
Introduction to mathematical cryptography

Péter Maga

Contents

Preface v

1 Introduction 1
1.1 The principal goal of cryptography, Kerckhoff’s principle . 1
1.2 Cryptanalysis . 2
1.3 Symmetric ciphers: mathematical formulation . 2
1.4 Asymmetric ciphers: mathematical formulation . 3
1.5 Mathematical background . 4

1.5.1 The fundamental theorem of arithmetic . 4
1.5.2 Groups, rings and fields . 5
1.5.3 Residue classes . 8
1.5.4 Multiplicative groups . 8
1.5.5 Computability . 9
1.5.6 Probability theory . 11

1.6 The XOR cipher and pseudorandom sequences . 12

2 Discrete logarithms and Diffie-Hellman 13
2.1 The discrete logarithm problem . 13
2.2 The Diffie-Hellman key exchange . 14
2.3 The ElGamal cryptosystem . 14

3 Integer factorization and RSA 17
3.1 The RSA cryptosystem . 17
3.2 Primality testing . 17

3.2.1 Fermat’s little theorem and Carmichael numbers . 18
3.2.2 The Miller-Rabin test . 18
3.2.3 The Agrawal-Kayal-Saxena polynomial test . 19

3.3 Multiplayer RSA – the bad way . 21

4 Probability and information theory 23
4.1 The Vigenère cipher and its cryptanalysis . 23
4.2 Collision and meet-in-the-middle attacks . 24
4.3 Perfect secrecy and entropy . 25
4.4 The redundancy of natural languages . 29

5 Elliptic curves and cryptography 31
5.1 Elliptic curves and their abelian group structure . 31
5.2 A sketch of the proof of Theorem 5.1.1 . 32

5.2.1 The resultant and Bézout’s theorem . 32
5.2.2 The Cayley-Bacharach theorem . 33
5.2.3 Completion of the sketch . 34

5.3 The elliptic curve discrete logarithm problem . 34
5.4 Elliptic curve cryptography . 35

5.4.1 The elliptic curve Diffie-Hellman . 35

iii

iv 0.
5.4.2 The elliptic curve ElGamal . 35

6 Attacking the underlying problems 37
6.1 The discrete logarithm problem . 37

6.1.1 A babystep-giantstep algorithm . 37
6.1.2 The Pohlig-Hellman algorithm . 37
6.1.3 The index calculus method . 38

6.2 Factorization algorithms . 39
6.2.1 Pollard’s p−1 method . 39
6.2.2 Lenstra’s elliptic curve factorization . 39

7 Additional topics 41
7.1 Interactive proofs . 41

7.1.1 How to store the last move in chess? . 41
7.1.2 A zero-knowledge proof of that a certain number is square modulo N 41
7.1.3 Using our password . 43

7.2 Identification . 43
7.2.1 An RSA-based digital signature . 43
7.2.2 Multiplayer RSA – the good way . 43

7.3 Secret sharing . 44

Preface

These lecture notes are written to provide a text to my Introduction to Mathematical Cryptography course at
Budapest Semesters in Mathematics. The main source is [1], even the structure is borrowed from there. Note also
that in [1], both the material and the collection of examples are much more extended.

v

Chapter 1
Introduction

1.1 The principal goal of cryptography, Kerckhoff’s principle
The principal goal of cryptography is to allow two people to exchange confidential information, even if they
can only communicate via a channel monitored by an adversary.

Assume for example that Bob wants to send a message to Alice in such a way that Eve – who reads/listens/spies
the communication of Alice and Bob – cannot understand the message (Alice, Bob and Eve are the usual participants
of the cryptographic setup).

The scheme of the solution is the following. Bob sends through the communication something else than his
original message. Eve can read only this something else. Alice knows how this something else should be understood
to get the original message.

Example 1.1.1 (an ancient method). We are in ancient times. Bob shaves the head of a slave. Then tattoos the
message on the bald head. After hair has regrown, he sends the slave to Alice. Alice shaves the slave’s head again
and reads the message. (Here the assumption on the monitoring of the channel is that if Bob sent the slave with a
letter to Alice, then Eve would steal the message from the slave and would read it.)

Example 1.1.2 (another ancient method – Caesar cipher). Bob shifts the alphabet the following way: he replaces
each letter in his message with the letter which follows three later in the alphabet, e.g.

We attack the castle tomorrow.

Zh dwwdfn wkh fdvwoh wrpruurz.

which gives rise to the ciphertext (it is usual to rewrite the cipher in five-letter blocks, and leaving punctuation):

ZHDWW DFNWK HFDVW OHWRP RUURZ.

He writes down only the message ’ZHDWW DFNWK HFDVW OHWRP RUURZ’, and sends this to Alice. Now Alice
knows that she has to count three characters back and gets the original message, at least, in the form ’WEATT
ACKTH ECAST LETOM ORROW’, but it is obvious where words start and end. However, even if Eve can read
the ciphertext, it is just meaningless for her.

Example 1.1.3 (Caesar’s cipher improved – simple substitution ciphers). Set A= {a,b,c, . . . ,z} for the alphabet.
Then assume Alice and Bob agrees on a bijection π : A→ A (this is called a permutation of A). Now if Bob wants
to send a message to Alice, simply applies π to each letter, and sends the resulting text to Alice. Again, this text is a
gibberish for Eve, while Alice knows how to recover the original message. Caesar cipher in Example 1.1.2 is just a
special case of this when π is a shift of the letters.

What happens if Eve knows what the basic principle behind the encryption is? In Example 1.1.1, she simply
captures and shaves the slave, and the cryptosystem is broken. However, in Example 1.1.2, the information that the
encoding procedure is some shift of the alphabet still leaves 26 possibilities for the size of the shift (and hence for
the original message). Even worse, in Example 1.1.3, the number of possibilities is 26! = 26 ·25 · . . . ·1 > 1026.

Motivated by this phenomenon, Kerckhoff’s principle says that the security of a cryptosystem should depend
only on the secrecy of the key (this is the actual shift vector in Example 1.1.2 or the actual permutation in Example

1

2 1. INTRODUCTION

1.1.3), not on the secrecy of the encryption algorithm (this is the fact that Alice and Bob use a shift in Example
1.1.2 or a permutation 1.1.3 of the alphabet to encode messages).

Already on this point, it is convenient to agree on the following ability of Eve (which is very natural to assume):
she is able to recognize the message when she sees that. For example, in the Caesar cipher (Example 1.1.2), when
she tries all the 26 possibilities for the translation vector, she will observe when she hits it. Although in principle it
could happen that some other key gives another meaningful message, this is extremely unlikely (and its probability
decreases very fast when the length of the message grows).

1.2 Cryptanalysis
In fact, Caesar’s cipher can be easily broken: it is just 26 trials for the shift vector, and this can be done even by a
human quite fast. Note that Eve has to try the first few characters in each possible shift, for an incorrect guess, most
likely the first few letters will give rise to a gibberish.

This is not the case with the simple substitution cipher, the number of possible keys is quite large, 26! > 1026,
which is too much even for a modern PC. However, even such a ciphertext can be revealed relatively easily. The
point is that simple substitutions do not alter the characteristic of the underlying natural language, say, English in
our case.

So Eve can argue as follows. In a normal English text (which is supposed the message to be), the most frequent
characters are ’e’, ’t’, ’a’, ’o’, ’n’. Even their frequency can be easily computed (you can find online tables telling
them, or, by ”bare” hand, you can open a long pdf file and count the occurrences of these letters). Also, you can
consider the bigrams ’th’, ’he’, ’an’, ’re’, ’er’, and the trigrams ’the’, ’and’, ’ing’. Now given the ciphertext, if we
count the often occurring letters, bigrams and trigrams, we may have reasonable guesses on the substitution: the
point is that, for example, no matter which letter stands for ’e’, it will stand for ’e’ always, and since ’e’ is the most
often letter in English, this unknown character will be somewhat often in the cipher (and almost surely the most
often, if the cipher is long enough). The same is true for other frequent letters, and also for bigrams and trigrams.
As soon as some parts of the text are revealed, we can figure out further substitutions. After some trial and error, we
can recover the text. Although this might seem complicated, it works surprisingly fast, read [1, Section 1.1.1] to see
this is action.

As a historical note, we remark that cryptanalysis, letter frequency counts were known by Arab scholars in the
14th and the 15th century. The same time, in Italian states, more complicated cryptosystems were used than simple
substitution ciphers, which suggests that cryptanalysis via frequency analysis was known there as well.

1.3 Symmetric ciphers: mathematical formulation
Definition 1.3.1 (symmetric cryptosystem). By a symmetric cryptosystem, we mean a 5-tuple

(K ,M ,C ,e,d),

where K ,M ,C are sets, and e : K ×M → C , d : K ×C →M are functions satisfying that for any k ∈K and
m ∈M ,

d(k,e(k,m)) = m.

Here, K is the set of possible keys, M is the set of possible messages, C is the set of possible ciphers. The
functions e and d are the encrypting and decrypting algorithms, respectively: for a given key k ∈K , e computes
c ∈ C from m ∈M , while d computes m ∈M from c ∈ C . In practice, for a fixed k ∈K , e(k, ·) and d(k, ·) are
often denoted by ek and dk, respectively.

In the realization, K ,M ,C ,e,d are known to everyone (including Eve), while the paricular k ∈K in use is
known only to Alice and Bob.

For example, in Example 1.1.2, the set of messages and ciphers are both the possible (finite) texts. The set of
keys are the positive integers up to 26: K = {1,2,3, . . . ,26}. Now ek, for an integer k ∈K , shifts each letter by k,
while dk shifts it back.

In Example 1.1.3, the set of messages and ciphers are the same, but this time K is the set of all permutations of
the alphabet, a much bigger set than in Example 1.1.2.

We impose a few informal requirements on cryptosystems:

(1) knowing k ∈K and m ∈M , ek(m) ∈ C must be easy to compute;

1.4. ASYMMETRIC CIPHERS: MATHEMATICAL FORMULATION 3
(2) knowing k ∈K and c ∈ C , dk(c) ∈M must be easy to compute;

(3) given one or more encoded ciphertexts c1, . . . ,cn ∈ C encrypted using the key k ∈K , without knowing k, it
must be hard to compute any of the plaintexts dk(c1), . . . ,dk(cn).

These are just natural conditions: the first two say that if Alice and Bob agree on the key, their alogithms to
encyrpt and decrypt texts are fast; the third one says that Eve – not knowing the particular key – cannot compute
easily the original message.

A fourth condition is somewhat more complicated:

(4) for any fixed k ∈K , given any number of pairs (m1,c1), . . . ,(mn,cn) (i.e. for any 1 6 j 6 n, m j ∈M , c j ∈ C ,
ek(m j) = c j, dk(c j) = m j), if c ∈ C \{c1, . . . ,cn}, then without knowing k, it must be hard to compute dk(c).
This is security against a chosen plaintext attack.

For example, the Caesar cipher and even its generalized version, the simple substitution cipher (recall Examples
1.1.2, 1.1.3) satisfy the conditions (1), (2), but one can easily see that they do not satisfy (4). Indeed, in the
Caesar cipher, even a single given pair (m1,c1) determines k, while in the simple substitution cipher, the pairs
(’a’,k(’a’)), . . . ,(’z’,k(′z′)) determine k. It is not that obvious what we have seen in Section 1.2: even (3) does not
hold for them, meaning that they are not secure in the sense that Eve does not have to organize any ingenious attack
on the cryptosystem (like the chosen plaintext attack).

1.4 Asymmetric ciphers: mathematical formulation

In Examples 1.1.2 and 1.1.3, the role of Alice and Bob are symmetric. There is the key set K , and they know
which element k ∈K they use (this has to be kept in secret). Such setups are the symmetric ciphers.

However, the relation of Alice and Bob is asymmetric (Bob sends, Alice reads the message), which might be
utilized.

Definition 1.4.1 (asymmetric cryptosystem). By an asymmetric cryptosystem, we mean a 7-tuple

K ,Kpub,Kpriv,M ,C ,e,d,

where K ,Kpub,Kpriv,M ,C are sets satisfying

K ⊆Kpub×Kpriv,

and e : Kpub×M → C , d : Kpriv×C →M are functions satisfying that for any (kpub,kpriv) ∈K and m ∈M ,

d(kpriv,e(kpub,m)) = m.

Here, K is the set of possible keys, M is the set of possible messages, C is the set of possible ciphers. The
functions e and d are the encrypting and decrypting algorithms, respectively: for a given key (kpub,kpriv) ∈K , e
computes c ∈ C from m ∈M , while d computes m ∈M from c ∈ C . In practice, for a fixed (kpub,kpriv) ∈K ,
e(kpub, ·) and d(kpriv, ·) are often denoted by ekpub and dkpriv , respectively.

In the realization, Kpub,Kpriv,M ,C ,e,d are known to everyone (including Eve). It is only Alice who knows
K , and she picks a particular key (kpub,kpriv) ∈K . Now she makes kpub public, and keeps kpriv in secret. If Bob
wants to send a message m ∈M to Alice, then he applies ekpub to m, and sends ekpub(m) to Alice. Now Alice applies
dkpriv to the incoming cipher, obtaining

dkpriv(ekpub(m)) = m.

The requirements are modified the obvious way.
In this setup, there is nothing special about Bob, he has the same information as Eve has. Yet, if the system

works well, Eve is unable to read Bob’s messages to Alice. Although this seems more complicated and somewhat
artificial, this scheme is commonly used. Think for example of your e-mail address: basically everyone knows it,
none of your friends has a particular role, yet each of them can send you an e-mail which is hidden from anyone
else1.

1At least would be, in a world where webmail providers do not read clients’ mails – in ours they do.

4 1. INTRODUCTION

1.5 Mathematical background
Up to this point, messages and ciphers were both textual objects. This is natural, our communication is textual,
so most messages are simply texts. However, the communication of our computers (which deliver the messages
nowadays) are rather based on numbers, and – more importantly – fancy properties of numbers provide us with
extremely ingenious cryptosystems. For this reason, given any text, we – more precisely: our softwares – transform
it to numbers. Our computers use the ASCII encoding scheme to convert characters to bytes. A byte consists of
eight bits, where a bit is a 0 or a 1 (it is the abbreviation of the binary digit). For example, 01000001 is a byte,
and in ASCII, it stands for the character ’A’. This encoding scheme is completely public, its purpose is not to hide
information but on the contrary: it guarantees that if we send an e-mail to somebody, our computer transforms it to
a number which can be transformed back to the same e-mail by his or her computer.

Of course, when Bob’s e-mail is encoded it in ASCII, and is sent to Alice, when Eve captures it, she is also able
to read it. For this reason, Bob, after making the ASCII code, makes the message to a cipher (both are numbers this
time). Ideally, when Eve reads the cipher, and decodes its ASCII, she will see a gibberish. Alice, who knows what
to do, transforms the cipher back to the ASCII encoded version of the original message, then decodes it.

Since from now on, messages and ciphers are all numbers (in fact, positive integers) and encryption procedures
will rely on deep interrelations between them, we review now the necessary mathematical background (not only
about positive integers, but also about certain abstract algebraic structures) for convenience.

1.5.1 The fundamental theorem of arithmetic
In this section, we state and prove the fundamental theorem of arithmetic: the fact that any nonzero integer can be
written – essentially uniquely – as the product of prime (irreducible) numbers. The heart of the matter is in fact that
primes and irreducibles coincide among rational integers.

Proposition 1.5.1 (euclidean division). Given integers a,b, b 6= 0. Then there exist integers c,d satisfying a= bc+d
and |d|< |b|.

Proof. Let a > 0, b > 0, the remaining cases are similar. Induct on a. For a = 1, the statement is trivial (c = 1,d = 0
if b= 1 and c= 0,d = 1 if b> 1). Now assume that the statement holds for any 06 a′< a. If a< b, then c= 0,d = a.
If a > b, then a−b = bc′+d′ with |d′|< |b| by induction, so a = b(c′+1)+d′.

Proposition 1.5.2. Assume a,b ∈ Z. Then there exists an integer gcd(a,b) satisfying gcd(a,b) | a,b and also that
whenever d | a,b, d | gcd(a,b).

