FINAL EXAM

1. (a) Describe the XOR cipher. (2 points)

(b) Prove that the number of those keys in the 23-bit XOR cipher which contain at least 7 and at most
16 zeros is divisble by 23. (4 points)

Solution. (a) In the XOR cipher, we fix a positive integer ¢, and then
M =C =K ={0- 1 sequences of length ¢}.

We define the & operation as the bitwise addition, i.e. if a = Zﬁ;é a;j29, b= Z?;E b;j27 (where a;,b;’s
are binary digits, 0 or 1 each), then let

t—1
adb = Z chj,
j=0

where ¢; = 0if a; = b;, and ¢; = 1 if a; # b;.
Given m and k, ex(m) = m®k. The decryption function is the same: dj = ey, i.e. di(c) = cBk.

(b) From elementary enumeration, we know that the number of keys containing k zeros is

Clearly, when 0 < k < 23, then this is divisible by 23, since 23 is a prime. Then

(7))

is divisible by 23, since each term is divisible by 23.



2. (a) Describe the RSA cryptosystem. (2 points)

(b) Assume Eve has a machine which, for any input (a,b, N) (with positive integers a,b, N), returns in
polynomial time
{ 1, if there exists d | N such that a < d < b,

0, if there is no d | N satisfying a < d < b.

Prove that using this machine, Eve can break the RSA in polynomial time. (4 points)

Solution. (a) Alice takes two (large) prime numbers p, ¢, then computes their product N. She also
computes ¢(N) = (p — 1)(¢ — 1). Then she takes an exponent e € N coprime to ¢(N), and computes
its inverse d modulo ¢(N). She publishes N, e and keeps p, ¢, o(IN), d in secret.

Now anyone (say, Bob) can send her a message m (a residue class modulo N) using the following
protocol. Bob raises the message to power e modulo N and sends ¢ = m® mod N to Alice.

Now Alice raises the incoming cipher ¢ to power d modulo N. With high probability, m is coprime to
N, and then, by Euler-Fermat,

¢ = (m)d = meMut = (eWVYe iy = 1. m = m mod N,

which is the original message.

(b) Let N be as in RSA. The machine combined with binary search captures a divisor of N in polynomial
time. Indeed, set ap = 1,b9 = N, of course M (ag, by, N) = 1 (where M is the result of the machine). In
each step, we take ¢, = |(ay, +b,)/2], and if M(a,,c, N) =1, then we set a,4+1 = ap, byyr1 = ¢p, while
if M(ay,c, N) =0, then we set a1 = ¢, — 1, byy1 = by,. Clearly (an, by,) will always contain a divisor
of N, and bp11 — ant1 < (b — an)/2+ 2, ie. in, say, O(log N) steps (with the machine), the interval
containing a divisor of N gets smaller than 10. In an interval of length 10, we can easily find a divisor
in polynomial time. Obtaining hence p or ¢, we get the factorization of N, and can play the role of
Alice then.



3. (a) Define entropy. (2 points)
(b) Alice and Bob use an XOR cipher on ¢ bits, and they choose the message and the key independently
and uniformly (i.e. for each ¢-bit sequences m and k, P(M = m) = 27!, P(K = k) = 27
P(M =m,K = k) =272%). Compute the key equivocation H(K | C). (4 points)
Solution. (a) The entropy function H is defined on finite sets of positive numbers summing up to 1,
i.e. on tuples (p1,...,pn) € R} if py +...4+p, =1, for any n € N. For such a tuple,

n
H(pi,....,pn) =— > _pjlog, p;.
j=1

(b) We proved in the lecture that if M and K are independent, then
H(K|C)=HM)+ H(K)—- H(C).

We know that M, K are uniform distributions on 2¢ elements. It is easy to see that this also holds for
C as well: each single cipher is obtained 2! ways out of the 272! choices for (m, k), hence each cipher is
obtained with probability 27*. For uniform distributions on 2! elements, the entropy is log,(2!) = t.
Then

HK|C)=HM)+HK)-H(C)=t+t—t=t.



4. (a) Describe the elliptic curve ElGamal cryptosystem. (2 points)

b) Let E be the elliptic curve given by the equation y? = 2% + x + 1 over the field F5. Show that the
g
points P = (4,2) and @Q = (3,4) lie on E, and solve the elliptic curve discrete logarithm problem
nP = Q. (It is enough to give one such n, you don’t have to compute all of them.) (4 points)

Solution. (a) Alice chooses a prime number p > 3, an elliptic curve E over the prime field F,, and a
point P on the elliptic curve. She further chooses a positive integer n4, and computes the point

Q=naP=P+...+P.
—_——

n A many

Now she publishes p, E, P,Q and keeps n 4 in secret.

Anyone (say, Bob) can send her a message M (a point on the elliptic curve) using the following protocol.
Bob chooses an ephemeral key k£ € N, and computes

C, =kP, Cy =M + kQ.

Then he sends the pair (C,Csy) to Alice.

Now Alice computes Cy — n4C1, obtaining
Co—naCi =M+ kQ —npkP =M+ kngP —nskP =M,

which is the original message.
(b) Clearly 22 = 43 + 4 + 1 mod 5, 42 = 3% + 3+ 1 mod 5 hold, hence P,Q are indeed on E.
We compute 2P. From the lecture, we know that the slope of the tangent line at P = (xp,yp) is
(3z% + 1)/(2yp), which is 1 in our case, therefore the tangent line is y = x + 3. We need hence the
third solution of the system y? = 23+ 2 + 1 and y = x + 3. Writing y = = + 3 into the cubic one,
(x+3)2=a>+x+1,
0=2a%—2%+2,
0= (x+1)>x+2).

Then the third intersection point is (3,1), hence 2P = (3,4). This is just @, so n = 2 is a solution.



