
Midterm Exam

1. (a) Let G be a finite group and a ∈ G. Define the order of a. (2 points)

(b) Given G, characterize those elements of G which have order 1. (4 points)

Solution. (a) The order of a ∈ G is the smallest positive integer n which satisfies

an = a ∗ . . . ∗ a︸ ︷︷ ︸
n times

= e,

where e is the unit element and ∗ is the operation of G.

(b) We claim that the order of an element a ∈ G is 1 if and only if a is the unit element e. First, if
a = e, then indeed,

a1 = a = e,

and of course an = e cannot hold for N 3 n < 1, since 1 is the smallest positive integer. As for the
converse, assume that the order of a is 1. Then

e = a1 = a,

hence a must be the unit element itself.
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2. (a) Describe the XOR cipher. (2 points)

(b) Alice and Bob are planning to communicate using an XOR cipher on 201 bits. They meet and
choose their key at random, i.e. for each bit, they toss a fair 0− 1 coin. What is the probability of
that the resulting key will contain more 1’s than 0’s? (4 points)

Solution. (a) In the XOR cipher, we fix a positive integer t, and then

M = C = K = {0− 1 sequences of length t}.

We define the ⊕ operation as the bitwise addition, i.e. if a =
∑t−1

j=0 aj2
j , b =

∑t−1
j=0 bj2

j (where aj , bj ’s
are binary digits, 0 or 1 each), then let

a⊕b =

t−1∑
j=0

cj2
j ,

where cj = 0 if aj = bj , and cj = 1 if aj 6= bj .

Given m and k, ek(m) = m⊕k. The decryption function is the same: dk = ek, i.e. dk(c) = c⊕k.

(b) We claim that the probability in question is 1/2. First observe that any particular 0− 1 sequence
will be the chosen key with probability 2−101. Therefore, to verify our claim, it suffices to show that
exactly half of the 0− 1 sequences contain more 1’s than 0’s. In any sequence, replace the 0’s with 1’s
and the 1’s with 0’s. Since 201 is odd, this is a bijection between the sets

A = {0− 1 sequences of length 201 with more 1’s than 0’s}

and
B = {0− 1 sequences of length 201 with more 0’s than 1’s}.

That is,

Pr(the chosen key contains more 1’s than 0’s) =
#A

#(A ∪B)
=

#A

#A + #B
=

#A

2#A
=

1

2
.
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3. (a) Describe the discrete logarithm problem in the group F×
p . (2 points)

(b) What are those integers n ∈ Z which are solutions to the discrete logarithm problem 2x ≡ 16 mod 31?
(4 points)

Solution. (a) Assume p is a prime number and g is a nonzero residue class modulo p. Assume that for
some 1 6 x 6 p− 1, gx ≡ a mod p, again a residue class modulo p. The discrete logarithm problem is
to compute the smallest such positive integer x, if g and a are given.

(b) Typo in the problem: n is the same as x. The computations 21 ≡ 2 mod 31, 22 ≡ 4 mod 31,
23 ≡ 8 mod 31, 24 ≡ 8 mod 16, 25 ≡ 1 mod 31 show that the order of 2 modulo 31 is 5, and also that
24 ≡ 16 mod 31.

We claim that integers n which satisfy 2n ≡ 16 mod 31 are exactly those which satisfy n ≡ 4 mod 5.
First, if n ≡ 4 mod 5, then n = 5k + 4 for some k ∈ Z, and then

2n ≡ 25k+4 ≡ (25)k · 16 ≡ 16 mod 31.

As for the converse assume 2n ≡ 16 mod 31. Then 2n+1 ≡ 1 mod 31, therefore, by our considerations
on the order in the class tells us that n + 1 is divisible by 5. Hence n ≡ 4 mod 5.
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4. (a) Describe the ElGamal cryptosystem over the group F×
p . (2 points)

(b) Alice publishes the data p, g, A (p is a large prime, 1 6 g 6 p− 1, A ≡ ga mod p (with some secret
a ∈ N)) on her homepage for an ElGamal cryptosystem. When choosing a, she was so careless that
she picked a = p − 1. Prove that Eve can break any intercepted cipher in polynomial time. (4
points)

Solution. (a) Alice chooses a prime number p, and a residue class g ∈ F×
p (preferably of large order).

She further chooses a positive integer a, and computes the residue class A ≡ pa mod p. Then she
publishes p, g, A, and keeps a in secret.

Now anyone (say, Bob) can send a message to Alice as follows. If his message is a residue class
m ∈ F×

p , then he chooses a positive integer k (an ephemeral key), and computes c1 ≡ gk mod p and

c2 ≡ mAk mod p, then sends the pair (c1, c2) to Alice.

Now Alice decrypts the cipher as follows: she computes c2c
−a
1 mod p:

c2c
−a
1 ≡ mAkg−ak ≡ mgakg−ak ≡ m mod p,

which is just the original message.

(b) First, by Euler-Fermat, if a = p− 1, then A ≡ gp−1 ≡ 1 mod p. When Eve learns that A ≡ 1 mod p

has been publshed, and intercepts the cipher (c1, c2), she computes c2c
−(p−1)
1 mod p. This is possible in

polynomial time, since it is just modular multiplication, modular exponentiation and taking modular
inverse, in the class we learned all of these can be done in polynomial time. Since her computation is
the same as that of Alice, she also gets m.

We remark that not only p − 1, but any multiple of the order of g leads to the same collapse of the
cryptosystem.
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