 ∈ Hi, giving x ∈ H.

Definition A.1.14 (generated subgroup). Assume G is a group, and A ⊆ G. Then the subgroup
generated by A is

〈A〉 =
⋂

A⊆H6G

H.

The intersection is nonempty, since A ⊆ G, and it is a subgroup, since it is an intersection of subgroups.

Proposition A.1.15. For a group G and A ⊆ G,

〈A〉 = {a1 · . . . · an : for each 1 6 i 6 n, ai ∈ A or a−1
i ∈ A}.

Proof. The right-hand side is clearly a subgroup: it is closed under multiplication and taking inverses,
also it is containing A, so it is taken into account in the definition of 〈A〉. Also, any H 6 G containing A
contains the elements a1, . . . , an and hence all the products on the right-hand side.

Corollary A.1.16. For a group G and x ∈ G, 〈x〉 = 〈{x}〉 = {xn : n ∈ Z}.

Theorem A.1.17 (Lagrange). Assume G is a finite group and H is a subgroup of G. Then #H | #G.

Proof. Introduce the following relation on the pair of elements of G: x ∼ y, if for some h ∈ H, xh = y.
This is an equivalence relation: 1 ∈ H implies x ∼ x; if xh ∼ y for some h ∈ H, then yh−1 = x and
h−1 ∈ H; if x ∼ y ∼ z, then for some h1, h2 ∈ H, xh1 = y, yh2 = z, then x(h1h2) = z and h1h2 ∈ H,
yielding x ∼ z. Then G is partitioned into equivalence classes, and we claim that each equivalence class
has the same number of elements as H (this clearly implies the statement). Take any equivalence class C,
let x be a representative of it. Then take the function f(h) = xh for h ∈ H, obviously f(H) ⊆ C. Also,
for any y ∈ C, there is h satisfying xh = y, then f(h) = y, thus f(H) = C. Then f surjects H onto C,
it suffices to see that it also injects H into C. Assume that for h, h′, f(h) = f(h′). Then xh = xh′, so
multiplying by x−1 on the left, h = h′.

Corollary A.1.18. For a finite group G and x ∈ G, o(x) | #G.

Proof. The elements of 〈x〉 are exactly the elements x = x1, x2, x3, . . . , xo(x) (and these elements are
distinct: if any two of them coincide, then their quotient is the unit element e, contradicting the minimal
choice of the order of x).

A.2 Rings and fields

Definition A.2.1 (ring). Assume R is a set with two binary operations +, · such that

• (R,+) is an abelian group;

• for any x, y, z ∈ R, (x · y) · z = x · (y · z) (associativity of ·);

• for any x, y, z ∈ R, x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z (distributivity).

Then we say that (R,+, ·) is a ring.

Terminological and notational conventions: the unit element of (R,+) is often called the zero element
of the ring, and they will often be denoted by 0.

Our rings (R,+·) will exclusively be commutative, and will have unit elements for the operation ·
(not only for +).

Definition A.2.2 (commutative ring with unit element). We say that (R,+, ·) is a commutative ring
with unit element, if

• for any x, y ∈ R, x · y = y · x (commutativity);

50 A. Algebraic structures

• there exists 1 ∈ R such that 1 6= 0, and for any x ∈ R, x · 1 = 1 · x = x (unit element for ·).

Definition A.2.3. Assume (F,+, ·) is a commutative ring with unit element 1, where (F \ {0}, ·) is an
abelian group. Then we say that (F,+, ·) is a field.

Terminological and notational conventions: (F,+) is called the additive group, (F×, ·) is called the
multiplicative group, where F× stands for F \ {0}.

Example A.2.4. The following structures are all commutative rings with unit element: (Z,+, ·), (Q,+, ·),
(R,+, ·), (C,+, ·). The following structures are all fields: (Q,+, ·), (R,+, ·), (C,+, ·). Given any field
F and n ∈ N, the n× n matrices over F form the ring Mat(n,F), which has a unit element but is not
commutative, if n > 2.