Proof. If b = 0, then gcd(a,b) = a does the job. Otherwise, consider the sequence (a,b,d1, . . . ,dn,0), where each
di is defined via the euclidean division di−2 = ci−1di−1 +di (with d−1 = a,d0 = b,dn+1 = 0). It is clear that such a
sequence of euclidean divisions terminates, since the absolute value decreases in each step. Set gcd(a,b) = dn. It is
clear that dn | dn+1,dn, and then by induction, dn | di,di−1 implies dn | di−2. Also, if d | di−2,di−1 (which holds for
i = 1), then d | di, yielding d | dn = gcd(a,b).

Observe that gcd(a,b) is well-defined only up to sign.

Definition 1.5.3 (greatest common divisor). The greatest common divisor of a,b ∈ Z is the nonnegative number
which satisfies the conditions imposed on gcd(a,b) in Proposition 1.5.2.

Definition 1.5.4 (euclidean algorithm). The sequence of euclidean divisions in the proof of Proposition 1.5.2 is
called the euclidean algorithm.

Proposition 1.5.5. Assume a,b ∈ Z. Then gcd(a,b) = au+bv for some u,v ∈ Z.

Proof. If b = 0, the statement is trivial. Otherwise, we can create the same sequence (a,b,d1, . . . ,dn,0) as in the
proof of Proposition 1.5.2. Clearly d−1 = a,d0 = b are integer combinations of a and b. Also, if di−2,di−1 are
integer combinations, then so is di.

Definition 1.5.6 (prime numbers). A nonzero integer p is said to be prime, if p - 1, and whenever p | ab, p | a or
p | b.

Definition 1.5.7 (irreducible numbers). A nonzero integer p is said to be irreducible, if p - 1, and whenever p = ab,
a | 1 or b | 1.

1.5. MATHEMATICAL BACKGROUND 5
Proposition 1.5.8. An integer p is prime if and only if it is irreducible.

Proof. Assume p is prime, and let p = ab. Then a,b 6= 0. If a - 1 and b - 1, then 1 < |a|, |b|< p. Therefore p - a,b,
which is a contradiction.

Assume p is irreducible, and p | ab. If p | a, we are done. If p - a, then gcd(a, p) = 1, since p is irreducible.
Then there exist integers u,v satisfying au+ pv = 1. Multiplying by b, we obtain abu+ pbv = b, the left-hand side
is divisible by p, so is the right-hand side.

Theorem 1.5.9 (fundamental theorem of arithmetic). Every nonzero integer can be written as a product of prime
(irreducible) numbers. The decomposition is unique, apart from factors dividing 1.

Proof. First we prove the existence by induction on |n|. For |n|= 1, it is trivial. Assume that the statement holds for
any n′ with |n′|< |n|. If n is irreducible, we are done. If not, we can write it as a product n = ab with |a|, |b|< |n|.
We are done by induction.

Now we prove the uniqueness. Assume n has two decompositions p1 · . . . · pk = q1 · . . . ·ql . Here, p1 divides the
left-hand side, so it divides the right-hand side as well. Then, since it is a prime, it divides a factor of the right-hand
side, say, q1. Then p1 | q1, and also q1 | p1, since q1 is irreducible. Dividing by them, we can complete the proof by
induction.

1.5.2 Groups, rings and fields
Definition 1.5.10 (group). Assume G is a set, and there is a binary operation on it, e.g. a function · from G×G to
G, which satisfies the following conditions (for a better notation, we write x · y in place of ·(x,y)):

• for any x,y,z ∈ G, (x · y) · z = x · (y · z) (associativity);

• there exists e ∈ G satisfying that for any x ∈ G, x · e = e · x = x (unit element);

• for any x ∈ G, there exists y ∈ G satisfying x · y = y · x = e (inverse).

Then we say that (G, ·) is a group (or G is a group, if the operation is clear).

Notational convention: the inverse of an element x is often denoted by x−1.
In most applications below, our groups will be abelian.

Definition 1.5.11 (abelian (commutative) group). Assume (G, ·) is a group such that for any x,y ∈ G,

x · y = y · x.

Then we say that G is an abelian (commutative) group.

Example 1.5.12. The structures (Z,+), (Q,+), (R,+), (C,+), (Q×, ·), (R×, ·), (C×, ·), (Q+, ·), (R+, ·) are all
abelian groups.

Example 1.5.13. Given any set S, denote by Perm(S) the set of its permutations. Two permutations π,σ ∈ Perm(S)
can be concatanated by the composition

π ◦σ ∈ Perm(S) : ∀x ∈ S : (π ◦σ)(x) = π(σ(x)).

Then (Perm(S),◦) is a group: composing functions is associative, the identical permutation is the unit element, and
the inverse permutation of each permutation is its inverse. Note that this group is not abelian if #S > 3.

Proposition 1.5.14. Assume G is a group. Then its unit element is unique. Also, the inverse of each element of G is
unique.

Proof. Assume e, f are unit elements. Then

e = e f (since f is a unit element)
= f (since e is a unit element),

and the proof of the uniqueness of the unit element is complete.

6 1. INTRODUCTION

Similarly, let x ∈ G, and assume y,z are both inverses of x. Then (denoting by e the unit element)

y = ye (since e is the unit element)
= y(xz) (since z is the inverse of x)
= (yx)z (by associativity)
= ez (since y is the inverse of x)
= z (since e is the unit element),

and the proof of the uniqueness of the inverse is complete.

Proposition 1.5.15. Assume G is a group, and a,b ∈ G are fixed elements. Then the equation ax = b has a unique
solution. The same holds for the equation ya = b.

Proof. In the first equation, observe that x = a−1b is a solution: indeed, a(a−1b) = (aa−1)b = b, where we used
associativity and that aa−1 is the unit element. Also, if x is any solution, then multiplying both sides of the equation
by a−1 on the left, we obtain x = a−1b.

The proof is similar for the equation ya = b: y = ba−1 is a solution, and it must be the only one, which can be
seen by multiplying the both sides on the right by a−1.

Proposition 1.5.16. Assume G is a finite group, and x ∈ G. Then for any n ∈ N, (xn)−1 = (x−1)n.

Proof. Assume the unit element is e. By associativity,

xn(x−1)n = x · . . . · x︸ ︷︷ ︸
n times

·x−1 · . . . · x−1︸ ︷︷ ︸
n times

= e,

and the proof is complete.

Therefore, the conventions x0 = e (the unit element) and x−n = (xn)−1 for n ∈ N are completely consistent, so
the notation xn makes sense for n ∈ Z.

Proposition 1.5.17. Assume G is a finite group with unit element e. Then for any element x ∈ G, there is a positive
integer n ∈ N such that

xn = x · . . . · x︸ ︷︷ ︸
n times

= e.

Proof. Consider the elements x = x1,x2,x3, . . . ∈ G. Since G is finite, there exist positive integers k < l such that
xk = xl . Multiplying both sides by (xk)−1 = x−k, we obtain e = xl−k, and here, l− k ∈ N.

Definition 1.5.18 (order of element). Assume G is a finite group with unit element e. For any element x ∈ G, we
define its order (o(x) in notation) the smallest positive integer n satisfying xn = e.

Proposition 1.5.19. Assume G is a finite group with unit element e, and x ∈ G. Then for any k ∈ N, xk = e if and
only if k is a multiple of o(x).

Proof. First assume o(x) | k, i.e. k = lo(x), where l ∈ N. Then

xk = (xo(x))l = el = e.

Conversely, assume o(x) - k. Then by Proposition 1.5.1, for some c ∈ N∪{0} and 0 < d < o(x), k = co(x)+d.
Then

xd = xk−o(x) = xkx−o(x) = ee−1 = e,

which contradicts the minimal choice of o(x).

Definition 1.5.20 (subgroup). Assume (G, ·) is a group. If H ⊆ G, and (H, ·) is a group, then we say that H is a
subgroup of G. In notation: H 6 G.

Example 1.5.21. We have (Z,+)6 (Q,+)6 (R,+)6 (C,+). Also (Q+, ·)6 (Q×, ·).

Proposition 1.5.22. Assume G is a group, and Hi (i ∈ I) are subgroups of G. Then H = ∩i∈IHi is also a subgroup
of G.

1.5. MATHEMATICAL BACKGROUND 7
Proof. Associativity just follows from the associativity of G. We have to check that H is closed under multiplication
and taking inverses. First, if x,y∈H, then for each i∈ I, x,y∈Hi, and then xy∈Hi, since Hi is a subgroup. Therefore,
xy ∈ Hi for each i ∈ I, implying xy ∈ H. The proof for inverses goes similarly: if x ∈ H, then x ∈ Hi for each i ∈ I,
and since Hi is a subgroup, x−1 ∈ Hi, giving x ∈ H.

Definition 1.5.23 (generated subgroup). Assume G is a group, and A⊆ G. Then the subgroup generated by A is

〈A〉=
⋂

A⊆H6G

H.

The intersection is nonempty, since A⊆ G, and it is a subgroup, since it is an intersection of subgroups.

Proposition 1.5.24. For a group G and A⊆ G,

〈A〉= {a1 · . . . ·an : for each 1 6 i 6 n, ai ∈ A or a−1
i ∈ A}.

Proof. The right-hand side is clearly a subgroup: it is closed under multiplication and taking inverses, also it
is containing A, so it is taken into account in the definition of 〈A〉. Also, any H 6 G containing A contains the
elements a1, . . . ,an and hence all the products on the right-hand side.

Corollary 1.5.25. For a group G and x ∈ G, 〈x〉= 〈{x}〉= {xn : n ∈ Z}.
Theorem 1.5.26 (Lagrange). Assume G is a finite group and H is a subgroup of G. Then #H | #G.

Proof. Introduce the following relation on the pair of elements of G: x∼ y, if for some h ∈ H, xh = y. This is an
equivalence relation: 1 ∈ H implies x∼ x; if xh∼ y for some h ∈ H, then yh−1 = x and h−1 ∈ H; if x∼ y∼ z, then
for some h1,h2 ∈ H, xh1 = y, yh2 = z, then x(h1h2) = z and h1h2 ∈ H, yielding x∼ z. Then G is partitioned into
equivalence classes, and we claim that each equivalence class has the same number of elements as H (this clearly
implies the statement). Take any equivalence class C, let x be a representative of it. Then take the function f (h) = xh
for h ∈ H, obviously f (H)⊆C. Also, for any y ∈C, there is h satisfying xh = y, then f (h) = y, thus f (H) =C.
Then f surjects H onto C, it suffices to see that it also injects H into C. Assume that for h,h′, f (h) = f (h′). Then
xh = xh′, so multiplying by x−1 on the left, h = h′.

Corollary 1.5.27. For a finite group G and x ∈ G, o(x) | #G.

Proof. The elements of 〈x〉 are exactly the elements x = x1,x2,x3, . . . ,xo(x) (and these elements are distinct: if any
two of them coincide, then their quotient is the unit element e, contradicting the minimal choice of the order of
x).

Definition 1.5.28 (ring). Assume R is a set with two binary operations +, · such that

• (R,+) is an abelian group;

• for any x,y,z ∈ R, (x · y) · z = x · (y · z) (associativity of ·);

• for any x,y,z ∈ R, x · (y+ z) = x · y+ x · z and (x+ y) · z = x · z+ y · z (distributivity).

Then we say that (R,+, ·) is a ring.

Terminological and notational conventions: the unit element of (R,+) is often called the zero element of the
ring, and they will often be denoted by 0.

Our rings (R,+·) will exclusively be commutative, and will have unit elements for the operation · (not only for
+).

Definition 1.5.29 (commutative ring with unit element). We say that (R,+, ·) is a commutative ring with unit
element, if

• for any x,y ∈ R, x · y = y · x (commutativity);

• there exists 1 ∈ R such that 1 6= 0, and for any x ∈ R, x ·1 = 1 · x = x (unit element for ·).
Definition 1.5.30. Assume (F,+, ·) is a commutative ring with unit element 1, where (F \ {0}, ·) is an abelian
group. Then we say that (F,+, ·) is a field.

Terminological and notational conventions: (F,+) is called the additive group, (F×, ·) is called the multiplicative
group, where F× stands for F\{0}.
Example 1.5.31. The following structures are all commutative rings with unit element: (Z,+, ·), (Q,+, ·), (R,+, ·),
(C,+, ·). The following structures are all fields: (Q,+, ·), (R,+, ·), (C,+, ·). Given any field F and n ∈ N, the
n×n matrices over F form the ring Mat(n,F), which has a unit element but is not commutative, if n > 2.

8 1. INTRODUCTION

1.5.3 Residue classes
Definition 1.5.32 (congruence). Given m ∈ Z, we say that a≡ b mod m (in words: a is congruent to b modulo m)
if m | (a−b).

Proposition 1.5.33 (remainders). Given m ∈ Z\{0} and a ∈ Z, there exist 0 6 b < |m| and −|m|/2 < c 6 |m|/2
satisfying a≡ b≡ c mod m.

Proposition 1.5.34. Given m ∈ Z. Being congruent modulo m is an equivalence relation, by which we mean that
a≡ a mod m (reflexivity), a≡ b mod m implies b≡ a mod m (symmetry), a≡ b mod m and b≡ c mod m imply
a≡ c mod m (transitivity).

Definition 1.5.35 (residue classes). Let m ∈ Z. Then the equivalence classes defined via modulo m congruency are
said to be modulo m residue classes.

Proposition 1.5.36. Let m ∈ Z\{0}. The number of residue classes modulo m is |m|.

Proposition 1.5.37. Let m ∈ Z \ {0}. The modulo m residue classes form a commutative ring, where addition,
multiplication and taking additive inverse are the usual addition, multiplication and taking additive inverse, all
reduced modulo m. The residue class of 1 is the multiplicative unit.

Proof. Let a,b be arbitrary representatives of two residue classes. Then for any k, l ∈ Z, we have

(a+ km)+(b+ lm) = (a+b)+(k+ l)m≡ a+b mod m,

(a+ km) · (b+ lm) = ab+(kb+ la)m+ klm2 ≡ ab mod m,

− (a+ km) =−a− km≡−a mod m,

showing that the operations can be performed via any representatives. Then obviously the residue class of 1 is a
multiplicative unit.

Theorem 1.5.38 (Chinese remainder theorem). Assume m,n ∈ N satisfy gcd(m,n) = 1. Then for any a,b ∈ Z,
there exists a unique residue class c modulo mn satisfying c≡ a mod m, c≡ b mod n.

Proof. Define the function f : x mod mn 7→ (x mod m,x mod n). There are mn residue classes modulo mn, and the
number of possible values of this function is also mn. It suffices to prove that f is a bijection, which holds if and
only if it is a surjection.

To see this, take u,v ∈ Z satisfying mu+nv = 1. Then take the number c = mub+nva. Then

c≡ nva≡ mua+nva≡ a mod m, c≡ mub≡ mub+nvb≡ b mod n.

The proof is complete.

Corollary 1.5.39. Assume m1, . . . ,mn satisfy gcd(mi,m j) = 1 for all 1 6 i < j 6 n. Then for any a1, . . . ,an ∈ Z,
there exists a unique residue class c modulo m1 · . . . ·mn satisfying c≡ ai mod mi for each 1 6 i 6 n.

1.5.4 Multiplicative groups
Given m ∈ N, we denote by Zm the ring of residue classes modulo m. Assume gcd(a,m) = 1.

Proposition 1.5.40. The function x 7→ xa : Zm→ Zm is a bijection.

Proof. Since Zm is finite, it suffices to show that the function is surjective. Since gcd(a,m) = 1, for some u,v ∈ Z,
au+mv = 1. Then if the residue class c modulo m is given, x≡ uc mod m is mapped to c via x 7→ xa mod m, since
c = auc+mvc≡ auc mod m.

Corollary 1.5.41. The coprime residue classes form a group. (This is the unit group of Zm and will be denoted by
Z×m from now on.)

Corollary 1.5.42. If p is a prime, the residue classes modulo p form a field (denoted by Fp from now on).

The following function is of extreme importance in number theory.

1.5. MATHEMATICAL BACKGROUND 9
Definition 1.5.43 (Euler’s number of coprime residue classes function). Define

ϕ(n) = ∑
d6n

gcd(d,n)=1

1.

