FINAL EXAM

(a) State the Chinese remainder theorem. (2 points)
(b) Compute 13²⁴ mod 56. (4 points)

- 2. (a) Define Hurwitz quaternions. (2 points)
 - (b) Assume $\alpha = a + bi + cj + dk$ is a Hurwitz quaternion such that $N(\alpha)$ is an even integer. Prove that $a, b, c, d \in \mathbb{Z}$. (4 points)

- 3. (a) State Gauss's lemma about primitive polynomials. (2 points)
 - (b) Let $p(x), q(x) \in \mathbb{Z}[x]$. Prove that if one of them is not primitive, then their product is also not primitive. (4 points)

- 4. (a) What is Pell's equation? (2 points)
 - (b) Let d > 0 be a square-free integer. Assume $0 < x_1 < \ldots < x_n$, $0 < y_1 < \ldots < y_n$ satisfy $x_j^2 dy_j^2 = 1$ for all $1 \le j \le n$. Prove that $x_n > \sqrt{d}^n$. (4 points)