A.3 Vector spaces and projective spaces

Definition A.3.1 (vector space). Let F be a field. Assume V is an abelian group such that F acts on
V via multiplication (i.e. for any λ ∈ F, v ∈ V , there is an element λv ∈ V). If this action satisfies the
properties

• for any λ, µ ∈ F, v ∈ V , (λ+ µ)v = λv + µv;

• for any λ ∈ F, u, v ∈ V , λ(u+ v) = λu+ λv;

• for any λ, µ ∈ F, v ∈ V , (λµ)v = λ(µv);

• for any v ∈ V , 1v = v (where 1 stands for the unit element of F),

then we say that V is a vector space over F.

Remark A.3.2. The elements of V are called vectors, while those of F are called scalars.

Proposition A.3.3 (d-dimensional vector space over F). Let F be a field, and d ∈ N. Then, as a set:

Fd =


v1

. . .
vd

 : v1, . . . , vd ∈ F

 .

On Fd, we define the coordinatewise addition:u1

. . .
ud

+

v1

. . .
vd

 =

u1 + v1

. . .
ud + vd

 .

Finally, F acts on Fd via multiplication in coordinates:

λ

v1

. . .
vd

 =

λv1

. . .
λvd

 for λ ∈ F.

Then Fd is a vector space (often called the d-dimensional vector space) over F.

Proof. All are straight-forward calculations.

Remark A.3.4. Often F0 is meant to be the trivial group with the trivial F-action.

Definition A.3.5 (linear function). Assume U, V are vector spaces over F. We say that φ : U → V is a
linear function, if

• for any u1, u2 ∈ U , φ(u1 + u2) = φ(u1) + φ(u2);

• for any λ ∈ F, u ∈ U , φ(λu) = λφ(u).

A.3. Vector spaces and projective spaces 51

Definition A.3.6 (endomorphism, automorphism of vector spaces). Assume V is a vector space. If
φ : V → V is a linear function, then we say it is an endomorphism (or a linear transformation) of V . If φ
is a bijective endomorphism of V , then we say it is an automorphism of V .

Proposition A.3.7. The endomorphisms of Fd are the elements of Mat(d,F), when matrices act on
vectors via left matrix-multiplication. The automorphisms of Fd are the elements of GL(d,F), when
matrices act on vectors via left matrix-multiplication.

Proof. It is a straight-forward calculation that matrices act linearly. Also, bijectivity is equivalent to
the invertibility of the corresponding matrix, which is nothing else but being in GL(d,F). Therefore, it
suffices to see that every endomorphism can be written in matrix form. Given a linear transformation φ
of Fd, introduce

v1 = φ




1
0
. . .
0


 , . . . , vd = φ




0
. . .
0
1


 .

Now one can verify via calculation that the matrix whose ith column is vi for 1 6 i 6 d stands for φ.

Remark A.3.8. An alternative – although less widespread – notation is to use row vectors, i.e. Fd =
{
(
v1 . . . vd

)
: v1, . . . , vd ∈ Fd}. In this notation, matrices (corresponding to endomorphisms) act on

the right.

Definition A.3.9 (projective space). Assume V is a vector space over the field F. Then the corresponding
projective space PV is defined as follows. Consider the set of nonzero vectors, and identify two of them, if
one is a scalar multiple of the other. The elements of PV are the elements obtained after this identification.
In more mathematical terms:

PV = V \ {0}/ ∼, where u ∼ v, if u = λv for some λ ∈ F×.

Definition A.3.10 (d-dimensional projective space). The d-dimensional projective space over the field
F is the above, when the vector space is Fd+1. We usually denote it by Pd(F).

Example A.3.11 (projective plane and its affine coverings). Let F be any field, and consider the
projective plane P2(F). Any element of P2(F) can be represented by a vector (X,Y, Z) ∈ F3, where
not all of X,Y, Z are zero. However, this representation is not unique (unless F is the exceptional
2-element field): we can multiply each of X,Y, Z by the same λ ∈ F×. The resulting vector will be
(λX, λY, λZ) ∈ F3, it is admissible in the sense that not all of λX, λY, λZ equals zero, and it stands for
the same element of P2(F) as (X,Y, Z) by definition. In notation, we write this element [X,Y, Z] (or
equivalently, [λX, λY, λZ]), i.e. we change (,) around the coordinates to [,] in order to indicate that we
are speaking about the equivalence class, not the vector.