With this notation, we see that the group Z×m has ϕ(m) elements.

Proposition 1.5.44. Assume n = pα1
1 · . . . · pαr

r . Then

ϕ(n) = n
r

∏
j=1

(
1− 1

p j

)
.

Proof. Assume n has prime factors p1, . . . , pr. From the set {1, . . . ,n}, sift out the numbers that are divisble by
some of p1, . . . , pr. That is, by the inclusion-exclusion principle,

ϕ(n) = n+
r

∑
j=1

(−1) j
∑

16i1<...<i j6r

n
pi1 · . . . · pi j

= n
r

∏
j=1

(
1− 1

p j

)
.

The proof is complete.

Now Corollary 1.5.27 has the following consequences.

Corollary 1.5.45. Assume m ∈ N and a is coprime to m. Then the order of a (in the multiplicative group modulo
m) divides ϕ(m).

Corollary 1.5.46 (Euler-Fermat). Assume m ∈ N. Then

aϕ(m) ≡ 1 mod m

for any a coprime to m.

Corollary 1.5.47 (Fermat). Assume p is a prime. Then

ap ≡ a mod p

for any a ∈ Z.

Finally, we describe the group structure of Z×m . By the Chinese remainder theorem (Corollary 1.5.39),

Z×m ∼= Z×
p

α1
1
× . . .×Z×

pαr
r
,

if m = pα1
1 · . . . · pαr

r is the canonical form. Therefore, it suffices to describe Z×pα for primes p and positive integers
α . This group has pα − pα−1 = pα−1(p−1) elements.

Proposition 1.5.48. If p is an odd prime, then Z×pα is cyclic for any α ∈ N. For p = 2, Z×2α is cyclic for α = 1,2,
and is not cyclic but generated by the elements −1 (of order 2) and 5 (of order 2α−2) for α > 3.

Proof omitted.

1.5.5 Computability

In this section, we start to investigate the length of computations. Although a precise definition could be as well
given using the notion of Turing machine, for our purpose an informal description will be completely sufficient.

Assume given an algorithm solving a problem. For example, let the problem be the addition of positive integers
(given in base 10), and the algorithm is what we learned in the elementary school. Basically, the algorithm consists
of two things: one is the addition table

10 1. INTRODUCTION

+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

and the other one is how to use this: the manipulation with the digits learned in the school. During this manipulation,
we perform the addition of digits using the table (call them basic additions). If there are two numbers of n digits,
then we have to use n basic additions (one at each digit). Also, there might be 1’s taken on, at most n times, so the
number of basic additions is at most 2n. This means that given the basic addition table and the school algorithm,
they can add up two numbers of n digits in 2n many steps, where by one step, we mean one reference to the basic
addition table.

This is the general scheme: we can call anything a step, but that must be fixed once for all; also, we give an
algorithm which can use the step as many times as it is needed. Then the input comes, and the algorithm computes
the output. The running time (or time cost) of the algorithm (on the given input) is the number of steps used to
compute the output.

Assume that the input is the positive integer n. We say that an algorithm computes the output in polynomial
time, if the running time can be estimated from above by a polynomial of logn. Why logn? Simply because
the length of the input is just log10 n (and in other bases, just a constant times log10 n), and not n. Similarly,
the algorithm is exponential, if it is exponential in logn. If the input consists of more than one numbers, say,
n1, . . . ,nk, then a polynomial algorithm is an algorithm whose running time can be estimated by a polynomial of
max(logn1, . . . , lognk).

From the school, we know that addition, subtraction, multiplication and euclidean division can be performed by
polynomial algorithms.

Proposition 1.5.49. With input a,b, the number gcd(a,b) can be computed in polynomial time.

Proof. Recall the notation of the proof of Proposition 1.5.2: assume we have two numbers, a > b > 0, and
then the sequence (a,b,d1, . . . ,dn,0), where each di is defined via the euclidean division di−2 = ci−1di−1 + di
(with d−1 = a,d0 = b,dn+1 = 0) reproduces dn = gcd(a,b). If we take the remainder di in each step such that
|di|6 |di−1|/2 (which can be done), then it is clear that the number of di’s is at most 1+ log2 a. Since each euclidean
divisions can be performed in polynomial time, the time cost altogether is

Pol(log2 a)+Pol(log2 b)+Pol(log2 d1)+ . . .+Pol(log2 dn−1)6 (1+ log2 a)Pol(log2 a) = Pol(log2 a).

The proof is complete.

In this proof, we spelled out that there are Pol(log) many euclidean divisions, and each of them can be computed
in Pol(log) many steps, hence the algorithm runs in Pol(log) time. From now on, for brevity, when we have
proved that something can be computed in polynomial time, we will use that something as a step in more complex
algorithms: since the product of polynomials is a polynomial again, this simplification does not affect whether
an algorithm is polynomial or not. For example, computing the gcd can be handled as a single step in a complex
algorithm. Note that this simplification refers only to the polynomial being of the running time: the degree of the
polynomial of course varies.

Proposition 1.5.50. With input a,b,N ∈ N, the residue class ab mod N can be computed in polynomial time.

Proof. First of all, write b as
b = ∑

06 j61+log2 b
ε j2 j,

where each ε j is 0 or 1. (This can be done in polynomial time using only euclidean divisions: divide b by
20,21,22,23, . . . ,21+log2 b. Alternatively, you may think of the input as numbers already given in base 2.) Now

ab = a∑06 j61+log2 b ε j2 j
= ∏

06 j61+log2 b
aε j2 j

.

1.6. THE XOR CIPHER AND PSEUDORANDOM SEQUENCES 11
Here, each factor with ε j = 0 is just 1. When ε j = 1, then

aε j2 j
= a2 j

= (((a2)2)...)2︸ ︷︷ ︸
j many 2’s

.

Now raise a to square (this is polynomial, since it is just a multiplication), then reduce it modulo N (a euclidean
division). Then raise the result to square again, and reduce it modulo N. Doing this j many times, we get
aε j2 j

mod N in polynomial time. Now we have to multiply together the factors aε j2 j
for all the j’s, this is

polynomial many multiplications and modulo N reductions again.

1.5.6 Probability theory
Definition 1.5.51 (probability space). By a (finite, discrete) probability space, we mean a pair (Ω,Pr), where Ω is
a finite set, and Pr is a function from 2Ω to R>0 satisfying

(1) Pr(Ω) = 1, Pr(/0) = 0;

(2) if A,B⊆Ω are disjoint (i.e. A∩B = /0), then Pr(A∪B) = Pr(A)+Pr(B).

Example 1.5.52 (uniform distribution). On any finite set Ω, we can define the uniform distribution by assigning
the same probability (#Ω)−1 to each one-element set, i.e. for any A⊆Ω,

Pr(A) =
#A
#Ω

.

The subsets of Ω are the events, and the corresponding Pr values are their probabilities. Intuitionally we really
think of some randomness and the probability of a given event is the chance that the given event occurs.

For any A⊆Ω, we define Ac to be the complement of A, obviously

Pr(Ac) = 1−Pr(A).

Definition 1.5.53 (conditional probability). Given a probability space Ω, for any A,B⊆Ω, if Pr(B)> 0, we define
the conditional probability

Pr(A | B) = Pr(A∩B)
Pr(B)

.

The meaning of this notion is the following: the probability of A given that B occurs.

Proposition 1.5.54. Assume A,B⊆Ω satisfy Pr(B),Pr(Bc)> 0. Then

Pr(A) = Pr(A | B)Pr(B)+Pr(A | Bc)Pr(Bc).

Proof. The statement follows by a simple calculation from the definitions. Indeed,

Pr(A) = Pr((A∩B)∪ (A∩Bc)) = Pr(A∩B)+Pr(A∩Bc) = Pr(A | B)Pr(B)+Pr(A | Bc)Pr(Bc),

and the proof is complete.

Proposition 1.5.55 (Bayes’s theorem). Assume A,B⊆Ω satisfy Pr(A),Pr(B)> 0. Then

Pr(A | B) = Pr(B | A)Pr(A)
Pr(B)

.

Proof. Again, by a simple calculation,

Pr(A | B) = Pr(A∩B)
Pr(B)

=
Pr(B∩A)

Pr(B)
=

Pr(B | A)Pr(A)
Pr(B)

,

and the proof is complete.

Definition 1.5.56. We say that the events A1, . . . ,An are independent, if for any S⊆ {1, . . . ,n},

Pr

(⋂
i∈S

Ai

)
= ∏

i∈S
Pr(Ai),

(we can freely exclude S = /0; or use the conventions: the empty product is 1, and the empty intersection is Ω).

12 1. INTRODUCTION

1.6 The XOR cipher and pseudorandom sequences

Assume, the message is a number 0 6 m 6 2t −1, i.e. a binary number on t bits. Now Alice and Bob agree on a
binary number k also on t bits. So in this case,

M = C = K = {0−1 sequences of length t}.

Define now the ⊕ operation as the bitwise addition, i.e. if a = ∑
t−1
j=0 a j2 j, b = ∑

t−1
j=0 b j2 j (where a j,b j’s are binary

digits, 0 or 1 each), then let

a⊕b =
t−1

∑
j=0

c j2 j,

where c j = 0 if a j = b j, and c j = 1 if a j 6= b j.
Given m and k, let ek(m) = m⊕k. One can easily see that then dk = ek:

dk(ek(m)) = (m⊕k)⊕k = m⊕(k⊕k) = m⊕’0 . . .0︸ ︷︷ ︸
t zeros

’ = m.

Since XOR addition can be computed fast, Bob can easily encrypt his message, and Alice can easily decrypt it.
However, since Eve does not know k, she essentially has to check all possible k’s between 0 and 2t −1, which is
hopeless, it t is large enough.

In some sense, this cryptosystem is as perfect as can be. However, there are a few problems. First, it is
vulnerable against a chosen plaintext attack, since even a single pair (m,c) reveals k = m⊕c.

Another problem is that if Alice sends to message with the same key, say c1 = ek(m1),c2 = ek(m2), then Eve
can XOR them to get

c1⊕c2 = (m1⊕k)⊕(m2⊕k) = m1⊕m2.

It is not obvious how Eve can use this information, yet she has managed to get rid of k, and this is something that
Alice and Bob would like to avoid.

Third, the key must be as long as the message is, which requires very long key sequences. And since Alice and
Bob would like to use different keys for each encryption, they have to generate many k’s. Their security is the best
possible, if they generate random k’s, for example, tossing a 0−1 coin t times gives a k, and they can repeat this as
many times as they wish. But the setup is that they are at different places, their t-long tosses will almost certainly
result differently. How can they solve this problem? Is it possible to securely and efficiently send long messages
using only a single short key?

Assume there exists a function R : K ×N→{0,1} satisfying the following properties:

(1) for any k ∈K , j ∈ N, it is easy to compute R(k, j);

(2) from any j1, . . . , jn and corresponding R(k, j1), . . . ,R(k, jn), it is hard to figure out k;

(3) from any j1, . . . , jn and corresponding R(k, j1), . . . ,R(k, jn), it is hard to guess the value of R(k, j) with better
than a 50% chance of success, if j /∈ { j1, . . . , jn}.

Now Alice and Bob agree on a key k (a number on 200 bits, say), and they agree that for the first message, they will
use R(k,1), . . . ,R(k,1000000), for the second one, they will use R(k,1000001), . . . ,R(k,2000000), and so on.

Such functions R are called pseudorandom number generators, however, it is unknown at the moment whether
pseudorandom number generators exist.

Chapter 2
Discrete logarithms and Diffie-Hellman

Let us turn our attention back to asymmetric ciphers, those having a public and a private part. Their significance
in computer age is bigger than ever, since it may easily happen that Alice and Bob would like to communicate
although they have never met before (so they cannot be sure that any piece of information exchanged by them is
handled confidentially).

How can Alice build up her cryptosystem? Given the sets M and C , she would like to publish a function
kpub : M → C in such a way that k−1

pub = kpriv can not be easily computed. For the first sight, this does not make too
much sense: if it is difficult to invert kpub for Eve (and Bob, and anyone else), then so is for Alice herself.

However, this is not the case. When Alice constructs kpub, she uses some additional information, a trapdoor.
This trapdoor plays an essential role in the construction of kpub, and – ideally – has the following two properties:
without the trapdoor, it is difficult, while using the trapdoor, it is easy to invert kpub (and hence to get kpriv).

The second condition is the simpler one. To know that something is computationally easy, it suffices to have a
good algorithm in hand, which solves the problem in little time. The critical point is the first condition. How to
ensure that something is computationally difficult? Possibly there is no available method to invert a certain function
but tomorrow there will be.

The cryptosystems presented below all depend on computational problems. Those which – according to the
current state of art – are computationally difficult (i.e. at the moment, there are no fast alogrithms to solve them)
are considered to be secure.

2.1 The discrete logarithm problem
One of such computational problems is the discrete logarithm problem (DLP from now on). It is basically the
following: given a finite abelian group G, and an element g generating it, for any a ∈ G, compute the smallest
positive k ∈ N such that

g · . . . ·g︸ ︷︷ ︸
k times

= a.

This k is called the discrete logarithm of a (with base g), and we will denote it by logg a. The basic principle is
the following: if we can perform the group operation fast, then from k, it is easy to get a (think of the repetitive
squaring used in the proof of Proposition 1.5.50), while from a, it is not obvious to get k. This asymmetry gives us
some chance to come up with a public key cryptosystem.

Following this principle, we will see below that using a finite abelian group, we can build up certain cryptosys-
tems whose security rely a lot on the difficulty of the DLP. But is the DLP computationally difficult? We do not
know it in general, but certainly it depends very much on the group.

For example, assume that the group is the additive group of the prime field Fp. Then any 0 6= g ∈ Fp generates
Fp. Given a one may compute its logarithm as follows: if logg a = k, then

a≡ g+ . . .+g︸ ︷︷ ︸
k times

≡ gk mod p.

Now we see that k is nothing else but the multiplicative inverse of g multiplied by a (all understood modulo p).
And the multiplicative inverse of g can be computed in polynomial time: either we write 1 = gu+ pv and then

13

14 2. DISCRETE LOGAITHMS AND DIFFIE-HELLMAN

u mod g−1 mod p (and this can be done in polynomial time, since u is just produced by a euclidean algorithm,
recall the proof of 1.5.5) or by Euler-Fermat (Corollary 1.5.46), gp−2 mod p is the inverse of g modulo p (and this
can also be computed in polynomial time, since this is just raising to a power with a modulus), recall Proposition
1.5.49 and Proposition 1.5.50. This altogether shows that the DLP in the additive group of prime fields is an easy
problem, so certainly the methods below are useless with this group.

A much better choice is the multiplicative group F×p of the same field. We already know that F×p is cyclic,
therefore, it is generated by some element. However, for our methods below, this is not really necessary, we can
take an element g whose order modulo p is not too small, and can restrict to the subgroup generated by g. Then the
DLP is the following: given g and a, compute the smallest possible k satisfying

gk ≡ a mod p.

Current methods cannot solve this problem in polynomial time. This will be the starting point of the Diffie-Hellman
key exchange and the ElGamal cryptosystem.

Later, we will learn how group structure can be attached to elliptic curves. It is also unknown but widely
believed that the DLP is even more difficult in those groups. This gives us the possibility to build a cryptosystem on
elliptic curves.

2.2 The Diffie-Hellman key exchange
In this section, we show how Alice and Bob can agree on a fixed number which is known only to them, even if
they can only use a completely public channel for their whole communication. This is not as ambitious as sending
complete encrypted messages, yet it is something: their common secret number can be for example used for a
symmetric cipher.

First of all, they agree on a prime p and an element g whose order modulo p is sufficiently large. Now Alice
takes a number a (and keeps it in secret), and Bob also takes a number b (and keeps it in secret). Then Alice
computes ga mod p, and sends it to Bob. Meanwhile, Bob computes gb mod p, and sends it to Alice. Finally,
Alice raises the incoming gb mod p to power a, while Bob raises the incoming ga mod p to power b. Both of them
obtains the number gab mod p, so they have the common number (recall Proposition 1.5.50).

