
MIDTERM EXAM

1. (a) Define groups. (2 points)
(b) Let G be the group of isometries of a regular triangle. Prove that if a ∈ G is an isometry, and N is a positive

integer, then aN can be computed in polynomial time. (4 points)
Solution. (a) We say that a set G together with a binary operation ∗ is a group, if the following three axioms hold:

• for any x,y,z ∈ G, (x∗ y)∗ z = x∗ (y∗ z);

• there exists e ∈ G such that for any x ∈ G, x∗ e = e∗ x = e;

• for any x ∈ G, there exists y ∈ G such that x∗ y = y∗ x = e.

(b) We learned in class that #G = 6. By Lagrange’s theorem, the order of any element divides the order of the
group, therefore o(a) | #G. This means that if M ≡ N mod 6, then

aM = aN .

Indeed, assume M > N, then we may write M−N = 6k = o(a)l for some k, l ∈ N. Then

aM = aN+o(a)l = aN idl = aN .

Therefore, aN in the original question depends only on the residue class of N modulo 6. This can be computed by
the euclidean division which we learned to be done in polynomial time, i.e.

N = 6n+d,

where 0 6 d < 5, and this value d can be computed from N in polynomial time. Now compute ad which takes
only a constant time, and is equal to aN .
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2. (a) Describe the simple substitution cipher. (2 points)
(b) Alice and Bob communicate using the simple substitution cipher. Eve constructs a computer which tries 10

million possible keys per second. Can this computer break the cipher in a lifetime? (To break the cipher,
assume the computer has to try all possible keys.) (4 points)

Solution. (a) In the simple substitution cipher, both M and C are set of the letters of the alphabet A:

M = C = A= {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}.

The key set K is the group of permutations of A:

K = {k : k ∈ Perm(A)}.

Given a letter, the key k acts on it via the permutation, i.e.

ek(m) = k(m).

As for the decryption, it is given by the inverse permutation. Formally,

dk(c) = k−1(c).

(b) The number of possible keys is 26!. The number of operations is

107/sec < 109/minute < 1011/hour < 1013day < 1016/year,

which is less than 1019 in 1000 years, which is safe to say to be longer than a lifetime.

In 26!, there are 17 factors not smaller than 10 (namely, the numbers 10,11, . . . ,26). Also, 2 ·9 and 3 ·8 are both
bigger than 10, so

26! > 1019,

therefore the computer cannot try all keys in a lifetime.

2



3. (a) Describe the pseudorandom number generators. (2 points)
(b) Assume that there exists a pseudorandom number generator R. Prove then that there exists another pseudo-

random number generator R′. (By another, we mean that for any k ∈K , there exists at least one n ∈ N such
that R′(k,n) 6= R(k,n).) (4 points)

Solution. (a) A pseudorandom number generator is a function R : K ×N→{0,1} satisfying the conditions:

• for any k ∈K , j ∈ N, it is easy to compute R(k, j);

• from any j1, . . . , jn and corresponding R(k, j1), . . . ,R(k, jn), it is hard to figure out k;

• from any j1, . . . , jn and corresponding R(k, j1), . . . ,R(k, jn), it is hard to guess the value of R(k, j) with
better than a 50% chance of success, if j /∈ { j1, . . . , jn},

(b) Assume R(k,n) is a pseudorandom number generator. Consider the function R′(k,n) = 1−R(k,n). Then
clearly R′ : K ×N→ {0,1}, and we see that all requirements are fulfilled. Indeed, the easy computabil-
ity of R′(k,n) from k and n is just the same as that of R(k,n), we only have to compute R(k,n) (which is
easy by assumption), then alter the resulting bit. Also, if there were a fast algorithm to figure out k from
R′(k, j1), . . . ,R′(k, jn), then this is nothing else but computing k easily from 1−R(k, j1), . . . ,1−R(k, jn), that is,
from R(k, j1), . . . ,R(k, jn). Finally, a guess from R(k′, j1), . . . ,R(k′, jn) to R(k′, j) with better than a 50% chance
can be translated to R: take the values R(k, j1), . . . ,R(k, jn) alter each bit, apply the ’good guess’ algorithm of R′,
then alter the resulting bit again.

On the other hand, it is easy to see that R′ is other than R: R′(k,n) 6= R(k,n) for any k ∈K and any n ∈ N.
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4. (a) Describe the chosen plaintext attack. (2 points)
(b) For a prime p, let M ,C = Fp, K = (F×p ,Fp), and for m∈M ,k = (k×,k+)∈K (i.e. k× ∈ F×p and k+ ∈ Fp),

let ek(m) = k×m+ k+. Prove that this cryptosystem is vulnerable against the chosen plaintext attack. How
many pairs (m,ek(m)) are needed to reveal k? (4 points)

Solution. (a) In the chosen plaintext attack, Eve convinces Alice to encrypt a few messages m1, . . . ,mn. Then,
knowing the pairs (m1,ek(m1)), . . . ,(m1,ek(m1)), she may try to figure out what the key k can be, or at least to
decrypt any cipher c = ek(m).

(b) In the given example, we prove that the given cryptosystem is vulnerable against the chosen plaintext attack in
the sense that if Eve learns two pairs (m1,ek(m1)),(m2,ek(m2)) (with m1 6= m2), then she can figure out k. Also
we prove that one pair (m1,ek(m1)) is not enough to do so (at least for p > 2, in the exceptional case p = 2, k×
must be 1, and k+ = ek(m1)−m1, so in this case, one pair suffices).

First of all, two pairs give the linear system of equations

k×m1 + k+ = c1,

k×m2 + k+ = c2.

Taking their difference, then dividing by m1−m2 (which is not zero, since m1 6= m2), we obtain

k× =
c1− c2

m1−m2
.

Then it is clear that
k+ = c1−

c1− c2

m1−m2
m1 = c2−

c1− c2

m1−m2
m2.

Checking back, this is indeed a solution, therefore two pairs indeed give the key.

On the other hand, one pair is not enough (at least when p > 2), since the equation

k×m1 + k+ = c1

has p−1 solutions:
{(k×,c1− k×m1) : k× ∈ F×p },

which means that if Eve knows a single pair (m1,ek(m1)), there are still p−1 possible keys k which map m1 to
ek(m1).
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