The space P2(F) can be covered with three affine planes, i.e. three copies of F2, which underlines the
fact that P2(F) is indeed a two-dimensional structure (which explains the 2 in the exponent, and the
name ’plane’). This goes as follows. Consider the affine xy-plane, i.e.

F2
xy = {(x, y) : x, y ∈ F2},

this is nothing else but the two-dimensional vector space over F (we only introduce x, y for notational
convenience). Now consider the mapping

F2
xy 3 (x, y) 7→ [x, y, 1] ∈ P2(F).

We see that this covers any [X,Y, Z] which satisfies Z 6= 0.
If we similarly add further

F2
xz = {(x, z) : x, z ∈ F2}, F2

yz = {(y, z) : y, z ∈ F2},

and take the mappings

F2
xz 3 (x, z) 7→ [x, 1, z] ∈ P2(F), F2

yz 3 (y, z) 7→ [1, y, z] ∈ P2(F),

52 A. Algebraic structures

then we see that we obtain each point of P2(F), since for any element of P2(F), there is a non-vanishing
coordinate of any representative (on this point, it may be worth to note that although coordinates of
representatives are usually not well-defined, vanishing or non-vanishing of coordinates of representatives
are: these properties are invariant under scalar multiplications).

These mappings can be easily inverted, e.g.

P2(F) \ {Z = 0} 3 [X,Y, Z] with Z 6= 0 7→ (XZ−1, Y Z−1) ∈ F2,

(and similarly for the other non-vanishing coordinates).

Remark A.3.12. In general, Pd(F) can be covered with d+ 1 copies of Fd.

Chapter B

Number theory

B.1 The fundamental theorem of arithmetic

In this section, we state and prove the fundamental theorem of arithmetic: the fact that any nonzero
integer can be written – essentially uniquely – as the product of prime (irreducible) numbers. The heart
of the matter is in fact that primes and irreducibles coincide among rational integers.

Proposition B.1.1 (euclidean division). Given integers a, b, b 6= 0. Then there exist integers c, d
satisfying a = bc+ d and |d| < |b|.

Proof. Let a > 0, b > 0, the remaining cases are similar. Induct on a. For a = 1, the statement is
trivial (c = 1, d = 0 if b = 1 and c = 0, d = 1 if b > 1). Now assume that the statement holds for any
0 6 a′ < a. If a < b, then c = 0, d = a. If a > b, then a − b = bc′ + d′ with |d′| < |b| by induction, so
a = b(c′ + 1) + d′.

Proposition B.1.2. Assume a, b ∈ Z. Then there exists an integer gcd(a, b) satisfying gcd(a, b) | a, b
and also that whenever d | a, b, d | gcd(a, b).

Proof. If b = 0, then gcd(a, b) = a does the job. Otherwise, consider the sequence (a, b, d1, . . . , dn, 0),
where each di is defined via the euclidean division di−2 = ci−1di−1 + di (with d−1 = a, d0 = b, dn+1 = 0).
It is clear that such a sequence of euclidean divisions terminates, since the absolute value decreases in
each step. Set gcd(a, b) = dn. It is clear that dn | dn+1, dn, and then by induction, dn | di, di−1 implies
dn | di−2. Also, if d | di−2, di−1 (which holds for i = 1), then d | di, yielding d | dn = gcd(a, b).

Observe that gcd(a, b) is well-defined only up to sign.

Definition B.1.3 (greatest common divisor). The greatest common divisor of a, b ∈ Z is the nonnegative
number which satisfies the conditions imposed on gcd(a, b) in Proposition B.1.2.

Definition B.1.4 (euclidean algorithm). The sequence of euclidean divisions in the proof of Proposition
B.1.2 is called the euclidean algorithm.

Proposition B.1.5. Assume a, b ∈ Z. Then gcd(a, b) = au+ bv for some u, v ∈ Z.

Proof. If b = 0, the statement is trivial. Otherwise, we can create the same sequence (a, b, d1, . . . , dn, 0)
as in the proof of Proposition B.1.2. Clearly d−1 = a, d0 = b are integer combinations of a and b. Also, if
di−2, di−1 are integer combinations, then so is di.