What happens to Eve? She just observes ga and gb (besides p,g). From this information, she should compute gab

(this is called the Diffie-Hellman problem (DHP)). If she could solve effectively the DLP, she would immediately
figure out the values a,b, and they lead to gab. Therefore, the DHP is not more difficult than the DLP. The converse
in unknown (in pricinple, there can be a polynomial algorithm solving the DHP even if there is no algorithm solving
the DLP in polynomial time).

2.3 The ElGamal cryptosystem
In this section, we describe a public key cryptosystem relying on the difficulty of the DLP for multiplicative groups
of prime fields.

Again, Alice chooses a prime number p, and an element g of sufficiently large order modulo p. Also, she
chooses a number a. Then she computes A≡ ga mod p, and publishes p,g,A (and keeps a in secret).

Then Bob chooses a number k (and keeps it in secret), and sends Alice the following two values:

c1 ≡ gk mod p, c2 ≡ mAk mod p,

where 1 6 m 6 p−1 is the message he wants to send.
Now Alice gets the pair (c1,c2), and computes c2(ca

1)
−1 modulo p. The result is

c2(ca
1)
−1 ≡ mAk((gk)a)−1 ≡ mgakg−ak ≡ m mod p,

so the message is recovered.
This is called the ElGamal cryptosystem. It is clear what kpub is (note that it uses an external parameter k chosen

by Bob). Now kpriv is (with current methods) is difficult to compute from kpub, however, using the trapdoor a, it can
be done fast.

It is clear that solving the DLP breaks the ElGamal, since Eve can easily compute a from A, then she can
compute the same way m from (c1,c2) as Alice does.

Now we prove that breaking the ElGamal in general is at least as difficult as solving the DHP.

2.3. THE ELGAMAL CRYPTOSYSTEM 15
Proposition 2.3.1. Assume p,g,A≡ ga mod p are fixed. If there is an algorithm, which computes m from (c1,c2) in
polynomial time for any input (c1,c2), then there is an algorithm solving the DHP with inputs ga,gb in polynomial
time.

Proof. Assume we have to compute gab from ga,gb (all modulo p) in DHP. Set c1 ≡ gb mod p and c2 = 1. The
computed m-value is g−ab modulo p, its multiplicative inverse (computed in polynomial time) is gab modulo p.

Chapter 3
Integer factorization and RSA

In Chapter 2, the invertibility of kpub reached by chosing the computationally complicated DLP: it is easy to raise
a certain power, but it is hard to difficult to figure out the power from the result. In this chapter, we will use the
following: it is easy to compute the product of prime powers, but it is hard to figure out the prime factorization of a
given number.

3.1 The RSA cryptosystem
Alice chooses two large prime numbers p,q, they will serve for her as the trapdoor. Now she computes the
product N = pq, and chooses a further number e coprime to ϕ(N). Then she publishes N,e. Alice also computes
the multiplicative inverse d of e modulo ϕ(N) (that is, de = ϕ(N)u+ 1). For her, this is easy to do: ϕ(N) =
(p−1)(q−1).

If Bob wants to send the message 1 6 m 6 N to Alice, then he computes c≡ me mod N and sends it to Alice.
Then Alice simply raises c mod N to power d, obtaining

cd ≡ (me)d ≡ med ≡ mϕ(N)u+1 ≡ m · (mϕ(N))u ≡ m mod N,

at least when gcd(m,N) = 1. For a randomly chosen message 1 6 m 6 N

Pr(gcd(m,N) = 1) =
ϕ(N)

N
=

N− p−q+1
N

> 1− 1
p
− 1

q
,

which is very close to 1, if p,q are large.
Eve’s problem is the following: she knows only N and e. If she could factorize N to pq, then it would

immediately give ϕ(N), leading to d fast. But there is no known method to factorize large numbers fast.

3.2 Primality testing
To implement RSA, one needs large prime numbers, but how can we get them? To answer this question, we first
cite the prime number theorem:

lim
x→∞

#{p 6 x: p is prime}
x/ logx

= 1.

Informally, we may say that up to x, there are approximately x/ logx prime numbers. Reformulating this, we may
say that if we pick a random large integer n, then we expect a prime in the set

{n,n+1, . . . ,n+2dlogne}.

So we choose some n, and then we take the integers n,n+1, . . . until we bump into a prime. The number of steps
we have to take is estimated from above by the gap of consecutive primes. The prime number theorem suggests that
this is something like logn on average. However, it is known that the prime gap around X can be larger than any
constant multiple of logX (it can be bigger than 100logX , say). Conjecturally, the gap is always smaller than a
constant multiple of log2 X and the truth of this would suffice for a polynomial prime-generating algorithm.

17

18 3. INTEGER FACTORIZATION AND RSA
But this is just one part of the problem. Okay, assume there is a prime between n and n+100log2 n. How will

we recognize it? Given a large number, how fast can we decide if it is prime or not?
Of course, we can try any number up to

√
n and if none of them divides n (except for 1 of course), then n is a

prime. If n is large, this is awfully slow, so we need a better algorithm.

3.2.1 Fermat’s little theorem and Carmichael numbers
Assume a number n is given, and we have to decide if n is a prime or not.

First assume n is a prime. Recall Fermat’s little theorem (Corollary 1.5.47), which tells us then that

an ≡ a mod n.

So if we pick a number a such that
an 6≡ a mod n,

then we can be sure that n is not a prime. This gives us a primality test: take some a, and if an 6≡ a mod n, then n is
composite.

Unfortunately, the converse is not true at all, for example,

2341 ≡ 2 mod 341,

but 341 = 11 ·31 is not a prime. Even worse, there exist composite integers n such that for any a ∈ N,

an ≡ a mod n.

Such numbers are called Carmichael numbers, and although they are rare compared to primes, there are infinitely
many of them (the smallest one is 561 = 3 ·11 ·17).

So if our randomly found number n is a Carmichael number, then it is not a prime, yet we have no chance to
prove its compositeness via Fermat’s little theorem.

3.2.2 The Miller-Rabin test
The fundament of the Miller-Rabin test is the following observation.

Proposition 3.2.1. Assume p is an odd prime, and write p−1 as 2kq, where q is an odd number. Then for any integer
a coprime to p, one of the following two alternatives hold. Either aq ≡ 1 mod p or one of aq,a2q,a4q, . . . ,a2k−1q is
−1 modulo p.

Proof. Fix an a as in the statement. If aq ≡ 1 mod p, then we are done. If not then consider the number a2kq ≡ ap−1,
which is 1 modulo p by Euler-Fermat (Corollary 1.5.46). Since Fp is a field, the only residue classes x satisfying
x2 ≡ 1 mod p are ±1. Therefore since the square of a2k−1q is 1 mod p, it must be either 1 or −1 modulo p. If it is
−1, then we are done. If it is 1, we can go further and take a2k−2q: again, since its square is 1, it is ±1 modulo p.
We continue this, and since aq 6≡ 1 mod p, at some point, we must get −1 modulo p.

Like Fermat’s little theorem, this immediately gives us a prime test. Assume n is given. If it is even, then
it is composite (unless it is 2). If it is odd, take n−1 and halve it as many times as possible, altogether getting
n−1 = 2kq for some odd number q and positive integer k.

Choose a random 1 6 a 6 n−1. Check first if it is coprime to n (this can be done fast by Proposition 1.5.49).
If gcd(a,n)> 1, then n is composite. If gcd(a,n) = 1, then compute aq,a2q, . . . ,a2kq modulo n. They are at most
1+ log2 n many numbers, and they can be computed in polynomial time by Proposition 1.5.50. If aq is not 1, and
none of them is −1 modulo n, then we can be certain that n is composite.

But we have already experienced that things might go wrong: it can happen in principle that something is a
fake-prime, by which we mean that it is composite yet either aq ≡ 1 mod n or one of aq,a2q, . . . ,a2kq is −1 mod n
for all possible choices for a. Why this method is better is the fact that there are no fake-primes (i.e. there are no
analogues for Carmichael numbers here).

Proposition 3.2.2. If n is an odd composite number, then there exists a coprime residue classe a such that
aq 6≡ 1 mod n and aq,a2q,a4q, . . . ,a2k−1q 6≡ −1 mod n.

3.2. PRIMALITY TESTING 19
Proof. First, when n is a power of a prime, say, pα , then take a generator a of the cyclic group Z×n . Then, since

gcd(ϕ(n),n−1) = gcd(pα − pα−1, pα −1) = (p−1)gcd(pα−1, pα−1 + . . .+ p+1) = p−1,

an−1 6≡ 1 mod n. Then obviously none of aq,a2q, . . . ,a2k−1q is ±1 modulo n.
Now assume n is not a power of a prime, then write n = n1n2, where 1 < n1,n2 < n and gcd(n1,n2) = 1. By the

Chinese remainder theorem, there exists a residue class a modulo n such that a≡ 1 mod n1 and a≡−1 mod n2.
This clearly implies a 6≡ ±1 mod n, and then aq 6≡ ±1 mod n. On the other hand, a2≡ 1 mod n1 and a2≡ 1 mod n2,
implying a2 ≡ 1 mod n. Then aq 6≡ ±1 mod n, and a2q,a4q, . . . ,a2k−1q ≡ 1 6≡ −1 mod n.

In fact, it can be proved that at least 75% of the residue classes do this job. This gives rise to a random primality
testing: take a convincing number of residue classes a1, . . . ,ah mod n, and run the Miller-Rabin test with them. If
any of them shows n is composite, then we n is composite. If all of them allows n to be prime, then we can say n is
a prime with a high confidence. How high? Let us estimate this using Bayes’s theorem.

Choose a number at random which is approximately n. Then denote by X the event that the chosen number is
composite, by X ′ that it is a prime, and by Y that it survives the Miller-Rabin test with h numbers. Then

Pr(X | Y) = Pr(Y | X)Pr(X)

Pr(Y | X)Pr(X)+Pr(Y | X ′)Pr(X ′)
.

Here, from the prime number theorem, we know that Pr(X ′)≈ logn/n and Pr(X)≈ 1− logn/n. Also, if the number
is composite, it survives Miller-Rabin by probability at most 4−h, so Pr(Y | X) 6 4−h, while primes certainly
survive Miller-Rabin, so Pr(Y | X ′) = 1. Then

Pr(X | Y). 4−h(1− logn/n)
4−h(1− logn/n)+ logn/n

.

We see that this converges to 0 very fast: even if h is chosen to be blog4 nc (which keeps the whole test polynomial),
the probability of judging a composite number to be a prime tends to 0 (as n tends to infinity).

Also, it is known that if the Generalized Riemann Hypothesis is true, then for any composite number n there
is an a 6 2log2 n which proves the compositeness of n in the Miller-Rabin test. Hence assuming the Generalized
Riemann Hypothesis, the Miller-Rabin test is not only a probabilistic, but a deterministic test which decides the
primality of a number in polynomial time.

3.2.3 The Agrawal-Kayal-Saxena polynomial test

However, even the classical Riemann Hypothesis is open, especially so are the generalized versions. In this section,
we present the AKS primality test, which decides primality in polynomial time unconditionally. Note also that
this has only theoretical significance: first, as we will see, the AKS test is very complicated, while Miller-Rabin is
easy to implement; second, almost all mathematicians strongly believe that the Riemann Hypothesis (and all its
reasonable generalizations) are true – all in all, for practical purposes, Miller-Rabin is totally fine.

Assume n is a large number, fixed once for all.

Proposition 3.2.3. There exists a number 1 6 r = O(logO(1) n) such that the order of n in Z×r is greater than log2
2 n.

Proof. Using the fact that for any x > 2,

∏
p6x

p prime

p < 4x,

we can easily see that the number of prime divisiors of ni−1 is O(logO(1) n) for any 1 6 i 6 log2
2 n. Then picking

the first prime r which does not appear as a prime divisor of

∏
16i6log2

2 n

(ni−1),

r = O(logO(1) n) and the order of n modulo r is bigger than log2
2 n.

20 3. INTEGER FACTORIZATION AND RSA
Now with this r in hand, for any 1 6 a 6 n, we can consider the polynomial (X + a)n in variable X . If n is

prime, then
(X +a)n ≡ Xn +an ≡ Xn +a mod n,

the second congruence holds because an ≡ a mod n by Fermat’s little theorem 1.5.47, the first congruence holds
because in the binomial expression, all intermediate term have a factor n.

This implies, in particular, that if n is a prime, then

(X +a)n ≡ Xn +a mod (n,X r−1). (3.2.1)

The point is that although the polynomial (X +a)n takes a long time to compute, its modulo X r−1 reduction
can be computed in polynomial time. Indeed, write n in base 2, and apply repeated squarings modulo X r−1 (like
in the proof of Proposition 1.5.50).

Proposition 3.2.4. If n is not a prime or a power of a prime, then there exists a number 1 6 a = O(logO(1) n) such
that (3.2.1) fails or gcd(a,n)> 1.

Proof. We prove by contradiction. Assume n is not a prime, nor a power of a prime, yet gcd(a,n) = 1 and (3.2.1)
are true for any a = O(logO(1) n). Then n has a prime divisor p > logC n with some number C (bigger than the O(1)
in the bound for a, in particular, we may assume p > r).

Now consider the field F = Fp(X), where X is a primitive rth root of unity, and from now on, we compute in F.
The hypothesis (3.2.1) gives

(X +a)n = Xn +a,

for any 1 6 a 6 A, where A = O(logO(1) n) (and we choose A to be bigger than 2r). Also, we have

(X +a)p = X p +a,

for 1 6 a 6 A, as above, since p is a prime. Then, for 1 6 a 6 A,

(X p)n/p +a = Xn +a = (X +a)n = ((X +a)p)n/p = (X p +a)n/p.

Since X p is a primitive rth root of unity again (and every primitive rth of unity is the pth power of a primitive rth
root of unity), this implies

Xn/p +a = (X +a)n/p,

for any 1 6 a 6 A.
For any 1 6 m 6 n coprime to r, we define the ring homomorphism φm : F→ F sending X to Xm, and we say

that m is nice, if (
X̃ +a

)m
= φm

(
X̃ +a

)
= X̃m +a

holds for all 1 6 a 6 A and for any X̃ = X t , where t is coprime to r (i.e. X̃ runs through all the primitive rth roots
of unities).

Obviously, 1 is nice, and we have already seen that n, p,n/p are all nice. Also, if m and m′ are both nice, then
so is their product: (

X̃ +a
)mm′

=
((

X̃ +a
)m)m′

=
(

X̃m +a
)m′

= X̃mm′ +a.

Let G⊆ F× denote the multiplicative group generated by the elements X +a with 1 6 a 6 A. Obviously, for any
z ∈ G, φm(z) = zm.

Lemma 3.2.5. Assume that there are exactly t nice residue classes modulo r of the form pi(n/p) j for i, j > 0. Then
#G 6 n

√
t .

Proof of this lemma. For some 0 6 i, j, i′, j′ 6
√

t with (i, j) 6= (i′, j′), we have

m = pi(n/p) j ≡ pi′(n/p) j′ = m′ mod r,

implying φm(z) = φm′(z) for any z ∈ G. The numbers m,m′ here are distinct positive integers not exceeding n
√

t .
Then for any z ∈ G, zm− zm′ = 0, which means that each z ∈ G is a root of the polynomial Zm−Zm′ . Since a
nonzero polynomial over a field cannot have more roots than its degree, #G 6 max(m,m′)6 n

√
t .

3.3. MULTIPLAYER RSA – THE BAD WAY 21
Lemma 3.2.6. Assume that there are at least t nice residue classes modulo r. Then #G > 2t .

Proof of this lemma. Make all the products with less than t factors from the elements X +a (with 1 6 a 6 A, and
allowing repetitions). Since A > 2r > 2t, there are at least 2t many such products, and we claim that they are
distinct.

By contradiction, let P(X) = Q(X) for two such products, where P(Z),Q(Z) are distinct polynomials of degree
less than t. Since P(X),Q(X) ∈ G, for any nice m,

P(Xm) = φm(P(X)) = φm(Q(X)) = Q(Xm).

