Introduction to mathematical cryptography Homework problems Week 8

- 15. Suppose N = pq where p,q are odd primes. Assume $1 \le a \le N$ such that gcd(a,N) = 1. Prove that if the congruence $x^2 \equiv a \mod N$ has any solutions, then it has exactly four solutions.
- 16. Suppose N = pq where p,q are odd primes. Assume you have a machine which does the following. You can give any number $1 \le a \le N$ as an input. Then if gcd(a,N) = 1, and $x^2 \equiv a \mod N$ has any solutions, then the machine returns the four solutions; while if gcd(a,N) > 1 or $x^2 \equiv a \mod N$ has no solution, the machine returns the message ERROR. How could you use this machine to find the factorization of *N*?

Important: The two problems are related. Even if you cannot prove the statement in first one, you are free to use the fact that it is true.

Note: Please provide complete arguments everywhere.