Definition B.1.6 (prime numbers). A nonzero integer p is said to be prime, if p - 1, and whenever p | ab,
p | a or p | b.

Definition B.1.7 (irreducible numbers). A nonzero integer p is said to be irreducible, if p - 1, and
whenever p = ab, a | 1 or b | 1.

Proposition B.1.8. An integer p is prime if and only if it is irreducible.

53

54 B. Number theory

Proof. Assume p is prime, and let p = ab. Then a, b 6= 0. If a - 1 and b - 1, then 1 < |a|, |b| < p. Therefore
p - a, b, which is a contradiction.

Assume p is irreducible, and p | ab. If p | a, we are done. If p - a, then gcd(a, p) = 1, since p is
irreducible. Then there exist integers u, v satisfying au+pv = 1. Multiplying by b, we obtain abu+pbv = b,
the left-hand side is divisible by p, so is the right-hand side.

Theorem B.1.9 (fundamental theorem of arithmetic). Every nonzero integer can be written as a product
of prime (irreducible) numbers. The decomposition is unique, apart from factors dividing 1.

Proof. First we prove the existence by induction on |n|. For |n| = 1, it is trivial. Assume that the
statement holds for any n′ with |n′| < |n|. If n is irreducible, we are done. If not, we can write it as a
product n = ab with |a|, |b| < |n|. We are done by induction.

Now we prove the uniqueness. Assume n has two decompositions p1 · . . . · pk = q1 · . . . · ql. Here, p1

divides the left-hand side, so it divides the right-hand side as well. Then, since it is a prime, it divides a
factor of the right-hand side, say, q1. Then p1 | q1, and also q1 | p1, since q1 is irreducible. Dividing by
them, we can complete the proof by induction.

B.2 Residue classes

Definition B.2.1 (congruence). Given m ∈ Z, we say that a ≡ b mod m (in words: a is congruent to b
modulo m) if m | (a− b).
Proposition B.2.2 (remainders). Given m ∈ Z \ {0} and a ∈ Z, there exist 0 6 b < |m| and
−|m|/2 < c 6 |m|/2 satisfying a ≡ b ≡ c mod m.

Proposition B.2.3. Given m ∈ Z. Being congruent modulo m is an equivalence relation, by which we
mean that a ≡ a mod m (reflexivity), a ≡ b mod m implies b ≡ a mod m (symmetry), a ≡ b mod m and
b ≡ c mod m imply a ≡ c mod m (transitivity).

Definition B.2.4 (residue classes). Let m ∈ Z. Then the equivalence classes defined via modulo m
congruency are said to be modulo m residue classes.

Proposition B.2.5. Let m ∈ Z \ {0}. The number of residue classes modulo m is |m|.
Proposition B.2.6. Let m ∈ Z \ {0}. The modulo m residue classes form a commutative ring, where
addition, multiplication and taking additive inverse are the usual addition, multiplication and taking
additive inverse, all reduced modulo m. The residue class of 1 is the multiplicative unit.

Proof. Let a, b be arbitrary representatives of two residue classes. Then for any k, l ∈ Z, we have

(a+ km) + (b+ lm) = (a+ b) + (k + l)m ≡ a+ b mod m,

(a+ km) · (b+ lm) = ab+ (kb+ la)m+ klm2 ≡ ab mod m,

− (a+ km) = −a− km ≡ −a mod m,

showing that the operations can be performed via any representatives. Then obviously the residue class
of 1 is a multiplicative unit.

Theorem B.2.7 (Chinese remainder theorem). Assume m,n ∈ N satisfy gcd(m,n) = 1. Then for any
a, b ∈ Z, there exists a unique residue class c modulo mn satisfying c ≡ a mod m, c ≡ b mod n.

Proof. Define the function f : x mod mn 7→ (x mod m,x mod n). There are mn residue classes modulo
mn, and the number of possible values of this function is also mn. It suffices to prove that f is a bijection,
which holds if and only if it is a surjection.

To see this, take u, v ∈ Z satisfying mu+ nv = 1. Then take the number c = mub+ nva. Then

c ≡ nva ≡ mua+ nva ≡ a mod m, c ≡ mub ≡ mub+ nvb ≡ b mod n.

The proof is complete.

