MIDTERM EXAM

- 1. (a) Define groups. (2 points)
 - (b) Let G be the group of isometries of a regular triangle. Prove that if $a \in G$ is an isometry, and N is a positive integer, then a^N can be computed in polynomial time. (4 points)

Solution. (a) We say that a set *G* together with a binary operation * is a group, if the following three axioms hold:

- for any $x, y, z \in G$, (x * y) * z = x * (y * z);
- there exists $e \in G$ such that for any $x \in G$, x * e = e * x = e;
- for any $x \in G$, there exists $y \in G$ such that x * y = y * x = e.

(b) We learned in class that #G = 6. By Lagrange's theorem, the order of any element divides the order of the group, therefore $o(a) \mid \#G$. This means that if $M \equiv N \mod 6$, then

$$a^M = a^N$$
.

Indeed, assume M > N, then we may write M - N = 6k = o(a)l for some $k, l \in \mathbb{N}$. Then

$$a^M = a^{N+o(a)l} = a^N \mathrm{id}^l = a^N.$$

Therefore, a^N in the original question depends only on the residue class of N modulo 6. This can be computed by the euclidean division which we learned to be done in polynomial time, i.e.

$$N = 6n + d$$
,

where $0 \le d < 5$, and this value *d* can be computed from *N* in polynomial time. Now compute a^d which takes only a constant time, and is equal to a^N .

- 2. (a) Describe the simple substitution cipher. (2 points)
 - (b) Alice and Bob communicate using the simple substitution cipher. Eve constructs a computer which tries 10 million possible keys per second. Can this computer break the cipher in a lifetime? (To break the cipher, assume the computer has to try all possible keys.) (4 points)

Solution. (a) In the simple substitution cipher, both \mathcal{M} and \mathcal{C} are set of the letters of the alphabet \mathfrak{A} :

$$\mathscr{M} = \mathscr{C} = \mathfrak{A} = \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d}, \mathtt{e}, \mathtt{f}, \mathtt{g}, \mathtt{h}, \mathtt{i}, \mathtt{j}, \mathtt{k}, \mathtt{l}, \mathtt{m}, \mathtt{n}, \mathtt{o}, \mathtt{p}, \mathtt{q}, \mathtt{r}, \mathtt{s}, \mathtt{t}, \mathtt{u}, \mathtt{v}, \mathtt{w}, \mathtt{x}, \mathtt{y}, \mathtt{z} \}.$$

The key set \mathscr{K} is the group of permutations of \mathfrak{A} :

$$\mathscr{K} = \{k : k \in \operatorname{Perm}(\mathfrak{A})\}.$$

Given a letter, the key k acts on it via the permutation, i.e.

$$e_k(m) = k(m).$$

As for the decryption, it is given by the inverse permutation. Formally,

$$d_k(c) = k^{-1}(c)$$

(b) The number of possible keys is 26!. The number of operations is

$$10^7/\text{sec} < 10^9/\text{minute} < 10^{11}/\text{hour} < 10^{13}\text{day} < 10^{16}/\text{year},$$

which is less than 10^{19} in 1000 years, which is safe to say to be longer than a lifetime.

In 26!, there are 17 factors not smaller than 10 (namely, the numbers $10, 11, \ldots, 26$). Also, $2 \cdot 9$ and $3 \cdot 8$ are both bigger than 10, so

$$26! > 10^{19}$$

therefore the computer cannot try all keys in a lifetime.

- 3. (a) Describe the pseudorandom number generators. (2 points)
 - (b) Assume that there exists a pseudorandom number generator *R*. Prove then that there exists another pseudorandom number generator *R'*. (By another, we mean that for any *k* ∈ *K*, there exists at least one *n* ∈ N such that *R'*(*k*, *n*) ≠ *R*(*k*, *n*).) (4 points)

Solution. (a) A pseudorandom number generator is a function $R: \mathcal{K} \times \mathbf{N} \to \{0,1\}$ satisfying the conditions:

- for any $k \in \mathcal{K}$, $j \in \mathbb{N}$, it is easy to compute R(k, j);
- from any j_1, \ldots, j_n and corresponding $R(k, j_1), \ldots, R(k, j_n)$, it is hard to figure out k;
- from any j_1, \ldots, j_n and corresponding $R(k, j_1), \ldots, R(k, j_n)$, it is hard to guess the value of R(k, j) with better than a 50% chance of success, if $j \notin \{j_1, \ldots, j_n\}$,

(b) Assume R(k,n) is a pseudorandom number generator. Consider the function R'(k,n) = 1 - R(k,n). Then clearly $R' : \mathscr{K} \times \mathbf{N} \to \{0,1\}$, and we see that all requirements are fulfilled. Indeed, the easy computability of R'(k,n) from k and n is just the same as that of R(k,n), we only have to compute R(k,n) (which is easy by assumption), then alter the resulting bit. Also, if there were a fast algorithm to figure out k from $R'(k, j_1), \ldots, R'(k, j_n)$, then this is nothing else but computing k easily from $1 - R(k, j_1), \ldots, 1 - R(k, j_n)$, that is, from $R(k, j_1), \ldots, R(k, j_n)$. Finally, a guess from $R(k', j_1), \ldots, R(k', j_n)$ to R(k', j) with better than a 50% chance can be translated to R: take the values $R(k, j_1), \ldots, R(k, j_n)$ alter each bit, apply the 'good guess' algorithm of R', then alter the resulting bit again.

On the other hand, it is easy to see that R' is other than R: $R'(k,n) \neq R(k,n)$ for any $k \in \mathcal{K}$ and any $n \in \mathbb{N}$.

- 4. (a) Describe the chosen plaintext attack. (2 points)
 - (b) For a prime *p*, let *M*, *C* = **F**_{*p*}, *K* = (**F**_{*p*}[×], **F**_{*p*}), and for *m* ∈ *M*, *k* = (*k*_×, *k*₊) ∈ *K* (i.e. *k*_× ∈ **F**_{*p*}[×] and *k*₊ ∈ **F**_{*p*}), let *e*_{*k*}(*m*) = *k*_×*m* + *k*₊. Prove that this cryptosystem is vulnerable against the chosen plaintext attack. How many pairs (*m*, *e*_{*k*}(*m*)) are needed to reveal *k*? (**4 points**)

Solution. (a) In the chosen plaintext attack, Eve convinces Alice to encrypt a few messages m_1, \ldots, m_n . Then, knowing the pairs $(m_1, e_k(m_1)), \ldots, (m_1, e_k(m_1))$, she may try to figure out what the key k can be, or at least to decrypt any cipher $c = e_k(m)$.

(b) In the given example, we prove that the given cryptosystem is vulnerable against the chosen plaintext attack in the sense that if Eve learns two pairs $(m_1, e_k(m_1)), (m_2, e_k(m_2))$ (with $m_1 \neq m_2$), then she can figure out k. Also we prove that one pair $(m_1, e_k(m_1))$ is not enough to do so (at least for p > 2, in the exceptional case $p = 2, k_{\times}$ must be 1, and $k_+ = e_k(m_1) - m_1$, so in this case, one pair suffices).

First of all, two pairs give the linear system of equations

$$k_{\times}m_1 + k_+ = c_1,$$

 $k_{\times}m_2 + k_+ = c_2.$

Taking their difference, then dividing by $m_1 - m_2$ (which is not zero, since $m_1 \neq m_2$), we obtain

$$k_{\times}=\frac{c_1-c_2}{m_1-m_2}.$$

Then it is clear that

$$k_{+} = c_1 - \frac{c_1 - c_2}{m_1 - m_2} m_1 = c_2 - \frac{c_1 - c_2}{m_1 - m_2} m_2.$$

Checking back, this is indeed a solution, therefore two pairs indeed give the key.

On the other hand, one pair is not enough (at least when p > 2), since the equation

$$k_{\times}m_1 + k_+ = c_1$$

has p-1 solutions:

$$\{(k_{\times},c_1-k_{\times}m_1):k_{\times}\in\mathbf{F}_p^{\times}\}$$

which means that if Eve knows a single pair $(m_1, e_k(m_1))$, there are still p-1 possible keys k which map m_1 to $e_k(m_1)$.