Introduction to mathematical cryptography Homework problems Week 6

- 11. Let p be an odd prime, and assume g is a primitive root modulo p, i.e. for any $a \in \mathbb{F}_p^{\times}$ there exists a solution to the discrete logarithm problem $g^x \equiv a \mod p$. For any such a, denote by $\log_g a$ the smallest positive solution, i.e. the smallest positive integer x satisfying $g^x \equiv a \mod p$. Prove that
 - (a) for any $a, b \in \mathbf{F}_p^{\times}$, $\log_g(ab) \equiv \log_g a + \log_g b \mod (p-1)$,
 - (b) for any $a \in \mathbf{F}_p^{\times}$, $n \in \mathbf{N}$, $\log_g(a^n) \equiv n \log_g a \mod (p-1)$.
- 12. Let p be an odd prime and let g be a primitive root modulo p i.e. for any $a \in \mathbf{F}_p^{\times}$ there exists a solution to the discrete logarithm problem $g^x \equiv a \mod p$. For any such a, denote by $\log_g a$ the smallest positive solution, i.e. the smallest positive integer x satisfying $g^x \equiv a \mod p$. Prove that a has a square root modulo p if and only if its discrete logarithm $\log_g a$ is even.

Note: Please provide complete arguments everywhere.