Mock FINAL EXAM

1. (a) Describe the Diffie-Hellman key exchange (over the group F; ). (2 points)

(b) Let p > 2 be a prime number, and g be a primitive root modulo p, i.e. the discrete logarithm problem
g"=amod p hasasolution ] <x< p—1forall 1 <a< p—1. Assume there is a machine which solves
the discrete logarithm problem for any input 1 < a < (p—1)/2 in polynomial time. Prove that using this
machine, the discrete logarithm problem can be solved for any input 1 < a < p — 1 in polynomial time. (4
points)

Solution. (a) Alice and Bob would like to agree on a residue class modulo p such that even though their whole

communication is monitored by an eavesdropper, they can consider this residue class to be their secret. They

publicly agree on the prime p and a coprime residue class g modulo p (preferably a primitive root, but this is not
absolutely necessary).

In the first step Alice chooses @ € N and computes A = g mod p; while Bob chooses b € N and computes
B = g” mod p. Then Alice sends A to Bob, and Bob sends B to Alice.

In the next step, Alice raises the incoming residue class B to power a modulo p; while Bob raises the incoming
residue class A to power b modulo p. The pont is that they get the same residue class:

BY = (gb)“ = g“h = (g“)h = A® mod p-

(b) Let our algorithm be the following. Take the input a.

If I <a< (p—1)/2, give it to the machine as an input. The output is log, a by assumption, and the running
time is polynomial. This was easy and from now on, we assume that we are in the complementary case
(p+1)/2<a<p-1

In this second case (p+1)/2 < a < p— 1, we compute first > = p — a. This is just a subtraction hence is done in
polynomial time, and for the result, 1 < b < (p — 1)/2 obviously holds.

Now give b to our machine as an input. The output is log, b.

If 1 <log,b < (p—1)/2, then we return log,a =log, b+ (p—1)/2, while if (p+1)/2 <log,b < p— 1, then
we return log, a = log, b — (p—1)/2 (both computed in polynomial time). Of course, we have to prove that these
are the correct results.

In any case,
b= —amod p,

then (using what we have learned from homework problems),

log,b =log,a+log,(—1) mod p—1.
Therefore, to complete the solution, it suffices to show that log,(—1) = (p —1)/2. Clearly,

212 o
(gl) =g’ =1mod p

by Euler-Fermat. Then g(?~1/2 is +1 modulo p, and g? ' =1 mod p. Therefore, g?~1)/2 = —1 mod p, and the

proof is complete.



2. (a) Describe the elliptic curve ElGamal public key cryptosystem. (2 points)
(b) Let F7 be the base field. How many points does the elliptic curve

X,Y,Z) € PF2:Y*Z =X —XZ7*
7

have? (4 points)

Solution. (a) Alice chooses a prime number p > 3, an elliptic curve E over the prime field ), and a point P on
the elliptic curve. She further chooses a positive integer 74, and computes the point

=npP=P+...+P.
0 =ny +

n4 many

Now she publishes p, E, P,Q and keeps n4 in secret.

Anyone (say, Bob) can send her a message M (a point on the elliptic curve) using the following protocol. Bob
chooses an ephemeral key k € N, and computes

C, =kP, C, =M+kQ.

Then he sends the pair (C1,C7) to Alice.

Now Alice computes C; — ngCy, obtaining
Cr—npaCi =M+ kQ —npkP =M +kngP —nskP =M,

which is the original message.

(b) We know (from the general description) that there is a unique point [0, 1,0] satisfying that the Z-coordinate is
zero. Apart from that, we can consider the affine curve

{(ry) €FF 1y’ =" —x}.

For y = 0, there are exactly three solutions: x = 0,£1. Now let x run through F7 \ {0,41} and check whether

x® — x is a square in F7 or not. To do this, record that the squares in F; are 0,1,2,4, and observe that for any

a € F5, exactly one of ta is a square. Note also that whenever we replace x with —x, x® — x goes to its negative.
Therefore, exactly one of +2 and exactly one of 43 gives a square. Of course, for each such (nonzero) square,

there are two appropriate choices for y. Therefore, the number of such points is 4.

Together with the three points with vanishing y-coordinate, and the one point at ’infinity”’, we obtain 8 points on
our elliptic curve.



3. (a) Describe perfect secrecy. (2 points)
(b) Let X,Y be random variables. Prove that

H(X,Y) <HX)+H(Y).

(4 points)

Solution. (a) Let us denote by .#, %", ¢ the message, key and cipher sets, respectively, and let M : Q — .4 ,K :
Q— #,C: Q — € be the random variables which choose the message, the key and the cipher at random. Then
we say that the cryptosystem has perfect secrecy, if

Pr(M=m)=Pr(M=m|C=c)

holds forallm € .# ,c € €.

(b) We proved in the lecture that
HX,)Y)=H(Y)+H(X|Y).

We also proved in the lecture that
HX)>HX|Y).

Altogether,
HX,Y)=H(Y)+HX|Y)<HX)+H(Y),

and the proof is complete.



4. (a) Define key equivocation. (2 points)

(b) Alice and Bob use the XOR cipher on ¢ bits. Assuming that M and K are independent and uniformly
distributed, compute the key equivocation. (4 points)

Solution. (a) Let us denote by .#, %, ¢ the message, key and cipher sets, respectively, and let M : Q — .# K :
Q — A ,C:Q — % be the random variables which choose the message, the key and the cipher at random.
Denoting by H the entropy of a random variable, the key equivocation is defined to be the conditional entropy

H(K|C).

(b) We proved in the lecture that when M and K are independent, then the formula
H(K|C)=HM)+H(K)—H(C)

holds. We claim that H(M) = H(C). Indeed, M and C are both uniform distributions on 2’ elements: this is clear
by definition for M; while for C, it follows from the facts that each cipher ¢ corresponds to 2’ pairs (m, k) via
¢ = ex(m) and that there are 4 possibilities for the pair (m, k), each of them having probability 4" (because of
the independency of m and k). Therefore,

H(K|C)=H(K).
We can compute this from definition: there are 2' keys, each of them occurs with probability 2. Therefore,
2[
HK|C)=H(K)=—-Y 27"log,2" =1.
j=1

Hence the key equivocation is ¢.



