Problems - 2013.02.05

P. Maga & P. P. Pach

1. At least how many open half-planes are needed to obtain the (a) open, (b) closed unit circle of \mathbb{R}^2 as their intersection? What about closed half-planes?

2. Find the minimum of

 $x^4 - 15x^2 - 18x$

for $x \in \mathbb{R}$.

3. Given 2013 points on the \mathbb{R}^2 plane, no two of them are collinear with the origin. Show that there is a line passing through the origin such that it divides the given points into two sets of sizes 1006 and 1007. Does there necessarily exists a line dividing into 1005 – 1008?

4. Some Hungarian, English, French, German, Italian and Russian scientists attended a conference. They observed that each of them has exactly one acquaintance from each nation (inculding his/her own one). Prove that the number of participants is divisible by 12. Prove that for any natural number divisible by 12, we can "organize" (at least, theoretically) such a conference.

5. Find all functions $f : \mathbb{Q} \to \mathbb{C}$ satisfying

$$f(x+y) = f(x) + f(y) + xy.$$

for all $x, y \in \mathbb{Q}$.

6. Prove that for any positive real numbers x, y, z,

$$\sqrt{x^2 - xy + y^2} + \sqrt{y^2 - yz + z^2} \ge \sqrt{x^2 + xz + z^2}.$$

7. Given a graph on 2n vertices. Prove that we may erase less than half of the edges such that the remaining graph is bipartite with equally large classes.

Hard nuts

8. For an integer $k \ge 2$, a positive integer n is said to be k-splitting, if there exists $a \in \mathbb{N}$ and p > 0 prime such that

$$n = p + a^k.$$

Prove that there are infinitely many natural numbers that are **not** k-splitting for any $2 \le k \le 2013$.

9.* For $n \ge 2$, let A_1, \ldots, A_n be events such that for any $1 \le i \le n$, $p(A_i) = 1/2$ and for any $1 \le i < j \le n$, $p(A_i \cap A_j) = 1/4$. Prove that the probability of that none of them happens is at most $\frac{1}{n+1}$. Prove that this can be sharp for infinitely many n.