Corollary B.2.8. Assume m1, . . . ,mn satisfy gcd(mi,mj) = 1 for all 1 6 i < j 6 n. Then for any
a1, . . . , an ∈ Z, there exists a unique residue class c modulo m1 · . . . ·mn satisfying c ≡ ai mod mi for
each 1 6 i 6 n.

B.3. The multiplicative group of the residue class rings 55

B.3 The multiplicative group of the residue class rings

Given m ∈ N, we denote by Zm the ring of residue classes modulo m. Assume gcd(a,m) = 1.

Proposition B.3.1. The function x 7→ xa : Zm → Zm is a bijection.

Proof. Since Zm is finite, it suffices to show that the function is surjective. Since gcd(a,m) = 1, for some
u, v ∈ Z, au+mv = 1. Then if the residue class c modulo m is given, x ≡ uc mod m is mapped to c via
x 7→ xa mod m, since c = auc+mvc ≡ auc mod m.

Corollary B.3.2. The coprime residue classes form a group. (This is the unit group of Zm and will be
denoted by Z×m from now on.)

Corollary B.3.3. If p is a prime, the residue classes modulo p form a field (denoted by Fp from now
on).

The following function is of extreme importance in number theory.

Definition B.3.4 (Euler’s number of coprime residue classes function). Define

ϕ(n) =
∑
d6n

gcd(d,n)=1

1.

With this notation, we see that the group Z×m has ϕ(m) elements.

Proposition B.3.5. Assume n = pα1
1 · . . . · pαrr . Then

ϕ(n) = n

r∏
j=1

(
1− 1

pj

)
.

Proof. Assume n has prime factors p1, . . . , pr. From the set {1, . . . , n}, sift out the numbers that are
divisble by some of p1, . . . , pr. That is, by the inclusion-exclusion principle,

ϕ(n) = n+

r∑
j=1

(−1)j
∑

16i1<...<ij6r

n

pi1 · . . . · pij
= n

r∏
j=1

(
1− 1

pj

)
.

The proof is complete.

Now Corollary A.1.18 has the following consequences.

Corollary B.3.6. Assume m ∈ N and a is coprime to m. Then the order of a (in the multiplicative
group modulo m) divides ϕ(m).

Corollary B.3.7 (Euler-Fermat). Assume m ∈ N. Then

aϕ(m) ≡ 1 mod m

for any a coprime to m.

Corollary B.3.8 (Fermat). Assume p is a prime. Then

ap ≡ a mod p

for any a ∈ Z.

Finally, we describe the group structure of Z×m. By the Chinese remainder theorem (Corollary B.2.8),

Z×m
∼= Z×

p
α1
1

× . . .× Z×
pαrr

,

if m = pα1
1 · . . . · pαrr is the canonical form. Therefore, it suffices to describe Z×pα for primes p and positive

integers α. This group has pα − pα−1 = pα−1(p− 1) elements.

Proposition B.3.9. If p is an odd prime, then Z×pα is cyclic for any α ∈ N. For p = 2, Z×2α is cyclic for
α = 1, 2, and is not cyclic but generated by the elements −1 (of order 2) and 5 (of order 2α−2) for α > 3.

Proof omitted.

Chapter C

Probability theory

C.1 Discrete probability spaces

Definition C.1.1 (probability space). By a (finite, discrete) probability space, we mean a pair (Ω,Pr),
where Ω is a finite set, and Pr is a function from 2Ω to R>0 satisfying

• Pr(Ω) = 1, Pr(∅) = 0;

• if A,B ⊆ Ω are disjoint (i.e. A ∩B = ∅), then Pr(A ∪B) = Pr(A) + Pr(B).

Example C.1.2 (uniform distribution). On any finite set Ω, we can define the uniform distribution by
assigning the same probability (#Ω)−1 to each one-element set, i.e. for any A ⊆ Ω,

Pr(A) =
#A

#Ω
.

The subsets of Ω are the events, and the corresponding Pr values are their probabilities. Intuitionally
we really think of some randomness and the probability of a given event is the chance that the given
event occurs.

For any A ⊆ Ω, we define Ac to be the complement of A, obviously

Pr(Ac) = 1− Pr(A).

