For n = 1, p arbitrary, M = 1, v = 1, does the job. So from now on, assume $n \ge 2$, and that M and v give an appropriate G. The condition says that starting from 0 and applying G several times, we obtain all elements of $V = \mathbb{F}_p^n$.

Step 1. *M* is invertible. Indeed, otherwise, $|\text{im } M| < p^n$. Then for $k \ge 1$, $G^{(k)}(0) \in \text{im } M + v$, which has cardinality less than p^n , a contradiction.

Then Gx = u can be solved for any u, indeed, $x = M^{-1}(u - v)$ is the solution. This shows that $G^{(p^n)}(0) = 0$ and for $0 < i < p^n$, $G^{(i)}(0) \neq 0$. Then the sequence $G^{(i)}(0)$ of i has period p^n .

Step 2. M - id is not invertible. Indeed, otherwise Gx = x has the solution $x = (M - id)^{-1}(-v)$, so after getting x, we stay at x, a contradiction.

Step 3. There are no proper subspaces U_1, U_2 with the properties $V = U_1 \oplus U_2, U_1, U_2$ are invariant under M. Assume not. Then let $M = M_1 + M_2$, $v = v_1 + v_2$, $G = G_1 + G_2$ be the decompositions with respect to $U_1 \oplus U_2$. Denote by k_1 the smallest positive number such that $G^{(k_1)}(0) = 0$, and define similarly k_2 . Since $|U_1|, |U_2| < p^n, k_1, k_2 < p^n$. Then $\operatorname{lcm}(k_1, k_2) < p^n$, and $G^{(\operatorname{lcm}(k_1, k_2))}(0) = 0$ shows a contradiction.

Step 4. The minimal polynomial q of M is $(1-x)^k$. We know that the minimal polynomial has a factor (1-x), since M – id is not invertible (recall the Jordan normal form in the algebraic closure). We prove below that if q could be factorized as $q = q_1q_2$, where $gcd(q_1, q_2) = 1$, then there would be an invariant subspace decomposition, which would lead to a contradiction. Then q(x) must be $(1-x)^k$, indeed.

Assume hence $q = q_1q_2$ with $gcd(q_1, q_2) = 1$. We claim $V = \ker q_1(M) \oplus \ker q_2(M)$. First, $\ker q_1(M) \supseteq im q_2(M)$, which is trivial: for any $u \in V$, $0 = q(M)u = q_1(M)q_2(M)u$, and $q_2(M)u$ runs through $im q_2(M)$. Similarly, $\ker q_2(M) \supseteq im q_1(M)$. Now we prove that (a) $\ker q_1(M) \cap \ker q_2(M) = \{0\}$, and (b) $im q_1(M) + im q_2(M) = V$. To see this, take polynomials r_1, r_2 such that $q_1r_1 + q_2r_2 = 1$. Then if $u \in \ker q_1(M) \cap \ker q_2(M)$, then $0 = r_1(M)q_1(M)u + r_2(M)q_2(M)u = u$ shows (a); and for any $u \in V$, $u = q_1(M)r_1(M)u + q_2(M)r_2(M)u$, the first term is in $im q_1(M)$, the second is in $im q_2(M)$, which shows (b). Then $\ker q_1(M) = im q_2(M)$, $\ker q_2(M) = im q_1(M)$. Since kernels are invariant, images are nonzero, we have a proper invariant subspace decomposition, so we are done. (This is a highly standard argument, but I decided to work out the details for your convenience!)

So the minimal polynomial is $(1 - x)^k$, then the characteristic polynomial is $(1 - x)^n$ (in the Jordan normal form in the algebraic closure, every block has diagonal (1, ..., 1)). Then M = id + N, where $N^n = 0$.

Step 5. We prove $p^{n-2} < n$ by conradiction. Assume $p^{n-2} \ge n$. Then $M^{p^{n-2}} = I^{p^{n-2}} + N^{p^{n-2}} = I$. Therefore,

$$G^{(p^{n-1})}(0) = M^{p^{n-1}-1}v + \ldots + Mv + v$$

= $(M^{(p-1)p^{n-2}} + M^{(p-2)p^{n-2}} + \ldots + M^{p^{n-2}} + \operatorname{id})(M^{p^{n-2}-1} + \ldots + M + \operatorname{id})v$
= 0,

which is a contradiction.

Step 6. $p^{n-2} < n$. This holds in the cases (A) n = 2, (B) n = 3, p = 2.

Case (A). Since there is no proper invariant subspace decomposition, $M \neq id$, hence in a suitable basis, $M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Assume that in this basis $v = \begin{pmatrix} a \\ b \end{pmatrix}$. By induction, $M^i = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$, so $M^i v = \begin{pmatrix} a+ib \\ b \end{pmatrix}$. Then

$$G^{(k)}(0) = \sum_{i=0}^{k-1} \binom{a+ib}{b} = \binom{ka + \frac{k(k-1)}{2}b}{kb}$$

Therefore, if p > 2, $G^{(p)}(0) = 0$, and it is easy to check that for p = 2, $v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ does the job. So in the case n = 2, only p = 2 gives a solution.

Case (B). Again, since there is no proper invariant subspace decomposition, in a suitable basis, $M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Assume that in this basis $v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. It is easy to check that $Mv = \begin{pmatrix} a+b \\ b+c \\ c \end{pmatrix}$, $M^2v = \begin{pmatrix} a+c \\ b \\ c \end{pmatrix}$, $M^3v = \begin{pmatrix} a+b+c \\ b+c \\ c \end{pmatrix}$, showing that $G^{(4)}(0) = (M^3 + M^2 + M + \mathrm{id})v = 0$, that is, no solution here.

To sum up, there are appropriate M and v if and only if n = 1 and p is arbitrary or n = p = 2.