
Final Exam

1. (a) What is the norm of a gaussian integer? (2 points)

(b) Prove that any gaussian integer divides its norm (among the gaussian integers). (4 points)

Solution. (a) The norm of the gaussian integer α = a + b
√
−1 (where a, b ∈ Z) is defined as

N(α) = a2 + b2. Alternatively, using conjugates, we may define the norm to be N(α) = αα, where
α = a− b

√
−1 is the conjugate of α.

(b) Given a gaussian integer α, we have to check that there is a gaussian integer β such that N(α) = αβ.
Observe that β = α = a− b

√
−1 does this job: αα = N(α), and α is a gaussian integer, since a, b ∈ Z

implies a,−b ∈ Z.
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2. (a) State Chebyshev’s theorem about the number of primes up to a certain positive x ≥ 2. (2 points)

(b) Assume p > q > 0 are prime numbers such that p+ q and p− q are also prime numbers. Give all
the possibilities for the pair p, q. (4 points)

Solution. (a) Chebyshev’s theorem: there exist positive constants c1, c2 such that for any x ≥ 2,

c1
x

log x
< π(x) < c2

x

log x
,

where π(x) stands for the number of prime numbers not exceeding x.

(b) If p > q > 2, then p and q are odd primes, their sum is then an even number bigger than 2, so it
cannot be prime. Therefore q must be 2.

Then if p = 3, then p− q = 1, which is not a prime.

If p = 5, then p− q = 3, p+ q = 7, which are primes.

If p > 5, then modulo 3, p is either 1 or 2 (since it is a prime and exceeds 3, it cannot be divisible
by 3). If p ≡ 1 mod 3, then p + q ≡ 1 + 2 ≡ 0 mod 3, and p + q > 3, which is hence not a prime. If
p ≡ 2 mod 3, then p− q ≡ 2− 2 ≡ 0 mod 3, and p− q > 3, which is hence not a prime.

Therefore the only solution is p = 5, q = 2.
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3. (a) State the Euler-Fermat theorem. (2 points)

(b) Prove that there exist integers 100 < k < n such that 2n − 2k is divisible by 2017. (4 points)

Solution. (a) Euler-Fermat theorem: if a and m 6= 0 are coprime integers, then

aϕ(m) ≡ 1 mod m

where ϕ(m) denotes the number of those residue classes modulo m which are coprime to m.

(b) Let k be any integer bigger than 100. Let then n = k + ϕ(2017) > k > 100. Then

2n − 2k = 2k+ϕ(2017) − 2k = 2k(2ϕ(2017) − 1),

and here, the second factor is divisible by 2017 by Euler-Fermat, since 2 is coprime to 2017.

Alternative solution to (b): consider all the numbers 2101, 2102, . . .. Since they are infinitely many,
and there are only finitely many residue classes modulo 2017, there are two in the same residue class
modulo 2017, let them be 2k and 2n (with 100 < k < n). Then their difference is obviously divisible
by 2017.
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4. (a) Which integers can be represented as the sum of four squares? (2 points)

(b) Prove that if a gaussian integer can be represented as the sum of some gaussian squares (squares
of gaussian integers), then it can be represented as the sum of eight gaussian squares. (4 points)

Solution. (a) Every nonnegative integer can be written as the sum of four squares, this is the theorem
on the sum of four squares.

(b) Assume α = a + b
√
−1 be a gaussian integer (i.e. a, b ∈ Z). Then α2 = a2 − b2 + 2ab

√
−1. This

shows that the imaginary (’
√
−1’) part of any gaussian square is even. Then this holds also for the

sum of gaussian squares. Therefore a gaussian integer of odd imaginary part cannot be written as the
sum of gaussian squares at all.

Therefore it suffices to show that any α = a+ 2b
√
−1 with a, b ∈ Z can be written as the sum of eight

gaussian squares.

First we show that any c ∈ Z can be written as the sum of four gaussian squares. Indeed, if c ≥ 0,
then this follows from the theorem on four squares. While if c < 0, then −c is the sum of four squares,
again by the theorem on four squares, say, −c = z21 + z22 + z23 + z24 , where z1, z2, z3, z4 ∈ Z. Then

c = (z1
√
−1)2 + (z2

√
−1)2 + (z3

√
−1)2 + (z4

√
−1)2,

and z1
√
−1, z2

√
−1, z3

√
−1, z4

√
−1 are all gaussian integers.

Then applying this both to a and b, we have, for some gaussian integers x1, x2, x3, x4, y1, y2, y3, y4, that
a = x21 + x22 + x23 + x24, b = y21 + y22 + y23 + y24 . Then

α = a+ 2b
√
−1 = (x21 + x22 + x23 + x24) + (y21 + y22 + y23 + y24)2

√
−1.

Observe that 2
√
−1 = (1 +

√
−1)2. This implies

α = x21 + x22 + x23 + x24 + (y1(1 +
√
−1))2 + (y2(1 +

√
−1))2 + (y3(1 +

√
−1))2 + (y4(1 +

√
−1))2,

and here x1, x2, x3, x4, y1(1 +
√
−1), y2(1 +

√
−1), y3(1 +

√
−1), y4(1 +

√
−1) are all gaussian integers.
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