Definition C.1.3 (conditional probability). Given a probability space Ω, for any A,B ⊆ Ω, if Pr(B) > 0,
we define the conditional probability

Pr(A | B) =
Pr(A ∩B)

Pr(B)
.

The meaning of this notion is the following: the probability of A given that B occurs.

Proposition C.1.4. Assume A,B ⊆ Ω satisfy Pr(B),Pr(Bc) > 0. Then

Pr(A) = Pr(A | B)Pr(B) + Pr(A | Bc)Pr(Bc).

Proof. The statement follows by a simple calculation from the definitions. Indeed,

Pr(A) = Pr((A ∩B) ∪ (A ∩Bc)) = Pr(A ∩B) + Pr(A ∩Bc) = Pr(A | B)Pr(B) + Pr(A | Bc)Pr(Bc),

and the proof is complete.

Proposition C.1.5 (Bayes’s theorem). Assume A,B ⊆ Ω satisfy Pr(A),Pr(B) > 0. Then

Pr(A | B) =
Pr(B | A)Pr(A)

Pr(B)
.

57

58 C. Probability theory

Proof. Again, by a simple calculation,

Pr(A | B) =
Pr(A ∩B)

Pr(B)
=

Pr(B ∩A)

Pr(B)
=

Pr(B | A)Pr(A)

Pr(B)
,

and the proof is complete.

Definition C.1.6. We say that the events A1, . . . , An are independent, if for any S ⊆ {1, . . . , n},

Pr

(⋂
i∈S

Ai

)
=
∏
i∈S

Pr(Ai),

(we can freely exclude S = ∅; or use the conventions: the empty product is 1, and the empty intersection
is Ω).

Bibliography

[1] J. Hoffstein, J. Pipher, and J. H. Silverman. An Introduction to Mathematical Cryptography.
Undergraduate Texts in Mathematics. Springer, 2008.

[2] L. Lovász. Algoritmusok bonyolultsága. University text, in Hungarian.

[3] W. Rudin. Principles of mathematical analysis. International Series in Pure and Applied Mathe-
matics. McGraw-Hill, 1976 (3rd edition).

59

	Preface
	Introduction
	The principal goal of cryptography, Kerckhoff's principle
	Cryptanalysis
	Mathematics enters cryptography
	Transform texts to numbers
	The mathematical formulation of symmetric ciphers
	The mathematical formulation of asymmetric ciphers

	Computability
	The XOR cipher and pseudorandom sequences

	Discrete logarithms
	The discrete logarithm problem
	The Diffie-Hellman key exchange
	The ElGamal cryptosystem

	Integer factorization and RSA
	The RSA cryptosystem
	Primality testing
	Fermat's little theorem and Carmichael numbers
	The Miller-Rabin test
	The Agrawal-Kayal-Saxena polynomial test

	Multiplayer RSA – the bad way

	Probability and information theory
	The Vigenère cipher and its cryptanalysis
	Collision and meet-in-the-middle attacks
	Perfect secrecy and entropy
	The redundancy of natural languages

	Elliptic curves and cryptography
	Elliptic curves and their abelian group structure
	A sketch of the proof of Theorem 5.1.1
	The resultant and Bézout's theorem
	The Cayley-Bacharach theorem
	Completion of the sketch

	The elliptic curve discrete logarithm problem
	Elliptic curve cryptography
	The elliptic curve Diffie-Hellman
	The elliptic curve ElGamal

	Attacking the underlying problems
	The discrete logarithm problem
	A babystep-giantstep algorithm
	The Pohlig-Hellman algorithm
	The index calculus method

	Factorization algorithms
	Smooth numbers
	Pollard's p-1 method
	Factorization via difference of squares
	Lenstra's elliptic curve factorization

	Additional topics
	Interactive proofs
	How to store the last move in chess?
	A zero-knowledge proof of that a certain number is square modulo N
	Using our password

	Identification
	An RSA-based digital signature
	Multiplayer RSA – the good way

	Secret sharing

	Appendices
	Algebraic structures
	Groups
	Rings and fields
	Vector spaces and projective spaces

	Number theory
	The fundamental theorem of arithmetic
	Residue classes
	The multiplicative group of the residue class rings

	Probability theory
	Discrete probability spaces

