Problems - 2013.02.12

P. Maga & P. P. Pach

1. (a) Let a_1, a_2, \ldots be a sequence of real numbers such that $a_1 = 1$ and $a_{n+1} > \frac{3}{2}a_n$ for all n. Prove that the sequence $\frac{a_n}{\left(\frac{3}{2}\right)^{n-1}}$ has a finite limit or tends to infinity. (b) Prove that for all $\alpha > 1$ there exists a sequence a_1, a_2, \ldots with the same properties such that $\lim \frac{a_n}{\left(\frac{3}{2}\right)^{n-1}} = \alpha$.

2. Does there exist a bijective map $\pi: \mathbb{N} \to \mathbb{N}$ such that $\sum_{k=1}^{\infty} \frac{\pi(n)}{n^2} < \infty$?

3. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $(f(x))^n$ is a polynomial for every $n = 2, 3, \ldots$ Does it follow that f is a polynomial?

4. Consider a polynomial $f(x) = x^{2012} + a_{2011}x^{2011} + \cdots + a_1x + a_0$. Albert Einstein and Homer Simpson are playing the following game. In turn, they choose one of the coefficients a_0, \ldots, a_{2011} and assign a real value to it. Albert has the first move. Once a value is assigned to a coefficient, it cannot be changed any more. The game ends after all the coefficients have been assigned values. Homer's goal is to make f(x) divisible by a fixed polynomial m(x) and Albert's goal is to prevent this.

(a) Which of the players has a winning strategy if m(x) = x - 2012?

(b) Which of the players has a winning strategy if $m(x) = x^2 + 1$?

5. (a) A sequence x_1, x_2, \ldots of real numbers satisfies $x_{n+1} = x_n \cos x_n$ for all $n \ge 1$. Does it follow that this sequence converges for all initial values x_1 ? (b) A sequence y_1, y_2, \ldots of real numbers satisfies $y_{n+1} = y_n \sin y_n$ for all $n \ge 1$. Does it follow that this sequence converges for all initial values y_1 ?

6. Let 0 < a < b. Prove that

$$\int_{a}^{b} (x^{2} + 1)e^{-x^{2}} dx \ge e^{-a^{2}} - e^{-b^{2}}.$$

Hard nuts

7. Prove or disprove the following statements:

(a) There exists a monotone function $f: [0,1] \to [0,1]$ such that for each $y \in [0,1]$ the equation f(x) = y has uncountably many solutions x.

(b) There exists a continuously differentiable function $f : [0,1] \to [0,1]$ such that for each $y \in [0,1]$ the equation f(x) = y has uncountably many solutions x.

8.* (a) Show that for each function $f : \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ there exists a function $g : \mathbb{Q} \to \mathbb{R}$ such that $f(x,y) \leq g(x) + g(y)$ for all $x, y \in \mathbb{Q}$. (b) Find a function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ for which there is no function $g : \mathbb{R} \to \mathbb{R}$ such that $f(x,y) \leq g(x) + g(y)$ for all $x, y \in \mathbb{R}$.