- 1. Are the following congruences solvable:
 - (a) $x^2 \equiv 66 \mod{191};$
 - (b) $x^2 \equiv 7! \mod 83;$
 - (c) $x^2 \equiv 30 \mod{77};$
 - (d) $x^2 \equiv 38 \mod{187};$
 - (e) $2x^2 + 3x + 5 \equiv 0 \mod 101$?
- 2. For which primes p > 2 are the following congruences solvable:
 - (a) $x^2 \equiv 3 \mod p;$
 - (b) $x^2 \equiv 5 \mod p$?
- 3. Prove that if 1997 | $a^2 2b^2$ (for $a, b \in \mathbb{Z}$), then 1997 | a, b. (Note that 1997 is a prime.)