If m1, . . . ,mt are nice numbers of distinct remainders modulo r, then this means that Xm1 , . . . ,Xmt are all distinct
roots of the polynomial P(Z)−Q(Z), which is a contradiction: the polynomial is nonzero and has degree less than
t, while it has at least t roots.

Since the order of n modulo r is at least log2
2 n, we see that the numbers pi(n/p) j fall into at least log2

2 n residue
classes modulo n. Then t > log2

2 n in the notation of the lemmas above. Then

2t = 2t−log2
2 n2log2

2 n = 2t−log2
2 n2log2

2 n = 2t−log2
2 nnlog2 n,

and
n
√

t = n
√

t−log2 nnlog2 n = 2
√

t log2 n−log2
2 nnlog2 n,

so
2t > n

√
t ,

the lower bound beating the upper bound, which is obviously a contradiction.

Now the AKS test is the following. Given n, find r (as in Proposition 3.2.3) in polynomial time. Then for the
polynomially many 1 6 a 6 A (as in Proposition 3.2.4), check in polynomial time if it is coprime to n and then if
the identity (3.2.1) holds. If they always hold, then n is a prime power (otherwise, it is composite). Now it is easy to
check in polynomial time if n is in fact a prime: all the possible square roots, cube roots etc. can be found by dyadic
splits of [1,n] (this is polynomially many steps), and the number of possible exponents is trivially at most log2 n.

3.3 Multiplayer RSA – the bad way
In this section, we make our first attempt to construct a secure way of communication between n participants –
based on RSA. Assume that a Trusted Authority takes two large prime numbers p,q, and computes their product
N = pq. Then also computes, for any 1 6 i 6 n, a pair (ei,di) such that eidi ≡ 1 mod ϕ(N). Now each ei is made
public, but the Trusted Authority sends only each decrypting exponent di to the ith participant. Now we see that the
participants can communicate as we have seen above.

Unfortunately, there are several problems with this setup. First of all, the Trusted Authority is able to read any
message, but let us put this aside. An even bigger problem is that basically any participant can read any message,
even that ones which have been sent to other than her/him.

Assume the jth paricipant wants to decrypt a message sent to the kth participant. First, (s)he computes a
factorization uv of e jd j−1 such that gcd(u,ek) = 1, and each prime factor of v divides ek. This is easy to do: first
(s)he computes v1 = gcd(ek,e jd j−1), then v2 = gcd(ek,(e jd j−1)/v1), then v3 = gcd(ek,(e jd j−1)/v1v2) and so
on, until the gcd becomes 1. Then v = v1 · . . . · vt and u = (e jd j−1)/v, and it is easy to see that both conditions
hold.

Now since gcd(ϕ(N),ek) = 1, gcd(ϕ(N),v) = 1. Since ϕ(N) | uv, this implies ϕ(N) | u. Then (s)he can
compute a d′k such that ekd′k ≡ 1 mod u, which in particular implies ekd′k ≡ 1 mod ϕ(N). Maybe this d′k is not the
same as dk but serves as well as dk for decryptions.

But even if the participants are honest, an external eavesdropper can make use of the fact that there are several
exponents in the setup. It is quite likely that in a long communication, it happens that a message is sent to two
different recipients, i.e. the eavesdropper can intercept a pair c1 ≡ me1 ,c2 ≡ me2 mod N. With a little luck, the
exponents are coprime, and then u,v ∈ Z satisfying e1u+ e2v = 1 are computable. But then

cu
1cv

2 ≡ me1ume2v ≡ me1u+m2v = m mod N.

So messages sent to many paricipants are simply readable.

Chapter 4
Probability and information theory

4.1 The Vigenère cipher and its cryptanalysis
For awhile, we return to alphabetic encryptions. In Chapter 1, we have already seen such ciphers: these replace
each character with some other fixed character – these are called monoalphatbetic ciphers. Now we turn to the
Vigenère cipher, an example of polyalphabetic ciphers, where each letter is replaced with some other one, but this
cipher letter may vary.

First Alice and Bob agree on a keyword. Then Bob encrypts his message as follows: he determines the shift he
uses on each letter of the message by using the letters of the keyword one by one. The keyword letter a stands for
no shift, b stands for a shift by one, and so on.

Example 4.1.1. Assume the keyword is ’CHESS’. Encrypt the message ’Learning mathematics is fun’. Then

LEARN INGMA THEMA TICSI SFUN

CHESS CHESS CHESS CHESS CHES

NLEJF KUKES VOIES VPGKA UMYF,

so the ciphertext is NLEJF KUKES VOIES VPGKA UMYF.

The principle behind is the following. The letters of the keyword fix a variety of permutations of the alphabet, so
breaking the cipher via counting common characters, bigrams, trigrams (which breaks simple substitution ciphers)
is more difficult to perform in this case. Even if the length of the keyword has only five characters (four different,
one is doubled), the common letter ’e’ implies four common letters ’g’, ’l’, ’i’, ’w’ (’w’ appearing with double
frequency because of the double ’s’ in the keyword), and the common trigram ’the’ in a long text implies four
common trigrams ’voi’, ’alw’, ’xzw’, ’lzg’, ’ljl’. All in all, the characteristic of the language is totally mixed up.

For some time in history, the Vigenère cipher was considered to be unbreakable. Then in the 19th century,
when basic statistical tools were developed, this view turned out to be very far from truth. In this section, we only
describe the main methods to attack the cipher and suggest read [1, Section 4.2.2] to see how these approaches
work in action.

The first goal is to determine the length of the keyword. We present two methods to do this.
Consider the repeated fragments (bigrams and trigrams) in the ciphertext, and list all the distances between the

repetitions. Some of the repetitions may occur only by chance, but the length of the keyword is likely to divide
many of the distances. This method depends on the fact that certain fragments are very frequent in natural languages
(think of trigrams ’the’ or ’ing’ in English). In a not too short cipher, there is a considerable amount of occurrences
of ’the’, and if the key is not too long, some of them will be encrypted the same way. This method is known as the
Kasiski test.

Another method is the index of coincidence test, which relies on individual letters rather than on two- or
three-letter fragments. For each letter of the alphabet i ∈ A = {a,b,c, . . . ,z}, let Fi(s) be its frequency, i.e. the
number of occurrences of i in a given string s. With this notation, define, for any string s, the index of coincidence

IndCo(s) =
1

length(s)(length(s)−1) ∑
i∈A

Fi(s)(Fi(s)−1).

23

24 4. PROBABILITY AND INFORMATION THEORY

If a very long string is completely random, then all Fi(s) are essentially length(s)/26, so we expect

IndCo(s)≈ 1
26
≈ 0.0385.

However, if you consider a long text t written in English, then you will find that

IndCo(t)≈ 0.0685.

Although the difference of these two numbers seems small, it can be applied in practice. Assume there is a ciphertext
c1, . . . ,cn. Now for some k ∈ N, split the ciphertext into k pieces s0, . . . ,sk−1:

si = cici+kci+2k . . .ci+bn/kck.

For each 0 6 i 6 k−1, compute IndCo(si). If k is the length of the keyword, then characters in si are the encrypted
versions of the plaintext using the same encryption, i.e. IndCo(si) is close to the index of coincidence 0.0685 of a
natural English text (provided that si is not too short). On the other hand, if k is not the right guess for the keyword,
then IndCo(si)’s are expected to be close to the index of coincidence 0.0385 of a random text. All in all, if the
cipher is long enough, and the key is short enough, this method is expected to tell us the right key length.

Having figured out the key length, we introduce another coefficient which can help to figure out the difference
between the shifts applied to get the si’s. This is the mutual index of coincidence, defined as

MutIndCo(s, t) =
1

length(s) length(t) ∑
i∈A

Fi(s)Fi(t),

for any strings s and t. Again, if s and t are encrypted with the same shift, then their mutual index of coindidence is
large, otherwise, it is small. For any si created above and any σ ∈ A, we define si +σ , which is a further shift of
each character of si by σ (as in the Vigenère cipher: a stands for no shift, b stands for a shift by one, and so on).
For any 0 6 i < j 6 k−1, and any σ ∈ A, compute

MutIndCo(si,s j +σ).

Denoting the keyword by β1 . . .βk, and singling out the large values of MutIndCo(si,s j +σ), we find a linear
system of equations of the form βi−β j = σ . This system can easily be overdetermined, when we have to leave out
a few equations, but after some trial and error, we can determine β1 . . .βk up to a shift which is uniform at all the k
places. This leaves 26 possibilities, and trying them all, we arrive at the original plaintext.

4.2 Collision and meet-in-the-middle attacks
Proposition 4.2.1. Assume A1, . . . ,An are independent events such that

Pr(A1), . . . ,Pr(An)> p.

Then
Pr((A1∪ . . .∪An)

c)6 e−np.

Proof. First, we claim, for any x ∈ [0,1],
1− x 6 e−x.

Indeed, equality holds for x = 0, and the derivative (with respect to x) of the left-hand side is −1, while that of the
right-hand side is not less than −1 for any x ∈ [0,1]. (Alternatively, writing −x in place of x in the Taylor expansion
ex = ∑

∞
j=0 x j/ j!,

e−x = 1− x+
x2

2!
− x3

3!
± . . . ,

and for 0 6 x 6 1, this is indeed at least 1− x, since for any j > 1, x2 j/(2 j)!− x2 j+1/(2 j+1)! > 0.)
Then from the independeny of A1, . . . ,An,

Pr((A1∪ . . .∪An)
c) = Pr(Ac

1∩ . . .∩Ac
n) =

n

∏
i=1

Pr(Ac
i)6 (1− p)n 6 (e−p)n = e−np.

The proof is complete.

4.3. PERFECT SECRECY AND ENTROPY 25
This statement enables us to attack certain problems with probabilistic algorithms (at the moment, this means

that the algorithm is deterministic, and it solves the problem with high probability). We illustrate this phenomenon
via the DLP.

Proposition 4.2.2. Assume G is a finite abelian group on N elements, and g is a generator. Let a ∈ G be given.
Then the DLP gx = a can be solved in O(

√
N) steps with high probability (O(C

√
N) steps lead to probability

1− e−C2
for any C > 0), where a step is an exponentiation in the group (which can be computed in O(logN) group

multiplications, recall the repetitive squaring from Proposition 1.5.50).

Proof. For some fixed 1 6 n 6 N, pick the elements y1, . . . ,yn and z1, . . . ,zn, and compute

gy1 , . . . ,gyn ,agz1 , . . . ,agzn .

If there is a match, i.e.
gyi = agz j

for some 1 6 i, j 6 n, then a = gyi−z j . We claim that such a match occurs with high probability, if n is on the
magnitude

√
N, the yi’s are chosen independently and the z j’s are chosen to be distinct.

As soon as z1, . . . ,zn are fixed, each yi gives a match with probability n/N. Since the yi’s are independent, by
Proposition 4.2.1,

Pr(there is no match)6 e−n2/N .

Here, if n is chosen to be dC
√

Ne, the probability of not getting a match is at most e−C2
.

4.3 Perfect secrecy and entropy
Now we try to understand how much information a given ciphertext reveals about the plaintext. For a proper
formalization, we introduce the random variables M,K,C: M is a random plaintext (M : Ω→M), K is a random
key (K : Ω→K), and C is a random ciphertext (C : Ω→ C). We denote by fM, fK , fC their density functions, i.e.

fM(m) = Pr(M = m), fK(k) = Pr(K = k), fC(c) = Pr(C = c).

Assume that each fM(m), fK(k), fC(c) is positive, i.e. drop the possible messages, keys and ciphers of zero
probability. (Although theoretically, impossibility does not mean the same as zero probability.)

Also, we may introduce the conditional probabilities

fM|K(m | k) = Pr(M = m | K = k), fM|C(m | c) = Pr(M = m |C = c), fK|C(k | c) = Pr(K = k |C = c),

fK|M(k | m) = Pr(K = k |M = m), fC|M(c | m) = Pr(C = c |M = m), fC|K(c | k) = Pr(C = c | K = k).

Definition 4.3.1 (perfect secrecy). We say that the cryptosystem has perfect secrecy, if for all m ∈M and c ∈ C ,

fM|C(m | c) = fM(m).

This definition indeed grabs the notion that c does not reveal information on m: intercepting the ciphertext c,
Eve has the same chance when guessing m as a priori.

Proposition 4.3.2. If a cryptosystem has perfect secrecy, then #K > #M .

Proof. Assume #K < #M . Take any m ∈M . Since for each k ∈K , ek(m) is a well-defined element of C , we
see that by assumption, there exists an element c ∈ C which does not appear as ek(m) when k runs through K .
This means that

fM|C(m | c) = 0.

On the other hand, fM(m)> 0, which excludes perfect secrecy.

In efficient cryptosystems, however, a single key is used many times and for many plaintexts, therefore, perfect
secrecy is impossible to reach. Alice and Bob still have the endeavor to build a cryptosystem which gives Eve the
least possible information.

To measure information, Shannon introduced the notion of entropy in communication theory.

26 4. PROBABILITY AND INFORMATION THEORY

Definition 4.3.3 (entropy). Given a random variable X taking the values x1, . . . ,xn with probabilities p1, . . . , pn,
respectively, the entropy is defined as

H(X) = H(p1, . . . , pn) =−
n

∑
i=1

pi log2 pi.

For any n ∈ N, set

Un = {(x1, . . . ,xn) ∈ Rn : x1, . . . ,xn > 0 and x1 + . . .+ xn = 1},

and

U =
∞⋃

n=1

Un.

With this notation, we may think of the entropy function H as a function from U to R. It is also symmetric, by
which we mean that restricted to any Un, it is invariant under any permutation of the n coordinates.

Proposition 4.3.4 (characterization of the entropy). The entropy is defined up to a constant multiple by the following
three axioms (and the fact that H is a symmetric function from U to R):

(H1) H is continuous on any Un;

(H2) H is monotonically increasing on the uniform distributions, i.e. for any m,n ∈ N, if m > n, then

H

 1
m
, . . . ,

1
m︸ ︷︷ ︸

m many

> H

1
n
, . . . ,

1
n︸ ︷︷ ︸

n many

 ;

(H3) H is decomposable, i.e. if (p0, p1, . . . , pn) ∈Un+1, and q1, . . . ,qm ∈Um, then

H(q1 p0, . . . ,qm p0, p1, . . . , pn) = H(p0, p1, . . . , pn)+ p0H(q1, . . . ,qm)

(obviously (q1 p0, . . . ,qm p0, p1, . . . , pn) ∈Un+m).

Proof. For any n ∈ N, set

f (n) = H

1
n
, . . . ,

1
n︸ ︷︷ ︸

n many

 .

We claim that for any m,n ∈ N, f (mn) = f (m)+ f (n). Indeed, decomposing all the 1/n’s to 1/(mn)’s in

H

1
n
, . . . ,

1
n︸ ︷︷ ︸

n many

and applying (H3) n times, we obtain,

H

 1
mn

, . . . ,
1

mn︸ ︷︷ ︸
mn many

= H

1
n
, . . . ,

1
n︸ ︷︷ ︸

n many

+H

 1
m
, . . . ,

1
m︸ ︷︷ ︸

m many

 ,

which gives f (mn) = f (m)+ f (n).
Writing here m = n = 1, we obtain f (1) = H(1) = 0 immediately. Then 0 < f (2)< f (3)< .. . by (H2). We

claim that f (n)/ logn is constant. To this aim, assume p > 2 is a prime number. For a large number k ∈N, sandwich
pk between two consecutive powers of 2:

2blog2 pkc < pk < 2dlog2 pke.

4.3. PERFECT SECRECY AND ENTROPY 27
Applying f and f (mn) = f (m)+ f (n), we obtain

blog2 pkc f (2)< k f (p)< dlog2 pke f (2).

Then
(log2 pk−1) f (2)< k f (p)< (log2 pk +1) f (2),

which gives
(k log2 p−1) f (2)< k f (p)< (k log2 p+1) f (2).

Dividing by k log p,
f (2)
log2

− f (2)
k log p

<
f (p)
log p

<
f (2)
log2

+
f (2)

k log p
.

Letting k→ ∞, this implies that f (p)/ log p is the same positive number for each prime p. This clearly implies that
f (n)/ logn is a fixed positive constant.

