Problems - 2012.09.19

P. Maga & P. P. Pach

- 0. Let $f : \mathbb{F}^2 \to \mathbb{F}$ be a function such that f(x, y) + f(y, z) + f(z, x) = 0 for all $x, y, z \in \mathbb{F}$. Prove that there is a function $g : \mathbb{F} \to \mathbb{F}$ and a constant $c \in \mathbb{F}$ such that f(x, y) = g(x) g(y) + c for all $x, y \in \mathbb{F}$.
- 1. Let f be a nonconstant polynomial with positive integer coefficients. Prove that if n is a positive integer, then f(n) divides f(f(n) + 1) if and only if n = 1.
- 2. Start with a finite sequence a_1, a_2, \ldots, a_n of positive integers. If possible, choose two indices j < k such that a_j does not divide a_k , and replace a_j and a_k by $gcd(a_j, a_k)$ and $lcm(a_j, a_k)$, respectively. Prove that if this process is repeated, it must eventually stop and the final sequence does not depend on the choices made. (Note: gcd means greatest common divisor and lcm means least common multiple.)
- 3. Consider a set S and a binary operation *, i.e., for each $a, b \in S$, $a * b \in S$. Assume (a * b) * a = b for all $a, b \in S$. Prove that a * (b * a) = b for all $a, b \in S$.
- 4. Let p be a prime number. Let h(x) be a polynomial with integer coefficients such that $h(0), h(1), \ldots, h(p^2 1)$ are distinct modulo p^2 . Show that $h(0), h(1), \ldots, h(p^3 1)$ are distinct modulo p^3 .
- 5. Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$(P(X))^{2} + (Q(X))^{2} = X^{2n} + 1$$

and $\deg P > \deg Q$.

6. Let P(x) be a polynomial of degree n such that P(x) = Q(x)P''(x), where Q(x) is a quadratic polynomial and P''(x) is the second derivative of P(x). Show that if P(x) has at least two distinct roots then it must have n distinct roots.

Hard nuts

7. Let f(x) be a polynomial with integer coefficients. Define a sequence a_0, a_1, \ldots of integers such that $a_0 = 0$ and $a_{n+1} = f(a_n)$ for all $n \ge 0$. Prove that if there exists a positive integer m for which $a_m = 0$ then either $a_1 = 0$ or $a_2 = 0$.

 $8. \ Let$

$$f(z) = az^4 + bz^3 + cz^2 + dz + e$$

= $a(z - r_1)(z - r_2)(z - r_3)(z - r_4)$

where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_1 + r_2$ is a rational number and $r_1 + r_2 \neq r_3 + r_4$, then r_1r_2 is a rational number.