
For n = 1, p arbitrary, M = 1, v = 1, does the job. So from now on, assume n ≥ 2, and that M and v
give an appropriate G. The condition says that starting from 0 and applying G several times, we obtain all
elements of V = Fn

p .

Step 1. M is invertible. Indeed, otherwise, |im M | < pn. Then for k ≥ 1, G(k)(0) ∈ im M + v, which
has cardinality less than pn, a contradiction.

Then Gx = u can be solved for any u, indeed, x = M−1(u − v) is the solution. This shows that
G(pn)(0) = 0 and for 0 < i < pn, G(i)(0) 6= 0. Then the sequence G(i)(0) of i has period pn.

Step 2. M − id is not invertible. Indeed, otherwise Gx = x has the solution x = (M − id)−1(−v), so
after getting x, we stay at x, a contradiction.

Step 3. There are no proper subspaces U1, U2 with the properties V = U1 ⊕ U2, U1, U2 are invariant
under M . Assume not. Then let M = M1 + M2, v = v1 + v2, G = G1 + G2 be the decompositions with
respect to U1 ⊕ U2. Denote by k1 the smallest positive number such that G(k1)(0) = 0, and define similarly
k2. Since |U1|, |U2| < pn, k1, k2 < pn. Then lcm(k1, k2) < pn, and G(lcm(k1,k2))(0) = 0 shows a contradiction.

Step 4. The minimal polynomial q of M is (1−x)k. We know that the minimal polynomial has a factor
(1 − x), since M − id is not invertible (recall the Jordan normal form in the algebraic closure). We prove
below that if q could be factorized as q = q1q2, where gcd(q1, q2) = 1, then there would be an invariant
subspace decomposition, which would lead to a contradiction. Then q(x) must be (1− x)k, indeed.

Assume hence q = q1q2 with gcd(q1, q2) = 1. We claim V = ker q1(M) ⊕ ker q2(M). First, ker q1(M) ⊇
im q2(M), which is trivial: for any u ∈ V , 0 = q(M)u = q1(M)q2(M)u, and q2(M)u runs through im q2(M).
Similarly, ker q2(M) ⊇ im q1(M). Now we prove that (a) ker q1(M) ∩ ker q2(M) = {0}, and (b) im q1(M) +
im q2(M) = V . To see this, take polynomials r1, r2 such that q1r1 + q2r2 = 1. Then if u ∈ ker q1(M) ∩
ker q2(M), then 0 = r1(M)q1(M)u + r2(M)q2(M)u = u shows (a); and for any u ∈ V , u = q1(M)r1(M)u +
q2(M)r2(M)u, the first term is in im q1(M), the second is in im q2(M), which shows (b). Then ker q1(M) =
imq2(M), ker q2(M) = imq1(M). Since kernels are invariant, images are nonzero, we have a proper invariant
subspace decomposition, so we are done. (This is a highly standard argument, but I decided to work out
the details for your convenience!)

So the minimal polynomial is (1 − x)k, then the characteristic polynomial is (1 − x)n (in the Jordan
normal form in the algebraic closure, every block has diagonal (1, . . . , 1)). Then M = id+N , where Nn = 0.

Step 5. We prove pn−2 < n by conradiction. Assume pn−2 ≥ n. Then Mpn−2

= Ip
n−2

+ Npn−2

= I.
Therefore,

G(pn−1)(0) = Mpn−1−1v + . . . + Mv + v

= (M (p−1)pn−2

+ M (p−2)pn−2

+ . . . + Mpn−2

+ id)(Mpn−2−1 + . . . + M + id)v

= 0,

which is a contradiction.
Step 6. pn−2 < n. This holds in the cases (A) n = 2, (B) n = 3, p = 2.
Case (A). Since there is no proper invariant subspace decomposition, M 6= id, hence in a suitable basis,

M = ( 1 1
0 1 ). Assume that in this basis v = ( a

b ). By induction, M i = ( 1 i
0 1 ), so M iv =

(
a+ib
b

)
. Then

G(k)(0) =

k−1∑
i=0

(
a + ib

b

)
=

(
ka + k(k−1)

2 b
kb

)
.

Therefore, if p > 2, G(p)(0) = 0, and it is easy to check that for p = 2, v = ( 0
1 ) does the job. So in the case

n = 2, only p = 2 gives a solution.
Case (B). Again, since there is no proper invariant subspace decomposition, in a suitable basis, M =(

1 1 0
0 1 1
0 0 1

)
. Assume that in this basis v =

(
a
b
c

)
. It is easy to check that Mv =

(
a+b
b+c
c

)
, M2v =

(
a+c
b
c

)
,

M3v =
(

a+b+c
b+c
c

)
, showing that G(4)(0) = (M3 + M2 + M + id)v = 0, that is, no solution here.

To sum up, there are appropriate M and v if and only if ’n = 1 and p is arbitrary’ or ’n = p = 2’.
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