Problems - 2013.04.09

P. Maga & P. P. Pach

1. Prove that a group is finite if and only if it has finitely many subgroups.

2. Let G be a group for which Aut(G) is trivial. What can be G?

3. Let F_2 be the free group generated by the elements x, y. Let N be its normal subgroup generated by x^2 and y^2 . Prove that $G = F_2/N$ is infinite.

4. Let r, s, t be positive integers which are pairwise relatively prime. If a and b are elements of a commutative multiplicative group with unity element e, and $a^r = b^s = (ab)^t = e$, prove that a = b = e. Does the same conclusion hold if a and b are elements of an arbitrary non-commutative group?

5. Denote by S_n the symmetric group on n elements and by 1 its identity. Prove that if n = 3 or n = 5, then for any $1 \neq \pi_1 \in S_n$, there exists $\pi_2 \in S_n$ such that $S_n = \langle \pi_1, \pi_2 \rangle$. Prove that this does not hold for n = 4.

6. For an arbitrary set X, denote by S_X the group of $X \to X$ bijections. Prove that each element of S_X can be written as the product of two involutions ($a \in S_X$ is an involution, if $a^2 = id_X$).

7.* Assume R is a ring with unit element 1. Prove that if $a, b \in R$ satisfy that 1 - ab is invertible, then 1 - ba is also invertible.

Hard nuts

8. Let R be a ring of characteristic zero (not necessarily commutative). Let e, f and g be idempotent elements of R satisfying e + f + g = 0. Show that e = f = g = 0. (R is of characteristic zero means that, if $a \in R$ and n is a positive integer, then $na \neq 0$ unless a = 0. An idempotent x is an element satisfying $x = x^2$.)

9. Determine the infinite abelian groups with the property that all their proper subgroups are finite. (Warm-up: does there exist any such group?)

10. Let G be a finite group. For arbitrary sets $U, V, W \subset G$, denote by N_{UVW} the number of triples $(x, y, z) \in U \times V \times W$ for which xyz is the unity. Suppose that G is partitioned into three sets A, B and C (i.e. sets A, B, C are pairwise disjoint and $G = A \cup B \cup C$). Prove that $N_{ABC} = N_{CBA}$.

11. Denote by S_n the group of permutations of the sequence $\{1, 2, ..., n\}$. Suppose that G is a subgroup of S_n such that for every $\pi \in G \setminus \{e\}$ there exists a unique $k \in \{1, 2, ..., n\}$ for which $\pi(k) = k$. (Here e is the unit element in the group S_n .) Show that this k is the same for all $\pi \in G \setminus \{e\}$.