FINAL EXAM

- 1. (a) Describe the RSA public key cryptosystem. (2 points)
 - (b) Alice establishes an RSA cryptosystem. Prove that if Eve knows that p,q are twin primes (i.e. q = p + 2), then she can easily break the cryptosystem, namely she can decrypt any cipher in polynomial time. (4 points)

Solution. (a) Alice takes two (large) prime numbers p,q, then computes their product N. She also computes $\varphi(N) = (p-1)(q-1)$. Then she takes an exponent $e \in \mathbb{N}$ coprime to $\varphi(N)$, and computes its inverse d modulo $\varphi(N)$. She publishes N, e and keeps $p, q, \varphi(N), d$ in secret.

Now anyone (say, Bob) can send her a message *m* (a residue class modulo *N*) using the following protocol. Bob raises the message to power *e* modulo *N* and sends $c \equiv m^e \mod N$ to Alice.

Now Alice raises the incoming message c to power d modulo N. With high probability, m is coprime to N, and then, by Euler-Fermat,

$$c^d \equiv (m^e)^d \equiv m^{\varphi(N)u+1} \equiv (m^{\varphi(N)})^e \cdot m \equiv 1 \cdot m \equiv m \mod N_{+}$$

which is the original message.

(b) Assume q = p + 2. Then

$$N+1 = pq+1 = p(p+2)+1 = p^2 + 2p + 1 = (p+1)^2$$

that is,

$$p = \sqrt{N+1} - 1.$$

Therefore, Eve adds one to N, then takes the square-root. This square-root can be computed in polynomial time, as we learned it from a homework problem. Subtracting one from the square-root, we obtain p. Now clearly q = N/p (again computed in polynomial time).

Having p,q in hand, Eve can do the same as Alice.

Namely, she can compute $\varphi(N)$, then *d* (the inverse of *e* modulo $\varphi(N)$) in polynomial time using the euclidean algorithm. Therefore, she can decrypt any cipher she intercepts by computing its *d*th power modulo *N*. (Of course, this works only for coprime-to-*N* plaintexts, but this is the case with high probability.)

- 2. (a) Describe the elliptic curve discrete logarithm problem. (2 points)
 - (b) Let \mathbf{R} be the base field. Prove that the affine elliptic curve

$$\{(x, y) \in \mathbf{R}^2 : y^2 = x^3 + Ax\}$$

has exactly three intersection points with the x axis if and only if A < 0. (4 points)

Solution. (a) Let *E* be an elliptic curve. The elliptic curve discrete logarithm problem is, given $P, Q \in E$, to compute the smallest positive integer *n* satisfying that

$$Q = nP = \underbrace{P + \ldots + P}_{n \text{ times}}$$

holds.

(b) First assume that there are three such intersection points. Then $x^3 + Ax$ as a function from **R** to **R** cannot be a strictly monotone function, since it takes the value zero three times. If $A \ge 0$, then $x \mapsto x^3 + Ax$ is strictly monotone increasing, therefore A < 0 must hold.

For the converse, assume A < 0. Then observe that for $x = 0, \pm \sqrt{-A}$,

$$x^3 + Ax = x(x^2 + A) = 0,$$

so there are three intersection points: $(-\sqrt{-A}, 0), (0, 0), (\sqrt{-A}, 0).$

3. (a) Define entropy. (2 points)

(b) Let p_1, \ldots, p_n be positive real numbers such that $p_1 + \ldots + p_n = 1$. Let q and r be further positive real numbers such that $p_n = q + r$. Prove that

$$H(p_1,\ldots,p_n) < H(p_1,\ldots,p_{n-1},q,r).$$

(4 points)

Solution. (a) The entropy function *H* is defined on finite sets of positive numbers summing up to 1, i.e. on tuples $(p_1, \ldots, p_n) \in \mathbf{R}^n_+$ if $p_1 + \ldots + p_n = 1$, for any $n \in \mathbf{N}$. For such a tuple,

$$H(p_1,\ldots,p_n)=-\sum_{j=1}^n p_j \log_2 p_j.$$

(b) First of all, record that H is defined on $(p_1, \ldots, p_{n-1}, q, r)$, since

$$p_1 + \ldots + p_{n-1} + q + r = p_1 + \ldots + p_{n-1} + p_n = 1.$$

By the (H3) property of the entropy (which was stated for the decomposition of the first variable, but clearly H is symmetric in its variables), we have

$$H(p_1,...,p_{n-1},q,r) = H(p_1,...,p_n) + p_n H(q,r).$$

Clearly H(q, r) > 0, which implies

$$H(p_1,\ldots,p_n) < H(p_1,\ldots,p_{n-1},q,r),$$

and the proof is complete.

- 4. (a) State the Euler-Fermat theorem. (2 points)
 - (b) Let p > 2 be a prime number such that $p \equiv 3 \mod 4$. Assume *a* is a further integer, which is coprime to *p*. Assuming that *a* has a square-root modulo *p*, prove that $a^{(p+1)/4}$ is a square-root of *a* modulo *p*. (4 points)

Solution. (a) Assume $m \in \mathbf{N}$ and *a* is a further integer coprime to *m*. Then

$$a^{\varphi(m)} \equiv 1 \mod m$$
,

where $\varphi(m)$ is the number of modulo *m* residue classes coprime to *m*.

(b) Letting $b \equiv a^{(p+1)/4} \mod p$, it suffices to see that its square is *a* modulo *p*. Denoting by *c* a square-root of *a* (which exists by assumption), we have

$$b^2 \equiv \left(a^{\frac{p+1}{4}}\right)^2 \equiv a^{\frac{p+1}{2}} \equiv a \cdot a^{\frac{p-1}{2}} \equiv a \cdot (c^2)^{\frac{p-1}{2}} \equiv a \cdot c^{p-1} \equiv a \mod p$$

in the last step, applying Euler-Fermat and $\varphi(p) = p - 1$.