From this, it is clear that for some c > 0,

H

1
n
, . . . ,

1
n︸ ︷︷ ︸

n many

=−c
n

∑
i=1

1
n

log2
1
n

holds for all n ∈ N. Via (H3), this implies, for (p1, . . . , pn) ∈Un∩Qn,

H(p1, . . . , pn) =−c
n

∑
i=1

pi log2 pi.

(Indeed, write each pi as ai/N, where N is a common denominator, ai ∈ N, and apply (H3) for each i.)
Now (H1) completes the proof.

Definition 4.3.5 (equivocation (conditional entropy)). Assume there are two random variables X ,Y with values
x1, . . . ,xn and y1, . . . ,ym, respectively. Their equivocation (conditional entropy) is defined as

H(X | Y) =−
n

∑
i=1

m

∑
j=1

Pr(Y = y j)Pr(X = xi | Y = y j) log2 Pr(X = xi | Y = y j).

Proposition 4.3.6. We have
H(X ,Y) = H(Y)+H(X | Y), (4.3.1)

where by X ,Y , we mean the random variable X×Y , which takes the value (x,y) with probability Pr(X = x,Y = y)
(and analogously to more variables). Also, if X and Y are independent, then

H(X ,Y) = H(X)+H(Y). (4.3.2)

Proof. We prove (4.3.1) first. Assuming the values of X are x1, . . . ,xm and those of Y are y1, . . . ,yn, we introduce
the notation pi, j = Pr(X = xi,Y = y j) for any 1 6 i 6 m, 1 6 j 6 n. Then for any 1 6 j 6 n,

Pr(Y = y j) =
m

∑
u=1

pu, j,

and for any 1 6 i 6 m, 1 6 j 6 n,

Pr(X = xi | Y = y j) =
pi, j

Pr(Y = y j)
=

pi, j

∑
m
u=1 pu, j

The left-hand side of (4.3.1) is, by definition,

H(X ,Y) =−
m

∑
i=1

n

∑
j=1

pi, j log2 pi, j.

28 4. PROBABILITY AND INFORMATION THEORY

On the right-hand side

H(X | Y) =−
m

∑
i=1

n

∑
j=1

pi, j log2

(
pi, j

∑
m
u=1 pu, j

)
.

Then

H(X ,Y)−H(X | Y) =−
m

∑
i=1

n

∑
j=1

pi, j log2

(
m

∑
u=1

pu, j

)
=−

n

∑
j=1

Pr(Y = y j) log2 Pr(Y = y j) = H(Y),

and the proof of (4.3.1) is complete.
Now assume X and Y are indpendent random variables with values x1, . . . ,xm, y1, . . . ,yn, respectively. Let

Pr(X = xi) = pi, Pr(Y = y j) = q j, by independency, Pr(X = xi,Y = y j) = piq j then. Now

H(X | Y) =−
m

∑
i=1

n

∑
j=1

piq j log2 pi =−
m

∑
i=1

pi log2 pi = H(X),

and then (4.3.2) follows from (4.3.1).

Proposition 4.3.7. We have
H(X | Y)6 H(X).

Proof. Assuming the values of X are x1, . . . ,xm and those of Y are y1, . . . ,yn, we introduce the notation pi, j =
Pr(X = xi,Y = y j) for any 1 6 i 6 m, 1 6 j 6 n. Then for any 1 6 j 6 n,

Pr(Y = y j) =
m

∑
u=1

pu, j.

Then

H(X | Y) =−
m

∑
i=1

n

∑
j=1

pi, j log2

(
pi, j

∑
m
u=1 pu, j

)
.

Computing the derivative of t log(t/T) + (1− t) log((1− t)/T) with respect to t (for a fixed 0 < T < 1 and
0 < t < T), we obtain

d
dt

(
t log

t
T
+(1− t) log

1− t
T

)
= log t− log(1− t),

and we see that the maximum of H(X | Y), for a fixed Y is attained at pi, j = pi′, j for any 1 6 i < i′ 6 m and any
1 6 j 6 n by a simple analytic argument. Indeed, by compactness, there is a maximum, and if pi, j 6= pi′, j, they can
be replaced with their average, this increases the value (for interior pi, j, pi′, j 6= 0, this follows from the derivative;
while on the boundary, the statement follows from continuity: if a boundary point admitted a bigger value than the
midpoint then so would do a small perturbation of it). This implies that for a fixed Y , H(X | Y) is maximal, when X
is independent of Y . For such X’s (4.3.1) and (4.3.2) give H(X | Y) = H(X), and this completes the proof.

In the cryptographic setup, we would like to measure the information that the cipher gives on the key, and define
H(K |C) to be the key equivocation. The higher its value is, the less information the cipher reveals about the key.

Proposition 4.3.8. If M and K are independent, then

H(K |C) = H(M)+H(K)−H(C).

Proof. First, by (4.3.1), we have

H(M,K,C) = H(C |M,K)+H(M,K).

Here, since C is determined by M and K, H(C |M,K) = 0, and by (4.3.2),

H(M,K) = H(M)+H(K).

Similarly, since M is determined by K and C,

H(M,K,C) = H(M | K,C)+H(K,C) = H(K,C).

Then

H(K |C) = H(K,C)−H(C) = H(M,K,C)−H(C) = H(M,K)−H(C) = H(M)+H(K)−H(C).

The proof is complete.

4.4. THE REDUNDANCY OF NATURAL LANGUAGES 29

4.4 The redundancy of natural languages
If L is a language, denote by L the random variable where the values are the letters of the language, and the
probabilities are the relative frequencies. Set L2 for the bigrams, L3 for the trigrams and so on. Then the entropy of
the language is defined to be

H(L) = lim
n→∞

H(Ln)

n
.

Proposition 4.4.1. For any L, H(L) exists.

Proof. For any m,n ∈ N, we have

H(Lnm)

nm
6

H(

m many︷ ︸︸ ︷
Ln, . . . ,Ln)

nm
=

H(Ln)

n
.

Now for a fixed n, and letting m→ ∞, introducing m = ncm +dm, where 0 6 dm < n,

H(Lm)

m
=

H(Lncm+dm)

m
6

H(Ln)

n
+o(1).

Clearly the sequence (H(Ln)/n)n∈N is bounded (each element is between 0 and H(L)). Assume

S = limsup
n→∞

H(Ln)

n
, I = liminf

n→∞

H(Ln)

n

are different. Fix n such that H(Ln)/n < I +(S− I)/3. Now take m’s tending to infinity such that H(Lm)/m > S−
(S− I)/3. This obviously gives a contradiction, when o(1) in the above calculation gets smaller than (S− I)/3.

Experimentally, it seems that
1 6 H(English)6 1.5.

Note also that
log2 26≈ 4.7.

This means that the English language (like any other natural language) admits a high redundancy: everything which
is expressed, could be expressed on less than one third of the used space. This explains the phenomenenon that
when you apply cryptanalysis to a simple substitution cipher (recall Section 1.2), you do not have to decrypt all the
characters, the plaintext becomes readable earlier.

Chapter 5
Elliptic curves and cryptography

5.1 Elliptic curves and their abelian group structure

Given a field F of characteristic bigger than 3, and elements A,B ∈ F such that 4A3 +27B2 6= 0, the elliptic curve
defined by them is defined on the projective plane is

E = {[X ,Y,Z] ∈ P2(F) : Y 2Z = X3 +AXZ2 +BZ3}.

On the subset {Z 6= 0}, this is the set (with affine coordinates x = XZ−1, y = Y Z−1)

EZ 6=0 = {(x,y) ∈ F2 : y2 = x3 +Ax+B},

and when Z = 0, then automatically X = 0, giving

EZ=0 = {[0,1,0]},

from now on, this point [0,1,0] will be denoted by O .
Given two different points P = [XP,YP,ZP] and Q = [XQ,YQ,ZQ] on E, they determine a line passing through

both of them, namely, when P 6= Q, then

LP,Q = {λ1[XP,YP,ZP]+λ2[XQ,YQ,ZQ] : [λ1,λ2] ∈ P1(F)},

while if P = Q, then it is the tangent line of E at P. To understand this tangent line, let us use the affine coordinates.
On EZ 6=0, at a point (x,y) ∈ E (assume for a moment that y 6= 0),

d
dx

y2 =
d
dx

(x3 +Ax+B),
2ydy
dx

= 3x2 +A,
dy
dx

=
3x2 +A

2y
.

This gives that the tangent line at (xP,yP) ∈ EZ 6=0,Y 6=0 is{
(x,y) ∈ F2 : y =

3x2
P +A
2yP

x− 3x2
P +A
2yP

xP + yP

}
.

Taking the projectivization, we obtain the line{
[X ,Y,Z] ∈ P2(F) : 2yPY = (3x2

P +A)X +((−3x2
P−A)xP +2y2

P)Z
}
,

and we see that this definition gives the tangent line even for yP = 0: it contains the point [XP,YP,ZP], and also any
point with coordinates [XP,Y,ZP], which is just the vertical line on the xy-plane (and this is the tangent line, when
the slope is infinity, i.e. when we divide by yP = 0 above).

At the point O , we see that the tangent line is {Z = 0}: indeed, setting Z = 0, we obtain the equation 0 = X3,
which has a triple root at X = 0, so O is a triple intersection point of E and LO,O .

All in all, given any two point P,Q ∈ E, we can attach a line LP,Q passing through them, and if P = Q, then
further being tangent to E.

31

32 5. ELLIPTIC CURVES AND CRYPTOGRAPHY

We claim this line intersects E in a further point of E. We go by cases.
If P = Q = O , then O is the third intersection point (recall that O is a triple intersection of E and LO,O).
If P = O , and Q = [XQ,YQ,ZQ] 6= O , then we have two subcases. If YQ 6= 0, then [XQ,−YQ,ZQ] is the third

intersection point. If YQ = 0, then LO,Q is the tangent line at Q, so the third intersection point is Q itself.
If P = [XP,YP,ZP] 6= O,Q = [XQ,YQ,ZQ] 6= O , and xQ = xP,yQ =−yP in the affine notation (including the case

YP = YQ = 0, i.e. P = Q), then LP,Q is a vertical line on the xy-plane, which intersects E further in O .
Now assume P = [XP,YP,ZP] 6=O,Q = [XQ,YQ,ZQ] 6=O , and their x-coordinates (on the xy-plane) are different.

Then the line passing through them is y = mx+ c for some m,c ∈ F. Then

(mx+ c)2 = x3 +Ax+B

has two roots xP,xQ (counted with multiplicity, when P = Q). Then factoring them out, we obtain a third solution,
giving rise to a third intersection point.

Then we may define an addition on E. Given two points P,Q ∈ E, take the third intersection point of LP,Q and
E (call it R), and then the third intersection point of LR,O and E. This will be the point P+Q.

Theorem 5.1.1. Under this addition, the points of E form an abelian group with unit element O .

One can easily check that the third intersection point R is nothing else but −P−Q.

5.2 A sketch of the proof of Theorem 5.1.1
In this section, we are goint to sketch the proof of Theorem 5.1.1. Commutativity, unit element and invertibility are
easy to see, the difficult (and deep) part is the associativity. To this aim, we assume that the underlying field F is
algebraically closed: we are free to do this, since the points are always defined as third intersection points, and if
two intersection points are in a certain subfield, then so is the third one.

5.2.1 The resultant and Bézout’s theorem
For fixed n ∈ N∪{0}, denote by Pn ⊂ F[Z] the vector space of polynomials of degree smaller than n (completed
with the zero polynomial). Define the linear map

ρ(A,B) = PA+QB, ρ : Pn×Pm→Pm+n,

where P(Z) = amZm + . . .+a1Z +a0 and Q(Z) = bnZn + . . .+b1Z +b0 are fixed polynomials (with am,bn 6= 0).
Taking the basis (Zn−1, . . . ,Z,1,Zm−1, . . . ,Z,1) in Pn×Pm and the basis (Zm+n−1, . . . ,Z,1) in Pm+n, we see that
the matrix of ρ is

S =

am am−1 . . . a0 0 . . . 0
0 am . . . a1 a0 . . . 0

. . .
0 . . . 0 am am−1 . . . a0
bn bn−1 . . . b0 0 . . . 0
0 bn . . . b1 b0 . . . 0

. . .
0 . . . 0 bn bn−1 . . . b0

.

Now ρ is singular if and only if detS = 0. Singularity is also equivalent to that P and Q share a common root: if
deggcd(P,Q)> 0, then ρ is not surjective (since deg(gcd(P,Q)) divides all elements of ρ(Pn×Pm)), while if
deggcd(P,Q) = 0, then ρ is surjective (since all elements of Pm+n is a polynomial combination of P and Q).

Therefore, detS is zero if and only if P and Q share a common root. This quantity detS is called the resultant of
P and Q.

Proposition 5.2.1. Let A be a unique factorization domain, and assume f ,g ∈ A[x] are nonzero polynomials. Then
f and g have a common nonconstant factor if and only if the equation u f + vg = 0 has a nontrivial solution such
that degv < deg f and degu < degg.

Proof. First, if f and g share a nonconstant factor h ∈ A[x]. Then setting (g/h) f +(− f/h)g = 0, and obviously
deg(f/h)< deg f , deg(−g/h)< degg. For the converse, take an admissible pair (u,v), then each irreducible factor
of f divides vg. Since degv < deg f , there must be an irreducible factor of f which appears as a divisor of g.

5.2. A SKETCH OF THE PROOF OF THEOREM 5.1.1 33
Theorem 5.2.2 (Bézout). Assume f ,g ∈ F[x,y] are polynomials such that their degrees are m,n, respectively. If
f ,g do not share common factors, then they have at most mn common zeros.

Proof. Assume the corresponding projectivizations are F(X ,Y,Z) = a0Zm + . . .+am−1Z +am, and G(X ,Y,Z) =
b0Zn + . . .+bn−1Z +b0, where a j,b j are the degree j part of f ,g, respectively. It is easy to see that no common
factor of f ,g implies the same for F,G. Then there are no nontrivial solutions of uF+vG= 0 such that degv< degF ,
degu < degG. This means that the resultant S made of the coefficients a0, . . . ,am,b0, . . . ,bn (note that these are
now polynomials) is not constant zero. Then degdetS 6 mn, and by the fundamental theorem of algebra, we may
factorize detS as ∏(ξ x−ζ y), and the number of factors is at most mn. Each such factor gives at most max(m,n)
possibilities for Z, so there are finitely many common zeros [X : Y : Z]. Changing coordinates, we may choose a
base point which is not a common zero, neither lies on a line connecting to common zeros (since F is infinite). With
this base point as [0 : 0 : 1], and repeating the above argument, each factor (ξ x−ζ y) gives at most one Z.

5.2.2 The Cayley-Bacharach theorem

If F(X ,Y,Z) is a homogeneous polynomial of degree 3 over the base field F, then its zero set γ = {[X : Y : Z]∈ PF2}
is called a cubic curve.

Theorem 5.2.3 (Cayley-Bacharach). Assume γ1 and γ2 are two cubic curves sharing exactly nine intersection
points P1, . . . ,P9. Then if γ is a further cubic curve passing thorugh the first eight intersection points P1, . . . ,P8,
then γ is a linear combination of γ1 and γ2 (by this we mean that if γ1,γ2,γ are the vanishing sets of F1,F2,F,
respectively, than for some λ ,µ ∈ F2, λF1 +µF2 = F). In particular, γ passes through P9.

Proof. We prove by contradiction, assume F1,F2 are given as in the statement, and F is a degree 3 homogeneous
polynomial vanishing at P1, . . . ,P8, which is not a linear combination of F1 and F2.

First we claim that no four of P1, . . . ,P9 lie on any line l (the vanishing set of the homogeneous degree 1
polynomial L), since by Bézout’s theorem, this would mean that this L is a factor of F1,F2, leading to infinitely
many common points of γ1,γ2. Similarly, no seven of P1, . . . ,P9 can lie on any conic q (the vanishing set of the
homogeneous degree q polynomial Q), since by Bézout’s theorem, this would mean that this Q is a factor of F1,F2,
leading to infinitely many common points of γ1,γ2.

