FINAL EXAM

- 1. (a) Describe the XOR cipher. (2 points)
 - (b) Prove that the number of those keys in the 23-bit XOR cipher which contain at least 7 and at most 16 zeros is divisble by 23. (4 points)

Solution. (a) In the XOR cipher, we fix a positive integer t, and then

 $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0 - 1 \text{ sequences of length } t\}.$

We define the \oplus operation as the bitwise addition, i.e. if $a = \sum_{j=0}^{t-1} a_j 2^j$, $b = \sum_{j=0}^{t-1} b_j 2^j$ (where a_j, b_j 's are binary digits, 0 or 1 each), then let

$$a \oplus b = \sum_{j=0}^{t-1} c_j 2^j,$$

where $c_j = 0$ if $a_j = b_j$, and $c_j = 1$ if $a_j \neq b_j$.

Given m and k, $e_k(m) = m \oplus k$. The decryption function is the same: $d_k = e_k$, i.e. $d_k(c) = c \oplus k$. (b) From elementary enumeration, we know that the number of keys containing k zeros is

$$\binom{23}{k} = \frac{23!}{k!(23-k)!}.$$

Clearly, when 0 < k < 23, then this is divisible by 23, since 23 is a prime. Then

$$\binom{23}{7} + \ldots + \binom{23}{16}$$

is divisible by 23, since each term is divisible by 23.

- 2. (a) Describe the RSA cryptosystem. (2 points)
 - (b) Assume Eve has a machine which, for any input (a, b, N) (with positive integers a, b, N), returns in polynomial time

 $\begin{cases} 1, \text{ if there exists } d \mid N \text{ such that } a < d < b, \\ 0, \text{ if there is no } d \mid N \text{ satisfying } a < d < b. \end{cases}$

Prove that using this machine, Eve can break the RSA in polynomial time. (4 points)

Solution. (a) Alice takes two (large) prime numbers p, q, then computes their product N. She also computes $\varphi(N) = (p-1)(q-1)$. Then she takes an exponent $e \in \mathbf{N}$ coprime to $\varphi(N)$, and computes its inverse d modulo $\varphi(N)$. She publishes N, e and keeps $p, q, \varphi(N), d$ in secret.

Now anyone (say, Bob) can send her a message m (a residue class modulo N) using the following protocol. Bob raises the message to power e modulo N and sends $c \equiv m^e \mod N$ to Alice.

Now Alice raises the incoming cipher c to power d modulo N. With high probability, m is coprime to N, and then, by Euler-Fermat,

$$c^{d} \equiv (m^{e})^{d} \equiv m^{\varphi(N)u+1} \equiv (m^{\varphi(N)})^{e} \cdot m \equiv 1 \cdot m \equiv m \mod N,$$

which is the original message.

(b) Let N be as in RSA. The machine combined with binary search captures a divisor of N in polynomial time. Indeed, set $a_0 = 1, b_0 = N$, of course $M(a_0, b_0, N) = 1$ (where M is the result of the machine). In each step, we take $c_n = \lfloor (a_n + b_n)/2 \rfloor$, and if $M(a_n, c, N) = 1$, then we set $a_{n+1} = a_n, b_{n+1} = c_n$, while if $M(a_n, c, N) = 0$, then we set $a_{n+1} = c_n - 1, b_{n+1} = b_n$. Clearly (a_n, b_n) will always contain a divisor of N, and $b_{n+1} - a_{n+1} \leq (b_n - a_n)/2 + 2$, i.e. in, say, $O(\log N)$ steps (with the machine), the interval containing a divisor of N gets smaller than 10. In an interval of length 10, we can easily find a divisor in polynomial time. Obtaining hence p or q, we get the factorization of N, and can play the role of Alice then.

- 3. (a) Define entropy. (2 points)
 - (b) Alice and Bob use an XOR cipher on t bits, and they choose the message and the key independently and uniformly (i.e. for each t-bit sequences m and k, $P(M = m) = 2^{-t}$, $P(K = k) = 2^{-t}$, $P(M = m, K = k) = 2^{-2t}$). Compute the key equivocation H(K | C). (4 points)

Solution. (a) The entropy function H is defined on finite sets of positive numbers summing up to 1, i.e. on tuples $(p_1, \ldots, p_n) \in \mathbf{R}^n_+$ if $p_1 + \ldots + p_n = 1$, for any $n \in \mathbf{N}$. For such a tuple,

$$H(p_1,\ldots,p_n)=-\sum_{j=1}^n p_j \log_2 p_j.$$

(b) We proved in the lecture that if M and K are independent, then

$$H(K | C) = H(M) + H(K) - H(C).$$

We know that M, K are uniform distributions on 2^t elements. It is easy to see that this also holds for C as well: each single cipher is obtained 2^t ways out of the 2^{-2t} choices for (m, k), hence each cipher is obtained with probability 2^{-t} . For uniform distributions on 2^t elements, the entropy is $\log_2(2^t) = t$. Then

$$H(K \mid C) = H(M) + H(K) - H(C) = t + t - t = t$$

- 4. (a) Describe the elliptic curve ElGamal cryptosystem. (2 points)
 - (b) Let *E* be the elliptic curve given by the equation $y^2 = x^3 + x + 1$ over the field \mathbf{F}_5 . Show that the points P = (4, 2) and Q = (3, 4) lie on *E*, and solve the elliptic curve discrete logarithm problem nP = Q. (It is enough to give one such *n*, you don't have to compute all of them.) (4 points)

Solution. (a) Alice chooses a prime number p > 3, an elliptic curve E over the prime field \mathbf{F}_p , and a point P on the elliptic curve. She further chooses a positive integer n_A , and computes the point

$$Q = n_A P = \underbrace{P + \ldots + P}_{n_A \text{ many}}.$$

Now she publishes p, E, P, Q and keeps n_A in secret.

Anyone (say, Bob) can send her a message M (a point on the elliptic curve) using the following protocol. Bob chooses an ephemeral key $k \in \mathbf{N}$, and computes

$$C_1 = kP, \qquad C_2 = M + kQ.$$

Then he sends the pair (C_1, C_2) to Alice.

Now Alice computes $C_2 - n_A C_1$, obtaining

$$C_2 - n_A C_1 = M + kQ - n_A kP = M + kn_A P - n_A kP = M,$$

which is the original message.

(b) Clearly $2^2 \equiv 4^3 + 4 + 1 \mod 5$, $4^2 \equiv 3^3 + 3 + 1 \mod 5$ hold, hence *P*, *Q* are indeed on *E*.

We compute 2P. From the lecture, we know that the slope of the tangent line at $P = (x_P, y_P)$ is $(3x_P^2 + 1)/(2y_P)$, which is 1 in our case, therefore the tangent line is y = x + 3. We need hence the third solution of the system $y^2 = x^3 + x + 1$ and y = x + 3. Writing y = x + 3 into the cubic one,

$$(x+3)^2 = x^3 + x + 1,$$

 $0 = x^3 - x^2 + 2,$
 $0 = (x+1)^2(x+2).$

Then the third intersection point is (3, 1), hence 2P = (3, 4). This is just Q, so n = 2 is a solution.