Mock Final Exam

1. (a) What is the conjugate of a gaussian integer? (2 points)

(b) Prove that for any gaussian integers α, β , we have $\overline{\alpha} + \overline{\beta} = \overline{\alpha + \beta}$ and $\overline{\alpha} \times \overline{\beta} = \overline{\alpha \times \beta}$. (4 points) Solution. (a) The conjugate of the gaussian integer $\alpha = a + b\sqrt{-1}$ (where $a, b \in \mathbb{Z}$) is defined as $\overline{\alpha} = a - b\sqrt{-1} = a + (-b)\sqrt{-1}$.

(b) Let $\alpha = a + b\sqrt{-1}$, $\beta = c + d\sqrt{-1}$. Then

$$\overline{\alpha} + \overline{\beta} = a - b\sqrt{-1} + c - d\sqrt{-1} = (a + c) - (b + d)\sqrt{-1} = \overline{\alpha + \beta}.$$

Also,

$$\overline{\alpha} \times \overline{\beta} = (a - b\sqrt{-1}) \times (c - d\sqrt{-1}) = (ac - bd) - (ad + bc)\sqrt{-1} = \overline{\alpha \times \beta}.$$

2. (a) What is the Pell equation? State the structure theorem about its solutions. (2 points)
(b) Give three solutions of the Pell equation x² - 3y² = 1 satisfying also x, y > 0. (4 points)
Solution. (a) By a Pell equation, we mean an equation of the form

$$x^2 - dy^2 = 1,$$

where d > 0 is an integer, which is not a square, and it is to be solved over the integers (in indeterminates x, y).

Theorem: there are infinitely many solutions and they can described as follows. There is a minimal solution among those where both $x_1, y_1 > 0$ (by minimal, we mean: minimal in x, or minimal in y, or minimal in $x + \sqrt{dy}$, these are all equivalent). Then take the numbers

$$x + \sqrt{dy} = \pm (x_1 + \sqrt{dy_1})^n,$$

where n runs through the integers. This equation defines x and y up to sign: the 'integer' and the ' \sqrt{d} times integer' parts of $(x + \sqrt{d}y)^n$ give $\pm x$ and $\pm y$. Then these pairs x, y are solutions and these are all the solutions.

(b) There is a fundamental solution x = 2, y = 1: $2^2 = 4, 3 \times 1^2 = 3 \times 1 = 3$.

Then a second solution can be computed as

$$(2+\sqrt{3})^2 = 7+\sqrt{3}\times 4,$$

and indeed, x = 7, y = 4 is a solution: $7^2 = 49, 3 \times 4^2 = 3 \times 16 = 48$.

Then a third solution can be computed as

$$(2+\sqrt{3})^3 = (7+\sqrt{3}\times 4)(2+\sqrt{3}) = 26+\sqrt{3}\times 15,$$

and indeed, x = 26, y = 15 is a solution: $26^2 = 676, 3 \times 15^2 = 3 \times 225 = 675$.

- 3. (a) In **Z**, what is the definition of prime numbers (the definition we used in the class)? In **Z**, what is the definition of irreducible numbers (the definition we used in the class)? What was proved about primes and irreducibles in **Z**? (2 points)
 - (b) Give all positive integes n such that $n^3 27$ is a prime number. (Take care: although n is positive, $n^3 27$ can be negative, and there are negative primes!) (4 points)

Solution. (a) We say that an integer p different from 0 and ± 1 is a prime if the following holds: for any integers a, b, if $p \mid ab$, then $p \mid a$ or $p \mid b$.

We say that an integer p different from 0 and ± 1 is irreducible if the following holds: for any integers a, b, if p = ab, then one of a and b is $\pm p$, the other one is ± 1 .

In the class, we proved that in **Z**, prime numbers and irreducibles are the same.

(b) Observe that

$$n^{3} - 27 = n^{3} - 3^{3} = (n-3)(n^{2} + 3n + 3^{2}).$$

Here, if n > 4, then both n - 3 and $n^2 + 3n + 3^2$ are integers bigger than 1, so $n^3 - 27$ is not a prime. If n = 1, then $n^3 - 27 = -26$, which is not a prime.

If n = 2, then $n^3 - 27 = -19$, which is a prime.

If n = 3, then $n^3 - 27 = 0$, which is not a prime.

If n = 4, then $n^3 - 27 = 37$, which is a prime.

So $n^3 - 27$ is a prime, if n = 2, 4.

- 4. (a) State the Chinese remainder theorem. (2 points)
 - (b) Prove that there exist a positive integer n such that none of n + 1, ..., n + 100 is square-free. (4 points)

Solution. (a) Chinese remainder theorem: assume m_1, \ldots, m_n satisfy $gcd(m_i, m_j) = 1$ for all $1 \le i < j \le n$. Then for any $a_1, \ldots, a_n \in \mathbb{Z}$, there exists a unique residue class c modulo $m_1 \times \ldots \times m_n$ satisfying $c \equiv a_j \mod m_j$ for each $1 \le j \le n$.

(b) Let p_1, \ldots, p_{100} be pairwise different prime numbers. Then the numbers p_1^2, \ldots, p_{100}^2 are pairwise coprime. So by the Chinese remainder theorem, there is a positive integer (first a residue class, then any positive representative) satisfying

$$m \equiv -j \mod p_i^2$$

for any $1 \le j \le 100$. Then for any $1 \le j \le 100$, n + j is divisible by p_j^2 , so none of $n + 1, \ldots, n + 100$ is square-free.