Then we claim that any five of P1, . . . ,P9 determine a unique conic passing through them. First, for the existence,
observe that a conic has an equation

aX2 +bXY + cZ2 +dXZ + eY Z + f Z2 = 0,

with not all of a,b,c,d,e, f being zero. Observe that fixing a point is nothing else but a linear condition on the
coefficients a,b,c,d,e, f . Giving five such conditions still leaves a nonzero solution. Now assume there are two
conics q1,q2 passing through the same five points. By Bézout’s theorem, the corresponding polynomials Q1,Q2
must share a common factor L (with vanishing set l, a line). This line l can contain at most three of the points, so
the line containing the remaining two points must be another common factor of Q1,Q2, leading to q1 = q2.

Case 1: three of the first eight points, say, P1,P2,P3 are collinear. Let the line containing them be l. Let q
be the conic containing P4, . . . ,P8. Now let X be a further point on l, and Y be a further point not on either l or q.
Since F,F1,F2 are linearly independent, there is a nonzero linear combination of them G = aF +bF1 + cF2 which
vanishes at both X and Y . Then the vanishing set of G passes through P1, . . . ,P8,X , so it must be the union of l
and q (because it has 4 common points with l, and Bézout applies: 4 > 3 ·1; so the vanishing set of G must be
the union of l and a conic, and this conic must be q, because of 5 common points. However Y /∈ l∪q, which is a
contradiction.

Case 2: Case 1 does not hold, and six of the first eight points, say, P1, . . . ,P6 are on a conic. Let the conic
containing them be q. Let l be the line containing P7,P8. Now let X be a further point on q, and Y be a further
point not on either q or l. Since F,F1,F2 are linearly independent, there is a nonzero linear combination of them
G = aF +bF1 +cF2 which vanishes at both X and Y . Then the vanishing set of G passes through P1, . . . ,P8,X , so it
must be the union of l and q (because it has 7 common points with q, and Bézout applies: 7 > 3 ·2; so the vanishing
set of G must be the union of q and a line, and this conic must be l, because of 2 common points). However
Y /∈ q∪ l, which is a contradiction.

Case 3: none of Case 1 and Case 2 holds. Let l be the line passing through P1,P2, and q the conic passing
through P3, . . . ,P7. In this case then, by assumption, P8 /∈ l ∪q. Let X and Y be further points on l but not on q.
Since F,F1,F2 are linearly independent, there is a nonzero linear combination of them G = aF +bF1 + cF2 which

34 5. ELLIPTIC CURVES AND CRYPTOGRAPHY

vanishes at both X and Y . Then, as above, the vanishing set of G must be l∪q. The contradiction follows from that
on the one hand, G vanishes at P8 (since it is a linear combination of F,F1,F2), but on the other hand, P8 /∈ l∪q.

The proof is complete.

5.2.3 Completion of the sketch
Assume P,Q,R are points on the elliptic curve, and assume the points O,P,Q,R,P+Q,Q+R,−(P+Q),−(Q+
R),−((P+Q)+R) are all different. Now consider the following cubics c1,c2,c3. Let c1 = E itself. Let

c2 =line passing through P and Q and −(P+Q)

∪ line passing through P+Q and R and −((P+Q)+R)

∪ line passing through O and Q+R and −(Q+R).

Finally, let

c3 =line passing through Q and R −(Q+R)

∪ line passing through P and Q+R

∪ line passing through O and P+Q and −(P+Q).

One can prove that c1 and c2 have exactly 9 common points (by the condition, it follows that E cannot contain a
line, so by Bézout’s theorem, the number of intersection points is at most 9), and c3 passes through 8 of them. Then
it passes through −((P+Q)+R) as well, so it has to be equal to −(P+(Q+R)).

Of course, there can be many coincidences among the points. Having some topology in hand (e.g. over the
complexes), this can be handled by continuity. As soon as we have the theorem in hand for the complex field,
we might say that the intersection (or tangent) points are computed from algebraic formulae, and the coincidence
giving associativity must be a formal coincidence, which then must hold in all fields.

5.3 The elliptic curve discrete logarithm problem

Letting Fp the prime field for some p> 3, we may consider an elliptic curve defined by the equation y2 = x3+Ax+B
over it (with the discriminant condition 4A3 +27B2 6= 0).

Let us estimate the number of points on E. There is one point at infinity, so restrict to the solutions of
y2 = x3 +Ax+B in F2. Now for any x, x3 +Ax+B is either square or not, and it is a square by probability ≈ 50%.
This is because

F× 3 x 7→ x2 ∈ F×2

is a two-folded cover of the quadratic residues (indeed, x2 = (−x)2, and for any a ∈ F , x2− a has at most two
solutions). Since x3 +Ax+B = 0 has at most three solutions, we may say that essentially for half of the possible
x’s, there are two y’s, so the number of points on E should be around #F .

A deep theorem of Hasse tells us that this is the truth.

Theorem 5.3.1 (Hasse). We have
|#F+1−#E|6 2

√
#F.

Proof omitted.

As we have seen earlier, from any x, the value x3 +Ax+B mod p can be computed in polynomial time. To
get a point on E, we should compute its squarer-root. Using random algorithms, this can be done fast with high
probability, but if p≡ 3 mod 4, then we also have a simple deterministic way. We will return to this question later.

Using this, we may find points of E by random methods: pick a random x, compute x3 +Ax+B, compute its
(p+1)/4th power, and check if its square is x3 +Ax+B or not. With high probability, after a few trials, we find a
point P ∈ E. Having some points P and Q in hand, it is easy to compute P+Q (the coefficients determining LP,Q
come from simple algebraic manipulations, leading to R =−P−Q, then LR,O and P+Q come similarly).

Given a point P ∈ E on an elliptic curve, we may consider

nP = P+ . . .+P︸ ︷︷ ︸
n many

∈ E.

5.4. ELLIPTIC CURVE CRYPTOGRAPHY 35
Then nP can be computed in polynomial time with the same trick we applied in the proof of Proposition 1.5.50.

Indeed, write
n = ∑

06 j61+dlog2 ne
ε j2 j, ε j ∈ {0,1}.

Then P,2P = P+P,4P = 2P+2P, . . . ,21+dlog2 neP = 2dlog2 neP+2dlog2 neP can be computed in polynomial time, so
is their weighted sum (with weights ε j).

The elliptic curve discrete logarithm problem (ECDLP from now on), is the following: given P,Q ∈ E, provided
that Q = nP for some n ∈N, compute the smallest such n. Since even the DLP for multiplicative groups over prime
fields seems to be a computationally difficult problem, and the group operation in an elliptic curve is much more
complicated than that of multiplicative groups of prime fields, we expect that the ECDLP is also computationally
difficult. So far, this seems to be the truth, there is no known algorithm which would solve the problem in fewer
than O(

√
p) steps (and this can be achieved by a meet-in-the-middle attack, using the collision phenomenon).

5.4 Elliptic curve cryptography

5.4.1 The elliptic curve Diffie-Hellman
Alice and Bob agree on a prime p, an elliptic curve E, and a point P ∈ E. They make them public (they can agree
on it publicly). Now Alice chooses a number nA and Bob chooses a number nB, and they keep them in secret. Then
Alice sends QA = nAP to Bob, and Bob sends QB = nBP to Alice. Now Alice computes nAQB, and Bob computes
nBQA, and this will be their secret key. Observe that

nAQB = nAnBP = nBnAP = nBQA,

so they have the same point nAnBP ∈ E in hand. However, Eve known only nAP and nBP, and from this, she should
compute somehow nAnBP, i.e. she should solve the Diffie-Hellman problem over elliptic curves.

5.4.2 The elliptic curve ElGamal
It starts similarly, p,E,P ∈ E are fixed and public. Now Alice chooses a number nA and keeps it in secret. Now she
computes Q = nAP and makes it public. If Bob wants to send a message M ∈ E to Alice, he chooses an ephemeral
key k ∈ N and computes the following two points:

C1 = kP, C2 = M+ kQ.

Then Alice computes C2−nAC1, obtaining

C2−nAC1 = M+ kQ−nAkP = M+ kQ− kQ = M.

For Eve, to break the cipher in general, should solve a problem not easier than the elliptic curve Diffie-Hellman
problem (recall Proposition 2.3.1).

Chapter 6
Attacking the underlying problems

6.1 The discrete logarithm problem

6.1.1 A babystep-giantstep algorithm
Proposition 6.1.1. Assume g generates the abelian group G of order N. Then the DLP gx = h can be solved in
O(
√

N)Pol(logN) steps.

Proof. For n >
√

N +1 Make the following two lists:

1,g, . . . ,gn, h,hg−n, . . . ,hg−n2
.

We claim that the two lists have a common element. Ineed, the solution x satisfies x = nq+ r for some 0 6 q,r 6 n.
Then h = gqn+r, which implies h−qn = hr.

Therefore, the two lists indeed intersect nontrivially. Assume hence gi = hg− jn for some 0 6 i, j 6 n. Then
x = i+ jn is a solution to the DLP gx = h.

6.1.2 The Pohlig-Hellman algorithm
The following proposition reduces the DLP in a group to the DLP in its Sylow subgroups.

Proposition 6.1.2. Assume G is a cyclic group of order N, where N = ∏
r
j=1 p

α j
j . Assume we can solve the DLP in

O(S(pα)) time for any element, whose order is pα . Then for G, we can solve the DLP in O(∑r
j=1 S(p

α j
j))Pol(logN)

time.

Proof. For any 1 6 j 6 r, set g j = gN/p
α j
j , and h j = hN/p

α j
j . Now for any 1 6 j 6 r, solve the problem

g
y j
j = h j

in O(S(p
α j
j)) time.

Then in O(logN) time, using the Chinese remainder theorem (Corollary 1.5.39), we get

x≡ y j mod p
α j
j for each 1 6 j 6 r.

Then, for any 1 6 j 6 r, for some z j ∈ Z, x = y j + p
α j
j z j, and then

(gx)N/p
α j
j =

(
gy j+p

α j
j z j

)N/p
α j
j

= h j = hN/p
α j
j .

This means that
N

p
α j
j

x≡ N

p
α j
j

logg(h) mod N,

which implies
x≡ logg(h) mod p

α j
j .

Since this holds for any 1 6 j 6 r, x≡ logg(h) modulo N.

37

38 6. ATTACKING THE UNDERLYING PROBLEMS

Further, the prime power groups can be reduced to prime groups.

Proposition 6.1.3. Assume G is a cyclic group on pe elements. Assume we can solve the DLP in O(S(p)) time for
any element, whose order is p. Then in G, we can solve the DLP in O(eS(p))Pol(e log p) time.

Proof. Assume we have to solve gx = h. We know that for some 0 6 x0,x1, . . . ,xe−1 6 p−1

gx0+x1 p+...+xe−1 pe−1
= h.

Then raising to power pe−1,
(gp−1)x0 = hp−1,

and we obtain x0 in O(S(p)) steps. Recursively, assume x0,x1, . . . ,x j−1 are already determined. Then

gx j p j+...+xe−1 pe−1
= hg−x0−x1 p−...−x j−1 p j−1

,

and raising to power pe−1− j, we obtain

(gp−1)x j =
(

hg−x0−x1 p−...−x j−1 p j−1
)p−1

,

and x j is computed in O(S(p)) time.

6.1.3 The index calculus method
In this section, we present the index calculus method, which solves the DLP in the multiplicative group of Fp.

First of all, fix a parameter B, and solve the discrete logarithm problem for any prime q 6 B, i.e. compute
logg(q). How to do this? For some random numbers 1 6 i 6 p−1, compute

gi ≡ gi mod p.

If gi has a prime factor bigger than B, then discard it, otherwise factorize it as

gi = ∏
q6B

q prime

quq,i .

Then by Euler-Fermat (Corollary 1.5.46),

i≡ ∑
q6B

q prime

uq,i logg(q) mod p−1.

Here, if the number of congruences is large enough, then we may be able to solve this congruence system for
logg(q) (be careful: Zp−1 is not a field).

Now in the DLP gx ≡ h mod p, compute, for k = 1,2, . . ., the value hg−k mod p until we arrive at a value which
has only prime factors not exceeding B. Then

hg−k = ∏
q6B

q prime

qeq ,

which immediately gives
logg(h) = k+ ∑

q6B
q prime

eq logg(q).

Of course, the algorithm depends on the choice of the parameter B. For any 0 6 ε 6 1, introduce the notation

Lε(X) = e(logX)ε (log logX)1−ε

.

It turns out that to find enough congruences, B has to run up to L1/2(p)1/
√

2 which altogether gives rise to a
subexponential algorithm (which is still far worse than polynomial, but much better than exponential). With further
improvements, the running time can be decreased to L1/3(p) (still subexponential).

6.2. FACTORIZATION ALGORITHMS 39

6.2 Factorization algorithms

6.2.1 Pollard’s p−1 method
When attacking RSA, there is a given large number N = pq, where we do not know the prime factors p and q.

Starting out from a small number a, say, a = 2, consider the following sequence

gcd
(
a1!−1,N

)
, gcd

(
a2!−1,N

)
, gcd

(
a3!−1,N

)
, . . .

If n! in the exponent is not too large, then these numbers can be computed in a reasonable time. Now assume that
for some not too large n, (p−1)|n!. Then, by Euler-Fermat (Corollary 1.5.46),

an! = (ap−1)n!/(p−1) ≡ 1n!/(p−1) = 1 mod p.

If we are lucky enough that q does not divide an!−1, then gcd(an!−1,N) will be p, which gives the factorization
of N.

How difficult it is to compute gcd(an!−1,N)? First, an! is uncomputably large (with current tools) even for
n = 200. However, we need it only modulo N, and the modulo N powering can be done fast, think of Proposition
1.5.50. Even better, for an actual calculation, we may get use of the identity

a(n+1)! = (an!)n+1,

so when we are interested in a(n+1)! (modulo N), we only have to raise an! (modulo N) to power n+1 (modulo
N). Altogether, this means that even n≈ logN is an acceptable number for the number of trials in a polynomial
algorithm.

This means that prime numbers p,q are insecure for the aim of RSA, if one of p−1 and q−1 has only small
prime factors.

6.2.2 Lenstra’s elliptic curve factorization

Given N to be factorized, consider an elliptic curve y2 = x3 +Ax+B modulo N. For the first sight, this seems
nonsense, since N is not a prime, so ZN is not a field. Nevertheless, when computing the sum of two points, we just
add, subtract, multiply and divide, and all these make sense, at least if the number we divide by is coprime to N.

For a point P ∈ E, its multiples
P, 2P, 3P, . . .

can be computed in most cases. What happens, when we cannot compute nP for some n ∈ N? It means that during
its computation (n− 1)P+P, we draw the line of slope (y(n−1)P− yP)(x(n−1)P− xP)

−1, and this slope does not
make sense, meaning that x(n−1)P− xP is not coprime to N. Assuming that it is divisible by p, this means that
nP = O when considered over Fp.

This gives us an algorithm: take a point P on E, and compute

P, 2!P, 3!P,

When n! gets divisible by the order of P modulo p, the resulting point is O over Fp. If we cannot perform the
calculation, it means that we tried to divide by a number (the difference of two x-coordinates) not coprime to N,
that is, we have some d > 1 such that d | N. Computing gcd(d,N), we either find a proper divisor of N, or we find
N itself. In the former case, we are done, in the latter one, we pick a new curve and a new point.

Again, an actual computation can be made faster by utilizing

(n+1)!P = (n+1) ·n!P.

There is a technical subtlety in the choice of the curve and the point on it. Earlier, we agreed that given a curve,
a random trial gives a good x-coordinate by 50% chance, and then computing the square root is easy. However,
this is not true now, since we do not know the factorization of N: if we compute x3 +Ax+B, we cannot tell if
it a square. Instead, choose the point P first, and adjust the elliptic curve: pick a random A, then set B such that
y2 = x3 +Ax+B holds for P.

Chapter 7
Additional topics

In this chapter, our main source is [2].

