
MOCK FINAL EXAM

1. (a) Describe the Diffie-Hellman key exchange (over the group F×p ). (2 points)
(b) Let p > 2 be a prime number, and g be a primitive root modulo p, i.e. the discrete logarithm problem

gx ≡ a mod p has a solution 1 6 x 6 p−1 for all 1 6 a 6 p−1. Assume there is a machine which solves
the discrete logarithm problem for any input 1 6 a 6 (p−1)/2 in polynomial time. Prove that using this
machine, the discrete logarithm problem can be solved for any input 1 6 a 6 p−1 in polynomial time. (4
points)

Solution. (a) Alice and Bob would like to agree on a residue class modulo p such that even though their whole
communication is monitored by an eavesdropper, they can consider this residue class to be their secret. They
publicly agree on the prime p and a coprime residue class g modulo p (preferably a primitive root, but this is not
absolutely necessary).

In the first step Alice chooses a ∈ N and computes A ≡ ga mod p; while Bob chooses b ∈ N and computes
B≡ gb mod p. Then Alice sends A to Bob, and Bob sends B to Alice.

In the next step, Alice raises the incoming residue class B to power a modulo p; while Bob raises the incoming
residue class A to power b modulo p. The pont is that they get the same residue class:

Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab mod p.

(b) Let our algorithm be the following. Take the input a.

If 1 6 a 6 (p−1)/2, give it to the machine as an input. The output is logg a by assumption, and the running
time is polynomial. This was easy and from now on, we assume that we are in the complementary case
(p+1)/2 6 a 6 p−1.

In this second case (p+1)/2 6 a 6 p−1, we compute first b = p−a. This is just a subtraction hence is done in
polynomial time, and for the result, 1 6 b 6 (p−1)/2 obviously holds.

Now give b to our machine as an input. The output is logg b.

If 1 6 logg b 6 (p−1)/2, then we return logg a = logg b+(p−1)/2, while if (p+1)/2 6 logg b 6 p−1, then
we return logg a = logg b− (p−1)/2 (both computed in polynomial time). Of course, we have to prove that these
are the correct results.

In any case,
b≡−a mod p,

then (using what we have learned from homework problems),

logg b≡ logg a+ logg(−1) mod p−1.

Therefore, to complete the solution, it suffices to show that logg(−1) = (p−1)/2. Clearly,(
g

p−1
2

)2
≡ gp−1 ≡ 1 mod p

by Euler-Fermat. Then g(p−1)/2 is ±1 modulo p, and gp−1 ≡ 1 mod p. Therefore, g(p−1)/2 ≡−1 mod p, and the
proof is complete.
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2. (a) Describe the elliptic curve ElGamal public key cryptosystem. (2 points)
(b) Let F7 be the base field. How many points does the elliptic curve

{[X ,Y,Z] ∈ PF2
7 : Y 2Z = X3−XZ2}

have? (4 points)
Solution. (a) Alice chooses a prime number p > 3, an elliptic curve E over the prime field Fp, and a point P on
the elliptic curve. She further chooses a positive integer nA, and computes the point

Q = nAP = P+ . . .+P︸ ︷︷ ︸
nA many

.

Now she publishes p,E,P,Q and keeps nA in secret.

Anyone (say, Bob) can send her a message M (a point on the elliptic curve) using the following protocol. Bob
chooses an ephemeral key k ∈ N, and computes

C1 = kP, C2 = M+ kQ.

Then he sends the pair (C1,C2) to Alice.

Now Alice computes C2−nAC1, obtaining

C2−nAC1 = M+ kQ−nAkP = M+ knAP−nAkP = M,

which is the original message.

(b) We know (from the general description) that there is a unique point [0,1,0] satisfying that the Z-coordinate is
zero. Apart from that, we can consider the affine curve

{(x,y) ∈ F2
7 : y2 = x3− x}.

For y = 0, there are exactly three solutions: x = 0,±1. Now let x run through F7 \{0,±1} and check whether
x3− x is a square in F7 or not. To do this, record that the squares in F7 are 0,1,2,4, and observe that for any
a ∈ F×7 , exactly one of ±a is a square. Note also that whenever we replace x with −x, x3− x goes to its negative.
Therefore, exactly one of ±2 and exactly one of ±3 gives a square. Of course, for each such (nonzero) square,
there are two appropriate choices for y. Therefore, the number of such points is 4.

Together with the three points with vanishing y-coordinate, and the one point at ”infinity”, we obtain 8 points on
our elliptic curve.
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3. (a) Describe perfect secrecy. (2 points)
(b) Let X ,Y be random variables. Prove that

H(X ,Y )6 H(X)+H(Y ).

(4 points)
Solution. (a) Let us denote by M ,K ,C the message, key and cipher sets, respectively, and let M : Ω→M ,K :
Ω→K ,C : Ω→ C be the random variables which choose the message, the key and the cipher at random. Then
we say that the cryptosystem has perfect secrecy, if

Pr(M = m) = Pr(M = m |C = c)

holds for all m ∈M ,c ∈ C .

(b) We proved in the lecture that
H(X ,Y ) = H(Y )+H(X | Y ).

We also proved in the lecture that
H(X)> H(X | Y ).

Altogether,
H(X ,Y ) = H(Y )+H(X | Y )6 H(X)+H(Y ),

and the proof is complete.
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4. (a) Define key equivocation. (2 points)
(b) Alice and Bob use the XOR cipher on t bits. Assuming that M and K are independent and uniformly

distributed, compute the key equivocation. (4 points)
Solution. (a) Let us denote by M ,K ,C the message, key and cipher sets, respectively, and let M : Ω→M ,K :
Ω→K ,C : Ω→ C be the random variables which choose the message, the key and the cipher at random.
Denoting by H the entropy of a random variable, the key equivocation is defined to be the conditional entropy

H(K |C).

(b) We proved in the lecture that when M and K are independent, then the formula

H(K |C) = H(M)+H(K)−H(C)

holds. We claim that H(M) = H(C). Indeed, M and C are both uniform distributions on 2t elements: this is clear
by definition for M; while for C, it follows from the facts that each cipher c corresponds to 2t pairs (m,k) via
c = ek(m) and that there are 4t possibilities for the pair (m,k), each of them having probability 4−t (because of
the independency of m and k). Therefore,

H(K |C) = H(K).

We can compute this from definition: there are 2t keys, each of them occurs with probability 2−t . Therefore,

H(K |C) = H(K) =−
2t

∑
j=1

2−t log2 2−t = t.

Hence the key equivocation is t.
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