
Mock Final Exam

1. (a) What is the conjugate of a gaussian integer? (2 points)

(b) Prove that for any gaussian integers α, β, we have α+ β = α+ β and α× β = α× β. (4 points)

Solution. (a) The conjugate of the gaussian integer α = a + b
√
−1 (where a, b ∈ Z) is defined as

α = a− b
√
−1 = a+ (−b)

√
−1.

(b) Let α = a+ b
√
−1, β = c+ d

√
−1. Then

α+ β = a− b
√
−1 + c− d

√
−1 = (a+ c)− (b+ d)

√
−1 = α+ β.

Also,
α× β = (a− b

√
−1)× (c− d

√
−1) = (ac− bd)− (ad+ bc)

√
−1 = α× β.
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2. (a) What is the Pell equation? State the structure theorem about its solutions. (2 points)

(b) Give three solutions of the Pell equation x2 − 3y2 = 1 satisfying also x, y > 0. (4 points)

Solution. (a) By a Pell equation, we mean an equation of the form

x2 − dy2 = 1,

where d > 0 is an integer, which is not a square, and it is to be solved over the integers (in indeterminates
x, y).

Theorem: there are infinitely many solutions and they can described as follows. There is a minimal
solution among those where both x1, y1 > 0 (by minimal, we mean: minimal in x, or minimal in y, or
minimal in x+

√
dy, these are all equivalent). Then take the numbers

x+
√
dy = ±(x1 +

√
dy1)n,

where n runs through the integers. This equation defines x and y up to sign: the ’integer’ and the ’
√
d

times integer’ parts of (x+
√
dy)n give ±x and ±y. Then these pairs x, y are solutions and these are

all the solutions.

(b) There is a fundamental solution x = 2, y = 1: 22 = 4, 3× 12 = 3× 1 = 3.

Then a second solution can be computed as

(2 +
√

3)2 = 7 +
√

3× 4,

and indeed, x = 7, y = 4 is a solution: 72 = 49, 3× 42 = 3× 16 = 48.

Then a third solution can be computed as

(2 +
√

3)3 = (7 +
√

3× 4)(2 +
√

3) = 26 +
√

3× 15,

and indeed, x = 26, y = 15 is a solution: 262 = 676, 3× 152 = 3× 225 = 675.
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3. (a) In Z, what is the definition of prime numbers (the definition we used in the class)? In Z, what is
the definition of irreducible numbers (the definition we used in the class)? What was proved about
primes and irreducibles in Z? (2 points)

(b) Give all positive integes n such that n3−27 is a prime number. (Take care: although n is positive,
n3 − 27 can be negative, and there are negative primes!) (4 points)

Solution. (a) We say that an integer p different from 0 and ±1 is a prime if the following holds: for
any integers a, b, if p | ab, then p | a or p | b.
We say that an integer p different from 0 and ±1 is irreducible if the following holds: for any integers
a, b, if p = ab, then one of a and b is ±p, the other one is ±1.

In the class, we proved that in Z, prime numbers and irreducibles are the same.

(b) Observe that
n3 − 27 = n3 − 33 = (n− 3)(n2 + 3n+ 32).

Here, if n > 4, then both n− 3 and n2 + 3n+ 32 are integers bigger than 1, so n3 − 27 is not a prime.

If n = 1, then n3 − 27 = −26, which is not a prime.

If n = 2, then n3 − 27 = −19, which is a prime.

If n = 3, then n3 − 27 = 0, which is not a prime.

If n = 4, then n3 − 27 = 37, which is a prime.

So n3 − 27 is a prime, if n = 2, 4.
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4. (a) State the Chinese remainder theorem. (2 points)

(b) Prove that there exist a positive integer n such that none of n + 1, . . . , n + 100 is square-free. (4
points)

Solution. (a) Chinese remainder theorem: assume m1, . . . ,mn satisfy gcd(mi,mj) = 1 for all 1 ≤
i < j ≤ n. Then for any a1, . . . , an ∈ Z, there exists a unique residue class c modulo m1 × . . . ×mn

satisfying c ≡ aj mod mj for each 1 ≤ j ≤ n.

(b) Let p1, . . . , p100 be pairwise different prime numbers. Then the numbers p21, . . . , p
2
100 are pairwise

coprime. So by the Chinese remainder theorem, there is a positive integer (first a residue class, then
any positive representative) satisfying

n ≡ −j mod p2j

for any 1 ≤ j ≤ 100. Then for any 1 ≤ j ≤ 100, n+ j is divisible by p2j , so none of n+ 1, . . . , n+ 100
is square-free.
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