For n = 1, p arbitrary, M = 1, v = 1, does the job. So from now on, assume n > 2, and that M and v
give an appropriate G. The condition says that starting from 0 and applying G several times, we obtain all
elements of V' = F}.

Step 1. M is invertible. Indeed, otherwise, [im M| < p™. Then for k > 1, G*)(0) € im M + v, which
has cardinality less than p™, a contradiction.

Then Gz = u can be solved for any u, indeed, z = M~1(u — v) is the solution. This shows that
G®")(0) =0 and for 0 < i < p", G(0) # 0. Then the sequence GV (0) of i has period p™.

Step 2. M —id is not invertible. Indeed, otherwise Gz = z has the solution z = (M — id)~!(-v), so
after getting =, we stay at x, a contradiction.

Step 3. There are no proper subspaces Uy, Us with the properties V- = U; & Us, Uy, Uy are invariant
under M. Assume not. Then let M = My + Ms, v = vy + va, G = G1 + G5 be the decompositions with
respect to U; @ U,. Denote by k; the smallest positive number such that G*1)(0) = 0, and define similarly
ko. Since |Uy|, |Us| < p™, k1, ko < p™. Then lem(ky, ko) < p”, and GUem(*1:k2))(0) = 0 shows a contradiction.

Step 4. The minimal polynomial ¢ of M is (1 —z)*. We know that the minimal polynomial has a factor
(1 — ), since M — id is not invertible (recall the Jordan normal form in the algebraic closure). We prove
below that if ¢ could be factorized as ¢ = q1q2, where ged(qi,q2) = 1, then there would be an invariant
subspace decomposition, which would lead to a contradiction. Then ¢(z) must be (1 — z)*, indeed.

Assume hence ¢ = ¢1¢2 with ged(gr, ¢2) = 1. We claim V' = ker g1 (M) @ ker go(M). First, ker ¢; (M) 2
im g (M), which is trivial: for any u € V, 0 = ¢(M)u = ¢1(M)g2(M)u, and go(M )u runs through im g2 (M).
Similarly, ker g2(M) 2 im g; (M). Now we prove that (a) ker ¢; (M) Nker g2(M) = {0}, and (b) im ¢ (M) +
im g2(M) = V. To see this, take polynomials r1,r9 such that gi71 + garo = 1. Then if u € kergq; (M) N
ker go(M), then 0 = r1 (M)g1 (M )u + ro(M)ga(M)u = u shows (a); and for any u € V, u = ¢1 (M)r (M)u +
go(M)ro(M)u, the first term is in im ¢y (M), the second is in im g2 (M), which shows (b). Then ker ¢ (M) =
imga (M), ker g2(M) = imgq; (M). Since kernels are invariant, images are nonzero, we have a proper invariant
subspace decomposition, so we are done. (This is a highly standard argument, but I decided to work out
the details for your convenience!)

So the minimal polynomial is (1 — x)*, then the characteristic polynomial is (1 — x)" (in the Jordan
normal form in the algebraic closure, every block has diagonal (1,...,1)). Then M = id+ N, where N = 0.

Step 5. We prove p"~2 < n by conradiction. Assume p"~2 > n. Then M?"~ = [P" " 4+ N?"° = I.
Therefore,
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which is a contradiction.

Step 6. p"~2? < n. This holds in the cases (A) n =2, (B)n=3, p=2.

Case (A). Since there is no proper invariant subspace decomposition, M # id, hence in a suitable basis,
M = ({1). Assume that in this basis v = (§). By induction, M* = ({ 1), so M'v = (*1%). Then
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Therefore, if p > 2, GP)(0) = 0, and it is easy to check that for p = 2, v = (9) does the job. So in the case
n = 2, only p = 2 gives a solution.

Case (B). Again, since there is no proper invariant subspace decomposition, in a suitable basis, M =

b +
((1)%(1)) Assume that in this basis v = (%) It is easy to check that Mv = (?IC), M3y = (abc>,
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M3y = (aﬂ:c), showing that G™*)(0) = (M? + M? + M + id)v = 0, that is, no solution here.

To sum up, there are appropriate M and v if and only if 'n = 1 and p is arbitrary’ or 'n = p = 2’.



