
Final Exam

1. (a) Describe the XOR cipher. (2 points)

(b) Prove that the number of those keys in the 23-bit XOR cipher which contain at least 7 and at most
16 zeros is divisble by 23. (4 points)

Solution. (a) In the XOR cipher, we fix a positive integer t, and then

M = C = K = {0− 1 sequences of length t}.

We define the ⊕ operation as the bitwise addition, i.e. if a =
∑t−1

j=0 aj2
j , b =

∑t−1
j=0 bj2

j (where aj , bj ’s
are binary digits, 0 or 1 each), then let

a⊕b =

t−1∑
j=0

cj2
j ,

where cj = 0 if aj = bj , and cj = 1 if aj 6= bj .

Given m and k, ek(m) = m⊕k. The decryption function is the same: dk = ek, i.e. dk(c) = c⊕k.

(b) From elementary enumeration, we know that the number of keys containing k zeros is(
23

k

)
=

23!

k!(23− k)!
.

Clearly, when 0 < k < 23, then this is divisible by 23, since 23 is a prime. Then(
23

7

)
+ . . . +

(
23

16

)
is divisible by 23, since each term is divisible by 23.
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2. (a) Describe the RSA cryptosystem. (2 points)

(b) Assume Eve has a machine which, for any input (a, b,N) (with positive integers a, b,N), returns in
polynomial time {

1, if there exists d | N such that a < d < b,

0, if there is no d | N satisfying a < d < b.

Prove that using this machine, Eve can break the RSA in polynomial time. (4 points)

Solution. (a) Alice takes two (large) prime numbers p, q, then computes their product N . She also
computes ϕ(N) = (p− 1)(q − 1). Then she takes an exponent e ∈ N coprime to ϕ(N), and computes
its inverse d modulo ϕ(N). She publishes N, e and keeps p, q, ϕ(N), d in secret.

Now anyone (say, Bob) can send her a message m (a residue class modulo N) using the following
protocol. Bob raises the message to power e modulo N and sends c ≡ me mod N to Alice.

Now Alice raises the incoming cipher c to power d modulo N . With high probability, m is coprime to
N , and then, by Euler-Fermat,

cd ≡ (me)d ≡ mϕ(N)u+1 ≡ (mϕ(N))e ·m ≡ 1 ·m ≡ m mod N,

which is the original message.

(b) Let N be as in RSA. The machine combined with binary search captures a divisor of N in polynomial
time. Indeed, set a0 = 1, b0 = N , of course M(a0, b0, N) = 1 (where M is the result of the machine). In
each step, we take cn = b(an + bn)/2c, and if M(an, c,N) = 1, then we set an+1 = an, bn+1 = cn, while
if M(an, c,N) = 0, then we set an+1 = cn − 1, bn+1 = bn. Clearly (an, bn) will always contain a divisor
of N , and bn+1 − an+1 6 (bn − an)/2 + 2, i.e. in, say, O(logN) steps (with the machine), the interval
containing a divisor of N gets smaller than 10. In an interval of length 10, we can easily find a divisor
in polynomial time. Obtaining hence p or q, we get the factorization of N , and can play the role of
Alice then.
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3. (a) Define entropy. (2 points)

(b) Alice and Bob use an XOR cipher on t bits, and they choose the message and the key independently
and uniformly (i.e. for each t-bit sequences m and k, P (M = m) = 2−t, P (K = k) = 2−t,
P (M = m,K = k) = 2−2t). Compute the key equivocation H(K | C). (4 points)

Solution. (a) The entropy function H is defined on finite sets of positive numbers summing up to 1,
i.e. on tuples (p1, . . . , pn) ∈ Rn

+ if p1 + . . . + pn = 1, for any n ∈ N. For such a tuple,

H(p1, . . . , pn) = −
n∑

j=1

pj log2 pj .

(b) We proved in the lecture that if M and K are independent, then

H(K | C) = H(M) + H(K)−H(C).

We know that M,K are uniform distributions on 2t elements. It is easy to see that this also holds for
C as well: each single cipher is obtained 2t ways out of the 2−2t choices for (m, k), hence each cipher is
obtained with probability 2−t. For uniform distributions on 2t elements, the entropy is log2(2t) = t.
Then

H(K | C) = H(M) + H(K)−H(C) = t + t− t = t.
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4. (a) Describe the elliptic curve ElGamal cryptosystem. (2 points)

(b) Let E be the elliptic curve given by the equation y2 = x3 + x + 1 over the field F5. Show that the
points P = (4, 2) and Q = (3, 4) lie on E, and solve the elliptic curve discrete logarithm problem
nP = Q. (It is enough to give one such n, you don’t have to compute all of them.) (4 points)

Solution. (a) Alice chooses a prime number p > 3, an elliptic curve E over the prime field Fp, and a
point P on the elliptic curve. She further chooses a positive integer nA, and computes the point

Q = nAP = P + . . . + P︸ ︷︷ ︸
nA many

.

Now she publishes p,E, P,Q and keeps nA in secret.

Anyone (say, Bob) can send her a message M (a point on the elliptic curve) using the following protocol.
Bob chooses an ephemeral key k ∈ N, and computes

C1 = kP, C2 = M + kQ.

Then he sends the pair (C1, C2) to Alice.

Now Alice computes C2 − nAC1, obtaining

C2 − nAC1 = M + kQ− nAkP = M + knAP − nAkP = M,

which is the original message.

(b) Clearly 22 ≡ 43 + 4 + 1 mod 5, 42 ≡ 33 + 3 + 1 mod 5 hold, hence P,Q are indeed on E.

We compute 2P . From the lecture, we know that the slope of the tangent line at P = (xP , yP ) is
(3x2

P + 1)/(2yP ), which is 1 in our case, therefore the tangent line is y = x + 3. We need hence the
third solution of the system y2 = x3 + x + 1 and y = x + 3. Writing y = x + 3 into the cubic one,

(x + 3)2 = x3 + x + 1,

0 = x3 − x2 + 2,

0 = (x + 1)2(x + 2).

Then the third intersection point is (3, 1), hence 2P = (3, 4). This is just Q, so n = 2 is a solution.
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