7.1 Interactive proofs

7.1.1 How to store the last move in chess?
Assume now Alice and Bob play chess via phone (they tell each other their moves using the chessboard coordinates).
After some time, they decide to pend the game. In tournament chess, the player on move writes her/his move to a
piece of paper, and gives it to the arbiter in a closed envelope. The next day the arbiter opens the envelope and
makes the assigned move on the board, then the game continues. The goal is to deprive both players from clear
advantages over each other1.

Of course, Alice and Bob could go for a Trusted Authority and use the same scheme. Nevertheless, they can
solve this problem on their own. Alice generates two large primes p,q such that the first few, say, ten digits of p
(which is the smaller prime by their agreement) encrypts her move. Then she sends the product N = pq to Bob. Bob
is unable to read out Alice’s move, but the next day, when they continue their game, Alice tells the factorization. Of
course, Bob checks it, so that Alice cannot alter her move.

This way it is possible to create ”electronic envelopes”: Alice can put a certain piece of information in a deposit,
which cannot be altered even by herself, but cannot be read by anyone else until she lets them.

7.1.2 A zero-knowledge proof of that a certain number is square modulo N

First assume p and q are large prime numbers, which Peggy (the prover) keeps in secret. She publishes their product
N = pq, and also claims that a certain residue class y mod N is a square modulo N, i.e. there exists a residue class
x mod N satisfying x2 ≡ y mod N. Her goal is to prove this to Victor (the verifier) without telling him an actual
square root. Of course, she could in principle tell the prime factors, but doing so would actually tell the square
roots.

Proposition 7.1.1. Assume p is an odd prime number, and gcd(a, p) = 1. Then

a
p−1

2 ≡

{
1 mod p, if a is a square modulo p,
−1 mod p, if a is not a square modulo p.

Proof. Assume first that a≡ b2 mod p for some resiude class b modulo p. By Euler-Fermat (Corollary 1.5.46), we
have

a
p−1

2 ≡ (b2)
p−1

2 ≡ bp−1 ≡ 1.

Assume then a is not a square modulo p. Again, by Euler-Fermat (Corollary 1.5.46), we certainly have(
a

p−1
2

)2
≡ 1 mod p,

1In competitive chess, there are essentially no pending games any more, because of the fast development of engines in the last few decades.

41

42 7. ADDITIONAL TOPICS

and we see that a(p−1)/2 is a root of the polynomial x2− 1 over Fp, hence it must be ±1. Therefore, it suffices
to exclude a(p−1)/2 ≡ 1 mod p in this case. Observe that x 7→ x2 is a two-folded cover from F×p to the nonzero
squares: indeed, if x2

1 ≡ x2
2 mod p, then

0≡ x2
1− x2

2 ≡ (x1− x2)(x1 + x2) mod p, x1 ≡±x2 mod p.

Then the number of nonzero square residue classes is exactly (p−1)/2. Then consider the polynomial x(p−1)/2−1
over Fp. It has at most (p− 1)/2 roots, since the number of roots cannot exceed the degree (over a field), and
recall that we have already found that many roots: namely, the nonzero squares. This means that nonsquare residue
classes are not roots, so a(p−1)/2 cannot be 1 modulo p.

Proposition 7.1.2. If p is a prime such that p≡ 3 mod 4, and a ∈N is coprime to p such that it is a square modulo
p, then a(p+1)/4 is a square root of a.

Proof. We have the following simple calculation (using Proposition 7.1.1):(
a

p+1
4

)2
≡ a

p+1
2 ≡ a ·a

p−1
2 ≡ a mod p,

and the proof is complete.

This already tells us how to compute the square root modulo a prime number congruent to 3 modulo 4. When a
prime number is 1 modulo 4, we may use Cipolla’s algorithm, which relies on the following proposition.

Proposition 7.1.3. Assume p is an odd prime, and a is coprime to p such that it is a square modulo p. Choose
b ∈ F×p such that b2−a is not a square in Fp. Then

(
b+
√

b2−a
) p+1

2

is a square root of a, where the element b+
√

b2−a is understood in the field Fp2 .

Proof. Set ω =
√

b2−a. We will calculate in the field Fp2 = Fp(ω). Then the Frobenius automorphism σ : x 7→ xp

maps ω to −ω: indeed, σ(ω)2 = σ(ω2) = σ(b2−a) = b2−a by Corollary 1.5.47, therefore, σ(ω)2 =±ω (its
square is fixed under σ); and the polynomial xp− x has at most p roots, so σ cannot fix anything outside Fp. Then(

(b+ω)
p+1

2

)2
= (b+ω)p+1 = (b+ω)p(b+ω) = (b−ω)(b+ω) = b2−ω

2 = b2− (b2−a) = a,

and the proof is complete.

So when p ≡ 1 mod 4, we may compute the square root as follows: we pick random b’s, apply Proposition
7.1.1 to decide if b2−a is a square or not modulo p, until we arrive at a nonsquare (it is likely that this happens
fast: note that we win by probability 1/2 in each trial). This nonsquare (or rather, its square root in the bigger field)
gives us a square root of a modulo p.

All in all, if Victor learns p and q, he can easily compure a square root x of y≡ x2 mod N.
To solve this problem, Peggy generates another square, s ≡ r2 mod N, and sends s to Victor. Now Victor

chooses a random bit β ∈ {0,1} and sends it to Peggy. If β = 0, Peggy sends r to Victor, who checks s≡ r2 mod N.
If β = 1, Peggy sends xr to Victor, who checks ys≡ (xr)2 mod N. Observe that in none of the cases Peggy tells too
much information on x to Victor: indeed, when β = 0, then r has nothing to do with y; while if β = 1, the original
square root x is perturbed by a random square root. This means basically that Peggy does not inform Victor about x.
However, Victor still learns something, at least with some probability: if one of y and s is not a square, then Peggy
fails his check with probability 1/2. This is not very much convincing, but Victor can tell Peggy in advance: ”I will
challenge you one hundred times. In each challenge, give me another square s, and I will ask you to send me the
square root of either s or ys, chosen at random. If you fail any of the challenges, I will refuse to believe that your
number y is a square. If you pass all the challenges, I will believe that your number y is indeed a square, since the
probability 1−2−100 is more than enough for me.”

7.2. IDENTIFICATION 43
7.1.3 Using our password
When we withdraw cash from an ATM, we use our password, and the computer system of the bank checks it. There
is a weak point in this procedure: if a hacker gets access to the files of the bank, (s)he can learn our passord.

Using the complexity of factorization, we may find a solution to this weakness. Assume our password is a large
prime p. We also generate another large prime number q, and tell the bank their product N = pq (and, as usual, we
keep p,q in secret). The computer system of the bank stores only N, and when withdrawing cash, we tell p to the
ATM, and the system checks if p divides N, but does not store p.

Now even if the hacker manages to get access to the files of the bank, and learns our number N, (s)he is still
unable to use our password p without factorizing N.

What happens if we cannot trust that the bank indeed does not store our prime number p? Then after the first
withdrawal, p is available for the bank – and also for the skillful hacker.

A version of the RSA can solve this problem, namely, instead of telling the bank the prime divisor p, we only
prove to the bank that we know the prime factorization of N. To this aim, we tell the bank not only N, but also a
number e, and at cash withdrawals, the following protocol can be applied. The ATM generates a random number
1 6 x 6 N, and tells us y≡ xe mod N. We can easily tell what the original x was: letting d be the multiplicative
inverse of e (which is easily computable for us), yd ≡ x mod N (recall Section 3.1). Now the ATM checks if we
really recovered x, and if yes, it accepts that we know the factorization of N.

7.2 Identification
There are certain situations when it is important for Alice to be able to check whether the incoming message have
been really encrypted Bob. In this section we present a few situtions where such issues are addressed.

7.2.1 An RSA-based digital signature
In the following setup, we turn the RSA upside down. Now Bob chooses two large primes p,q and exponents d,e
such that de≡ 1 mod ϕ(N), where N = pq. Then publishes N and e and keeps the remaining numbers in secret.
If his message is 1 6 m 6 N, a number coprime to N, he computes md mod N, and sends it to Alice. Then Alice
raises the incoming message to power e, obtaining

(md)e ≡ m mod N,

recall Section 3.1. For a random number, its eth power is most likely a gibberish, so if Alice gets a meaningful
message, she learns that it must have been sent by Bob indeed. This way Bob’s md is not only a message, but it also
serves as a personal identifier of him, an example of a digital signature.

7.2.2 Multiplayer RSA – the good way
In this section, we assume that there are n participants, each of them using a public key cryptosystem (let us index
them by 1 6 i 6 n). To this aim, each of them chooses two large prime numbers pi,qi, and exponents di,ei such
that diei ≡ mod ϕ(Ni), where Ni = piqi. Now each of them publishes Ni,ei.

Since the moduli are different, this time they cannot use residue classes, so the possible messages are positive
integers. Now assume the ith participant wants to send the message m ∈ N to the jth participant. First of all, (s)he
writes m in base Ni:

m =
t

∑
k=0

m(i,k)Nk
i .

Now (s)he applies her/his own decryption function di to each digit m(i,k). They altogether give rise to a certain
number, say,

Di(m) =
t

∑
k=0

(m(i,k)di mod Ni)Nk
i .

Now (s)he rewrites this number Di(m) in base N j:

Di(m) =
t

∑
k=0

Di(m)(j,k)Nk
j ,

44 7. ADDITIONAL TOPICS

and applies the addressee’s encryption function e j to each digit Di(m)(j,k), giving, say

E j(Di(m)) =
t

∑
k=0

((Di(m)(j,k))e j mod N j)Nk
j .

Then the (s)he sends the number E j(Di(m)) to the addressee.
Now the recipient applies her/his own decryption function d j to each digit, this gives back Di(m)(j,k), as usual:

((Di(m)(j,k))e j)d j ≡ Di(m)(j,k) mod N j,

at least when gcd(Di(m)(j,k),N j) = 1, but this holds with high probability (at least when t is much smaller than all
the pi,qi’s, which we assume from now on). Now these Di(m)(j,k)’s give rise to Di(m):

Di(m) =
t

∑
k=0

Di(m)(j,k)Nk
j .

Finally, the recipient rewrites Di(m) in base Ni,

Di(m) =
t

∑
k=0

(m(i,k)di mod Ni)Nk
i .

then applies sender’s encryption function to each digit, giving back, as usual:

(m(i,k)di)ei ≡ m(i,k) mod Ni,

at least when gcd(m(i,k),Ni) = 1, but this holds with high probability. Then

m =
t

∑
k=0

m(i,k)Nk
i ,

so the reader obtains the original message. But this is not the only outcome of the method. Simultaneously, the jth
participant can be almost certain that the sender was the ith participant, so the method provides digital signatures as
a by-product.

7.3 Secret sharing
The basic problem of secret sharing is the following: given some information, share certain pieces of it among n
people such that when they get together, they can read out the information, but no subgroup of n−1 people can do
so.

A simple solution is the following. Let the secret be a residue class S modulo m. Choose then n−1 random
values D1, . . . ,Dn−1 modulo m, and set

Dn ≡ S−D1− . . .−Dn−1 mod m.

Now the ith participant receives the value Di for 1 6 i 6 n. It is clear that together they can reveal S, since

S≡ D1 + . . .+Dn mod m.

However, if n−1 of them gets together, and share their knowledge, they still cannot have a good guess on S, which
can be any residue class modulo m.

A more general problem is the following: there are n participants and the goal is to give each of them some
piece of the given secret S such that any t of them can reveal the whole S, but no t− 1 of them can do so. The
following idea is due to Shamir.

Let the secret S be a number in any fixed field F. Set a0 = S, and choose random numbers a1, . . . ,at−1. Construct
the polynomial

f (x) = a0 +a1x+ . . .+at−1xt−1 ∈ F[x].

We see that f (0) = S. Take random nonzero elements x1, . . . ,xn ∈ F× and let the ith participant receive the value
yi = f (xi).

7.3. SECRET SHARING 45
Proposition 7.3.1. Let F be a field. Assume that a1, . . . ,am,b1, . . . ,bm ∈ F such that the ai’s are distinct. Then
there exists a unique polynomial f ∈ F[x] such that it is either the zero polynomial or its degree is at most m−1
which satisfies f (ai) = bi for any 1 6 i 6 m.

Proof of uniqueness. Assume f (x) and g(x) are two such polynomials. Then consider the polynomial h(x) =
f (x)−g(x). Then either h(x) = 0 or degh(x)6 m−1. Note on the other hand that a1, . . . ,am are all roots of h(x),
and the number of roots cannot exceed the degree of a polynomial over a field. Then the possibility degh(x)6 m−1
is excluded, so h(x) = 0, and then f (x) = g(x).

Proof of existence via Lagrange’s interpolation. Consider the polynomial

f (x) =
m

∑
i=1

bi ∏
16 j6m

j 6=i

x−a j

ai−a j
.

It is clear that f (x) = 0 or deg f (x)6 m−1. Also, for a single monomial,

∏
16 j6m

j 6=i

x−a j

ai−a j
≡

{
1, if x = ai,
0, if x = ai′ for some 1 6 i′ 6 m with i′ 6= i.

From this, the statement is obvious.

Proof of existence via Newton’s interpolation. We induct on m ∈ N. The statement for m = 1 is obvious, since the
polynomial can be chosen to be the constant b1. Now assume that g(x) is an appropriate polynomial for the first
m−1 pairs in the input: g(x) = 0 or degg(x)6 m−2, and g(ai) = bi for 1 6 i 6 m−1. Then set

f (x) = g(x)+(bm−g(am))
m−1

∏
j=1

x−a j

am−a j
.

Clearly f (x) satisfies the degree conditions, f (ai) = g(ai) = bi for 1 6 i 6 m−1, while at am, we have

f (am) = g(am)+(bm−g(am))
m−1

∏
j=1

am−a j

am−a j
= g(am)+bm−g(am) = bm,

and the proof is complete.

Although both proofs provide an algorithm, Newton’s one is faster in practice (although it is not as explicit as
Lagrange’s one).

With this tool in hand, it is clear that t people can figure out the shared secret: they simply interpolate the value
f (0) = S. However, given only t−1 pieces of the secret, the polynomial can still take any value of F at 0.

Bibliography

[1] J. Hoffstein, J. Pipher, and J. H. Silverman. An Introduction to Mathematical Cryptography. Undergraduate
Texts in Mathematics. Springer, 2008.

[2] L. Lovász. Algoritmusok bonyolultsága. University text.

47

	Preface
	Introduction
	The principal goal of cryptography, Kerckhoff's principle
	Cryptanalysis
	Symmetric ciphers: mathematical formulation
	Asymmetric ciphers: mathematical formulation
	Mathematical background
	The fundamental theorem of arithmetic
	Groups, rings and fields
	Residue classes
	Multiplicative groups
	Computability
	Probability theory

	The XOR cipher and pseudorandom sequences

	Discrete logarithms and Diffie-Hellman
	The discrete logarithm problem
	The Diffie-Hellman key exchange
	The ElGamal cryptosystem

	Integer factorization and RSA
	The RSA cryptosystem
	Primality testing
	Fermat's little theorem and Carmichael numbers
	The Miller-Rabin test
	The Agrawal-Kayal-Saxena polynomial test

	Multiplayer RSA – the bad way

	Probability and information theory
	The Vigenère cipher and its cryptanalysis
	Collision and meet-in-the-middle attacks
	Perfect secrecy and entropy
	The redundancy of natural languages

	Elliptic curves and cryptography
	Elliptic curves and their abelian group structure
	A sketch of the proof of Theorem 5.1.1
	The resultant and Bézout's theorem
	The Cayley-Bacharach theorem
	Completion of the sketch

	The elliptic curve discrete logarithm problem
	Elliptic curve cryptography
	The elliptic curve Diffie-Hellman
	The elliptic curve ElGamal

	Attacking the underlying problems
	The discrete logarithm problem
	A babystep-giantstep algorithm
	The Pohlig-Hellman algorithm
	The index calculus method

	Factorization algorithms
	Pollard's p-1 method
	Lenstra's elliptic curve factorization

	Additional topics
	Interactive proofs
	How to store the last move in chess?
	A zero-knowledge proof of that a certain number is square modulo N
	Using our password

	Identification
	An RSA-based digital signature
	Multiplayer RSA – the good way

	Secret sharing

