
Midterm Exam

1. (a) Describe the Caesar cipher. (2 points)

(b) Alice and Bob are planning to communicate using a simple substitution cipher. They pick their key
at random, with the same probability for each permutation of the alphabet. What is the probability
that their simple substitution cipher will actually be a Caesar cipher? (4 points)

Solution. (a) In the Caesar cipher, both M and C are set of the letters of the alphabet:

M = C = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}.

The key set K is the set of positive integers not exceeding 26:

K = {k ∈ N : 1 6 k 6 26}.

Given a letter, the key k acts on it via a shift by k, where the number corresponding to each letter is
its number in the alphabetical order, i.e. a is 1, b is 2, and so on, z is 26. We understand this order
cyclically, i.e. after z, a comes again. To put this more formally,

ek(m) = the shift of m by k in the alphabetical order, understood cyclically.

As for the decryption, it is a shift backwards by k, or equivalently, a shift by 26− k. Formally,

dk(c) = e26−k(c).

(b) The number of simple substitution ciphers is 26!, while that of Caesar ciphers is 26. Therefore

P(a randomly chosen simple substitution cipher is Caesar) =
26

26!
=

1

25!
.
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2. (a) State Fermat’s little theorem. (2 points)

(b) Alice and Bob are planning to communicate using an XOR cipher on 101 bits. To exclude trivialities,
they consider only those keys which contain both 0 and 1 bits. Prove that the number of such keys
is divisible by 101. (4 points)

Solution. (a) Fermat’s little theorem says that if p is a prime number, and a ∈ Z, then ap ≡ a mod p.

(b) The number of all keys for XOR ciphers on 101 bits is 2101, therefore, dropping the trivial keys,
we are left with 2101 − 2 keys. Applying Fermat’s little theorem with p = 101, a = 2, we obtain that
2101 ≡ 2 mod 101, that is, 101 | (2101 − 2).
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3. (a) Describe the Diffie-Hellman problem over the group F×p . (2 points)

(b) Let p be a large prime and 1 6 g 6 p− 1. Assume Eve has an access to a machine, which from any
input (ga, gb), computes g(a+1)(b+1) in polynomial time. Prove that using this machine, Eve can
solve the Diffie-Hellman problem over F×p in polynomial time. (4 points)

Solution. (a) The Diffie-Hellman problem over the group F×p is the following computational task.

Given g ∈ F×p , ga, gb ∈ F×p (with some unknown a, b ∈ Z), compute gab.

(b) Since
gab = g(a+1)(b+1)−a−b+1 = g(a+1)(b+1)g−ag−bg,

Eve can do the following. She gives (ga, gb) to her machine, then takes the output, multiplies it by the
inverse of ga and then by the inverse of gb (both computable in polynomial time as we learned it in
class), then by g.
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4. (a) Describe the ElGamal cryptosystem over the group F×p . (2 points)

(b) Alice publishes the data p, g, A (p is a large prime, 1 6 g 6 p− 1, A ≡ ga mod p (with some secret
a ∈ N) on her homepage for an ElGamal cryptosystem. Unfortunately, her g is so bad that the
order of g in F×p is less than log p. Prove that Eve can break any intercepted cipher in polynomial
time. (4 points)

Solution. (a) Alice chooses a prime number p, and a residue class g ∈ F×p (preferably of large order).
She further chooses a positive integer a, and computes the residue class A ≡ pa mod p. Then she
publishes p, g, A, and keeps a in secret.

Now anyone (say, Bob) can send a message to Alice as follows. If his message is a residue class
m ∈ F×p , then he chooses a positive integer k (an ephemeral key), and computes c1 ≡ gk mod p and

c2 ≡ mAk mod p, then sends the pair (c1, c2) to Alice.

Now Alice decrypts the cipher as follows: she computes c2c
−a
1 mod p:

c2c
−a
1 ≡ mAkg−ak ≡ mgakg−ak ≡ m mod p,

which is just the original message.

(b) Eve can do the following. She computes g, g2, . . . , gdlog pe (this is an admissible number of powers,
and each exponentiation can be computed in polynomial time, as we learned it in class). Since the order
of g is less than log p, this list contains all powers of g, in particular A. Therefore, she managed to get a
value a′ such that ga ≡ ga

′
mod p. Then for an intercepted pair (c1, c2), she can play the role of Alice:

c2c
−a′

1 ≡ mAkg−a
′k ≡ mgakg−a

′k ≡ mgakg−ak ≡ m mod p,

and the cipher is decrypted.
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